
HAL Id: hal-04193389
https://hal.science/hal-04193389

Submitted on 1 Sep 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Functional Dependencies with Predicates: What Makes
the g3-error Easy to Compute?

Simon Vilmin, Pierre Faure-Giovagnoli, Jean-Marc Petit, Vasile-Marian
Scuturici

To cite this version:
Simon Vilmin, Pierre Faure-Giovagnoli, Jean-Marc Petit, Vasile-Marian Scuturici. Functional Depen-
dencies with Predicates: What Makes the g3-error Easy to Compute?. Graph-Based Representation
and Reasoning 28th International Conference on Conceptual Structures, Sep 2023, Berlin (DE), Ger-
many. pp.3-16, �10.1007/978-3-031-40960-8_1�. �hal-04193389�

https://hal.science/hal-04193389
https://hal.archives-ouvertes.fr

Functional Dependencies with Predicates:
What Makes the g3-error Easy to Compute?∗

Simon Vilmin1, Pierre Faure--Giovagnoli2, 3, Jean-Marc Petit2, and Vasile-Marian
Scuturici2

1Université de Lorraine, CNRS, LORIA, F-54000, France
2Univ Lyon, INSA Lyon, CNRS, UCBL, LIRIS, UMR5205, France

3Compagnie Nationale du Rhône, Lyon, France

June 16, 2023

Abstract

The notion of functional dependencies (FDs) can be used by data scientists and do-
main experts to confront background knowledge against data. To overcome the classical,
too restrictive, satisfaction of FDs, it is possible to replace equality with more mean-
ingful binary predicates, and use a coverage measure such as the g3-error to estimate
the degree to which a FD matches the data. It is known that the g3-error can be com-
puted in polynomial time if equality is used, but unfortunately, the problem becomes
NP-complete when relying on more general predicates instead. However, there has been
no analysis of which class of predicates or which properties alter the complexity of the
problem, especially when going from equality to more general predicates.

In this work, we provide such an analysis. We focus on the properties of commonly
used predicates such as equality, similarity relations, and partial orders. These properties
are: reflexivity, transitivity, symmetry, and antisymmetry. We show that symmetry and
transitivity together are sufficient to guarantee that the g3-error can be computed in
polynomial time. However, dropping either of them makes the problem NP-complete.

Keywords: functional dependencies, g3-error, predicates

1 Introduction

Functional dependencies (FDs) are database constraints initially devoted to database design
[MR92]. Since then, they have been used for numerous tasks ranging from data cleaning
[BFG+07] to data mining [NC01]. However, when dealing with real world data, FDs are also
a simple yet powerful way to syntactically express background knowledge coming from domain
experts [FGPS22]. More precisely, a FD X ! A between a set of attributes (or features) X
and another attribute A depicts a function of the form f(X) = A. In this context, asserting
the existence of a function which determines A from X in a dataset amounts to testing the
validity of X ! A in a relation, i.e. to checking that every pair of tuples that are equal on
X are also equal on A. Unfortunately, this semantics of satisfaction suffers from two major
drawbacks which makes it inadequate to capture the complexity of real world data: (i) it
must be checked on the whole dataset, and (ii) it uses equality.

Drawback (i) does not take into account data quality issues such as outliers, mismeasure-
ments or mistakes, which should not impact the relevance of a FD in the data. To tackle

∗Part of this work was done while the first author was doing a postdoc at LIRIS.

1

ar
X

iv
:2

30
6.

09
00

6v
1

 [
cs

.D
M

]
 1

5
Ju

n
20

23

this problem, it is customary to estimate the partial validity of a given FD with a coverage
measure, rather than its total satisfaction. The most common of these measures is the g3-
error [CGF+09, GKK+08, HKPT99, SCP13], introduced by Kivinen and Mannila [KM95].
It is the minimum proportion of tuples to remove from a relation in order to satisfy a given
FD. As shown for instance by Huhtala et al. [HKPT99], the g3-error can be computed in
polynomial time for a single (classical) FD.

As for drawback (ii), equality does not always witness efficiently the closeness of two real-
world values. It screens imprecisions and uncertainties that are inherent to every observation.
In order to handle closeness (or difference) in a more appropriate way, numerous researches
have replaced equality by binary predicates, as witnessed by recent surveys on relaxed FDs
[CDP15, SGHW20].

However, if predicates extend FDs in a powerful and meaningful way with respect to
real-world applications, they also make computations harder. In fact, contrary to strict
equality, computing the g3-error with binary predicates becomes NP-complete [FGPS22,
SCP13]. In particular, it has been proven for differential [Son10], matching [Fan08], metric
[KSSV09], neighborhood [BW01], and comparable dependencies [SCP13]. Still, there is no
detailed analysis of what makes the g3-error hard to compute when dropping equality for
more flexible predicates. As a consequence, domain experts are left without any insights on
which predicates they can use in order to estimate the validity of their background knowledge
in their data quickly and efficiently.

This last problem constitutes the motivation for our contribution. In this work, we study
the following question: which properties of predicates make the g3-error easy to compute? To
do so, we introduce binary predicates on each attribute of a relation scheme. Binary predicates
take two values as input and return true or false depending on whether the values match
a given comparison criteria. Predicates are a convenient framework to study the impact
of common properties such as reflexivity, transitivity, symmetry, and antisymmetry (the
properties of equality) on the hardness of computing the g3-error. In this setting, we make
the following contributions. First, we show that dropping reflexivity and antisymmetry does
not make the g3-error hard to compute. When removing transitivity, the problem becomes
NP-complete. This result is intuitive as transitivity plays a crucial role in the computation
of the g3-error for dependencies based on similarity/distance relations [CDP15, SGHW20].
Second, we focus on symmetry. Symmetry has attracted less attention, despite its importance
in partial orders and order FDs [DH82, GH83, Ng01]. Even though symmetry seems to have
less impact than transitivity in the computation of the g3-error, we show that when it is
removed the problem also becomes NP-complete. This result holds in particular for ordered
dependencies.

Paper Organization. In Section 2, we recall some preliminary definitions. Section 3 is
devoted to the usual g3-error. In Section 4, we introduce predicates, along with definitions
for the relaxed satisfaction of a functional dependency. Section 5 investigates the problem of
computing the g3-error when equality is replaced by predicates on each attribute. In Section
6 we relate our results with existing extensions of FDs. We conclude in Section 7 with some
remarks and open questions for further research.

2 Preliminaries

All the objects we consider are finite. We begin with some definitions on graphs [Ber73]
and ordered sets [DP02]. A graph G is a pair (V,E) where V is a set of vertices and E
is a collection of pairs of vertices called edges. An edge of the form (u, u) is called a loop.
The graph G is directed if edges are ordered pairs of elements. Unless otherwise stated, we
consider loopless undirected graphs. Let G = (V,E) be an undirected graph, and let V ′ ⊆ V .

2

The graph G[V ′] = (V ′, E′) with E′ = {(u, v) ∈ E | {u, v} ⊆ V ′} is the graph induced by V ′

with respect to G. A path in G is a sequence e1, . . . , em of pairwise distinct edges such that
ei and ei+1 share a common vertex for each 1 ≤ i < m. The length of a path is its number of
edges. An independent set of G is a subset I of V such that no two vertices in I are connected
by an edge of G. An independent set is maximal if it is inclusion-wise maximal among all
independent sets. It is maximum if it is an independent set of maximal cardinality. Dually,
a clique of G is a subset K of V such that every pair of distinct vertices in K are connected
by an edge of G. A graph G is a co-graph if it has no induced subgraph corresponding to a
path of length 3 (called P4). A partially ordered set or poset is a pair P = (V,≤) where V
is a set and ≤ a reflexive, transitive, and antisymmetric binary relation. The relation ≤ is
called a partial order. If for every x, y ∈ V , x ≤ y or y ≤ x holds, ≤ is a total order. A poset
P is associated to a directed graph G(P) = (V,E) where (ui, uj) ∈ E exactly when ui ̸= uj
and ui ≤ uj . An undirected graph G = (V,E) is a comparability graph if its edges can be
directed so that the resulting directed graph corresponds to a poset.

We move to terminology from database theory [LL12]. We use capital first letters of the
alphabet (A, B, C, ...) to denote attributes and capital last letters (..., X, Y , Z) for attribute
sets. Let U be a universe of attributes, and R ⊆ U a relation scheme. Each attribute A in R
takes value in a domain dom(A). The domain of R is dom(R) =

⋃
A∈R dom(A). Sometimes,

especially in examples, we write a set as a concatenation of its elements (e.g. AB corresponds
to {A,B}). A tuple over R is a mapping t : R ! dom(R) such that t(A) ∈ dom(A) for every
A ∈ R. The projection of a tuple t on a subset X of R is the restriction of t to X, written
t[X]. We write t[A] as a shortcut for t[{A}]. A relation r over R is a finite set of tuples
over R. A functional dependency (FD) over R is an expression X ! A where X ∪ {A} ⊆ R.
Given a relation r over R, we say that r satisfies X ! A, denoted by r |= X ! A, if for
every pair of tuples (t1, t2) of r, t1[X] = t2[X] implies t1[A] = t2[A]. In case when r does not
satisfy X ! A, we write r ̸|= X ! A.

3 The g3-error

This section introduces the g3-error, along with its connection with independent sets in graphs
through counterexamples and conflict-graphs [Ber11].

Let r be a relation over R and X ! A a functional dependency. The g3-error quantifies
the degree to which X ! A holds in r. We write it as g3(r,X ! A). It was introduced
by Kivinen and Mannila [KM95], and it is frequently used to estimate the partial validity of
a FD in a dataset [CDP15, CGF+09, FGPS22, HKPT99]. It is the minimum proportion of
tuples to remove from r to satisfy X ! A, or more formally:

Definition 1. Let R be a relation scheme, r a relation over R and X ! A a functional
dependency over R. The g3-error of X ! A with respect to r, denoted by g3(r,X ! A) is
defined as:

g3(r,X ! A) = 1− max({|s| | s ⊆ r, s |= X ! A})
|r|

In particular, if r |= X ! A, we have g3(r,X ! A) = 0. We refer to the problem
of computing g3(r,X ! A) as the error validation problem [CDP15, SCP13]. Its decision
version reads as follows:

Error Validation Problem (EVP)
Input: A relation r over a relation scheme R, a FD X ! A, k ∈ R.
Output: yes if g3(r,X ! A) ≤ k, no otherwise.

3

It is known [CDP15, FGPS22] that there is a strong relationship between this problem
and the task of computing the size of a maximum independent set in a graph:

Maximum Independent Set (MIS)
Input: A graph G = (V,E), k ∈ N.
Output: yes if G has a maximal independent set I such that |I| ≥ k,

no otherwise.

To see the relationship between EVP and MIS, we need the notions of counterexample and
conflict-graph [Ber11, FGPS22]. A counterexample to X ! A in r is a pair of tuples (t1, t2)
such that t1[X] = t2[X] but t1[A] ̸= t2[A]. The conflict-graph of X ! A with respect to r is
the graph CG(r,X ! A) = (r, E) where a (possibly ordered) pair of tuples (t1, t2) in r belongs
to E when it is a counterexample to X ! A in r. An independent set of CG(r,X ! A)
is precisely a subrelation of r which satisfies X ! A. Therefore, computing g3(r,X ! A)
reduces to finding the size of a maximum independent set in CG(r,X ! A). More precisely,
g3(r,X ! A) = 1− |I|

|r| where I is a maximum independent set of CG(r,X ! A).

Example 1. Consider the relation scheme R = {A,B,C,D} with dom(R) = N. Let r be
the relation over R on the left of Figure 1. It satisfies BC ! A but not D ! A. Indeed,
(t1, t3) is a counterexample to D ! A. The conflict-graph CG(r,D ! A) is given on the
right of Figure 1. For example, {t1, t2, t6} is a maximum independent set of CG(r,D ! A)
of maximal size. We obtain:

g3(r,D ! A) = 1− |{t1, t2, t6}|
|r|

= 0.5

In other words, we must remove half of the tuples of r in order to satisfy D ! A.

A B C D

t1

t2

t3

t4

t5

t6

1 2 1 5

1 1 2

2 1 1

5

5

3 2 3 5

2 3 4 5

6

r

4 54

t1t3t5

t4

t6

t2

Figure 1: The relation r and the conflict-graph CG(r,D ! A) of Example 1.

However, MIS is an NP-complete problem [GJ79] while computing g3(r,X ! A) takes
polynomial time in the size of r and X ! A [HKPT99]. This difference is due to the
properties of equality, namely reflexivity, transitivity, symmetry and antisymmetry. They
make CG(r,X ! A) a disjoint union of complete k-partite graphs, and hence a co-graph
[FGPS22]. In this class of graphs, solving MIS is polynomial [GRT97]. This observation
suggests to study in greater detail the impact of such properties on the structure of conflict-
graphs. First, we need to introduce predicates to relax equality, and to define a more general
version of the error validation problem accordingly.

4 Predicates to relax equality

In this section, in line with previous researches on extensions of functional dependencies
[SGHW20, CDP15], we equip each attribute of a relation scheme with a binary predicate.

4

We define the new g3-error and the corresponding error validation problem.
Let R be a relation scheme. For each A ∈ R, let ϕA : dom(A)×dom(A) ! {true, false} be

a predicate. For instance, the predicate ϕA can be equality, a distance, or a similarity relation.
We assume that predicates are black-box oracles that can be computed in polynomial time
in the size of their input.

Let Φ be a set of predicates, one for each attribute in R. The pair (R,Φ) is a rela-
tion scheme with predicates. In a relation scheme with predicates, relations and FDs are
unchanged. However, the way a relation satisfies (or not) a FD can easily be adapted to Φ.

Definition 2 (Satisfaction with predicates). Let (R,Φ) be a relation scheme with predicates,
r a relation and X ! A a functional dependency both over (R,Φ). The relation r satisfies
X ! A with respect to Φ, denoted by r |=Φ X ! A, if for every pair of tuples (t1, t2) of r,
the following formula holds:(∧

B∈X
ϕB(t1[B], t2[B])

)
=⇒ ϕA(t1[A], t2[A])

An new version of the g3-error adapted to Φ is presented in the following definition.

Definition 3. Let (R,Φ) be a relation scheme with predicates, r be a relation over (R,Φ)
and X ! A a functional dependency over (R,Φ). The g3-error with predicates of X ! A
with respect to r, denoted by gΦ3 (r,X ! A) is defined as:

gΦ3 (r,X ! A) = 1− max({|s| | s ⊆ r, s |=Φ X ! A})
|r|

From the definition of gΦ3 (r,X ! A), we derive the extension of the error validation
problem from equality to predicates:

Error Validation Problem with Predicates (EVPP)
Input: A relation r over a relation scheme with predicates (R,Φ), a

FD X ! A over (R,Φ), k ∈ R.
Output: yes if gΦ3 (r,X ! A) ≤ k, no otherwise.

Observe that according to the definition of satisfaction with predicates (Definition 2),
counterexamples and conflict-graphs remain well-defined. However, for a given predicate ϕA,
ϕA(x, y) = ϕA(y, x) needs not be true in general, meaning that we have to consider ordered
pairs of tuples. That is, an ordered pair of tuples (t1, t2) in r is a counterexample to X ! A
if
∧

B∈X ϕB(t1[B], t2[B]) = true but ϕA(t1[A], t2[A]) ̸= true.
We call CGΦ(r,X ! A) the conflict-graph of X ! A in r. In general, CGΦ(r,X ! A) is

directed. It is undirected if the predicates of Φ are symmetric (see Section 5). In particular,
computing gΦ3 (r,X ! A) still amounts to finding the size of a maximum independent set in
CGΦ(r,X ! A).

Example 2. We use the relation of Figure 1. Let Φ = {ϕA, ϕB, ϕC , ϕD} be the collection of
predicates defined as follows, for every x, y ∈ N:

• ϕA(x, y) = ϕB(x, y) = ϕC(x, y) = true if and only if |x− y| ≤ 1. Thus, ϕA is reflexive
and symmetric but not transitive (see Section 5),

• ϕD is the equality.

5

The pair (R,Φ) is a relation scheme with predicates. We have r |=Φ AB ! D but r ̸|=Φ

C ! A. In Figure 2, we depict CGΦ(r, C ! A). A maximum independent set of this graph
is {t1, t2, t3, t5}. We deduce

gΦ3 (r, C ! A) = 1− |{t1, t2, t3, t5}|
|r|

=
1

3

t1t3

t5

t4

t6

t2

Figure 2: The conflict-graph CGΦ(r, C ! A) of Example 2.

Thus, there is also a strong relationship between EVPP and MIS, similar to the one be-
tween EVP and MIS. Nonetheless, unlike EVP, the problem EVPP is NP-complete [SCP13].
In the next section, we study this gap of complexity between EVP and EVPP via different
properties of predicates.

5 Predicates properties in the g3-error

In this section, we study properties of binary predicates that are commonly used to replace
equality. We show how each of them affects the error validation problem.

First, we define the properties of interest in this paper. Let (R,Φ) be a relation scheme
with predicates. Let A ∈ R and ϕA be the corresponding predicate. We consider the following
properties:

(ref) ϕA(x, x) = true for all x ∈ dom(A) (reflexivity)

(tra) for all x, y, z ∈ dom(A), ϕA(x, y) = ϕA(y, z) = true implies ϕA(x, z) = true (transi-
tivity)

(sym) for all x, y ∈ dom(A), ϕA(x, y) = ϕA(y, x) (symmetry)

(asym) for all x, y ∈ dom(A), ϕA(x, y) = ϕA(y, x) = true implies x = y (antisymmetry).

Note that symmetry and antisymmetry together imply transitivity as ϕA(x, y) = true entails
x = y.

As a first step, we show that symmetry and transitivity are sufficient to make EVPP
solvable in polynomial time. In fact, we prove that the resulting conflict-graph is a co-graph,
as with equality.

Theorem 1. The problem EVPP can be solved in polynomial time if the predicates used on
each attribute are transitive (tra) and symmetric (sym).

Proof. Let (R,Φ) be a relation scheme with predicates. Let r be relation over (R,Φ) and
X ! A be a functional dependency, also over (R,Φ). We assume that each predicate in Φ is
transitive and symmetric. We show how to compute the size of a maximum independent set
of CGΦ(r,X ! A) in polynomial time.

As ϕA is not necessarily reflexive, a tuple t in r can produce a counter-example (t, t)
to X ! A. Indeed, it may happen that ϕB(t[B], t[B]) = true for each B ∈ X, but

6

ϕA(t[A], t[A]) = false. However, it follows that t never belongs to a subrelation s of r
satisfying s |=Φ X ! A. Thus, let r′ = r \ {t ∈ r | {t} ̸|=Φ X ! A}. Then, a subrelation of
r satisfies X ! A if and only if it is an independent set of CGΦ(r,X ! A) if and only if it
is an independent set of CGΦ(r

′, X ! A). Consequently, computing gΦ3 (r,X ! A) is solving
MIS in CGΦ(r

′, X ! A).
We prove now that CGΦ(r

′, X ! A) is a co-graph. Assume for contradiction that
CGΦ(r

′, X ! A) has an induced path P with 4 elements, say t1, t2, t3, t4 with edges (t1, t2),
(t2, t3) and (t3, t4). Remind that edges of CGΦ(r

′, X ! A) are counterexamples to X ! A in
r′. Hence, by symmetry and transitivity of the predicates of Φ, we deduce that for each pair
(i, j) in {1, 2, 3, 4},

∧
B∈X ϕB(ti[B], tj [B]) = true. Thus, we have

∧
B∈X ϕB(t3[B], t1[B]) =∧

B∈X ϕB(t1[B], t4[B]) = true. However, neither (t1, t3) nor (t1, t4) belong to CGΦ(r
′, X ! A)

since P is an induced path by assumption. Thus, ϕA(t3[A], t1[A]) = ϕA(t1[A], t4[A]) = true
must hold. Nonetheless, the transitivity of ϕA implies ϕA(t3[A], t4[A]) = true, a contradic-
tion with (t3, t4) being an edge of CGΦ(r

′, X ! A). We deduce that CGΦ(r
′, X ! A) cannot

contain an induced P4, and that it is indeed a co-graph. As MIS can be solved in polynomial
time for co-graphs [GRT97], the theorem follows.

One may encounter non-reflexive predicates when dealing with strict orders or with bi-
nary predicates derived from SQL equality. In the 3-valued logic of SQL, comparing the null
value with itself evaluates to false rather than true. With this regard, it could be natural
for domain experts to use a predicate which is transitive, symmetric and reflexive almost ev-
erywhere but on the null value. This would allow to deal with missing information without
altering the data.

The previous proof heavily makes use of transitivity, which has a strong impact on the
edges belonging to the conflict-graph. Intuitively, conflict-graphs can become much more
complex when transitivity is dropped. Indeed, we prove an intuitive case: when predicates
are not required to be transitive, EVPP becomes intractable.

Theorem 2. The problem EVPP is NP-complete even when the predicates used on each
attribute are symmetric (sym) and reflexive (ref).

The proof is given in Appendix A. It is a reduction from the problem (dual to MIS) of
finding the size of a maximum clique in general graphs. It uses arguments similar to the proof
of Song et al. [SCP13] showing the NP-completeness of EVPP for comparable dependencies.

We turn our attention to the case where symmetry is dropped from the predicates. In
this context, conflict-graphs are directed. Indeed, an ordered pair of tuples (t1, t2) may be a
counterexample to a functional dependency, but not (t2, t1). Yet, transitivity still contributes
to constraining the structure of conflict-graphs, as suggested by the following example.

Example 3. We consider the relation of Example 1. We equip A,B,C,D with the following
predicates:

• ϕC(x, y) = true if and only if x ≤ y

• ϕA(x, y) is defined by

ϕA(x, y) =

true if x = y

true if x = 1 and y ∈ {2, 4}
true if x = 3 and y = 4

false otherwise.

• ϕB and ϕD are the equality.

7

Let Φ = {ϕA, ϕB, ϕC , ϕD}. The conflict-graph CGΦ(C ! A) is represented in Figure 3.
Since ϕC is transitive, we have ϕC(t3[C], tj [C]) = true for each tuple tj of r. Moreover,
ϕA(t3[A], t6[A]) = false since (t3, t6) is a counterexample to C ! A. Therefore, the tran-
sitivity of ϕA implies either ϕA(t3[A], t4[A]) = false or ϕA(t4[A], t6[A]) = false. Hence, at
least one of (t3, t4) and (t4, t6) must be a counterexample to C ! A too. In the example,
this is (t3, t4).

t1

t3

t2 t4 t5

t6

Figure 3: The conflict-graph CGΦ(r, C ! A) of Example 3.

Nevertheless, if transitivity constrains the complexity of the graph, dropping symmetry
still allows new kinds of graph structures. Indeed, in the presence of symmetry, a conflict-
graph cannot contain induced paths with more than 3 elements because of transitivity. How-
ever, such paths may exist when symmetry is removed.

Example 4. In the previous example, the tuples t2, t4, t5, t6 form an induced P4 of the under-
lying undirected graph of CGΦ(r, C ! A), even though ϕA and ϕC enjoy transitivity.

Therefore, we are left with the following intriguing question: can the loss of symmetry be
used to break transitivity, and offer conflict-graphs a structure sufficiently complex to make
EVPP intractable? The next theorem answers this question affirmatively.

Theorem 3. The problem EVPP is NP-complete even when the predicates used on each
attribute are transitive (tra), reflexive (ref), and antisymmetric (asym).

The proof is given in Appendix B. It is a reduction from MIS in 2-subdivision graphs
[Pol74].

Theorem 1, Theorem 2 and Theorem 3 characterize the complexity of EVPP for each
combination of predicates properties. In the next section, we discuss the granularity of these,
and we use them as a framework to compare the complexity of EVPP for some known
extensions of functional dependencies.

6 Discussions

Replacing equality with various predicates to extend the semantics of classical functional
dependencies is frequent [CDP15, SGHW20]. Our approach offers to compare these extensions
on EVPP within a unifying framework based on the properties of the predicates they use.
We can summarize our results with the hierarchy of classes of predicates given in Figure 4.

Regarding the computation of the g3-error, most existing works have focused on similar-
ity/distance predicates. First, the g3-error can be computed in polynomial time for classical
functional dependencies [HKPT98]. Then, Song et al. [SCP13] show that EVPP is NP-
complete for a broad range of extensions of FDs which happen to be reflexive (ref) and
symmetric (sym) predicates, which coincides with Theorem 2. However, they do not study
predicate properties as we do in this paper. More precisely, they identify the hardness of
EVPP for differential [Son10], matching [Fan08], metric [KSSV09], neighborhood [BW01],
and comparable dependencies [SCP13]. For some of these dependencies, predicates may be
defined over sets of attributes. Using one predicate per attribute and taking their conjunction
is a particular case of predicate on attribute sets.

8

{ref, sym} {tra, sym}

{ ref, tra, asym} {ref, tra, sym} {tra, asym, sym}

{ref, tra, asym, sym}

polynomial

NP-complete

Figure 4: Complexity of EVPP with respect to the properties of predicates.

Some extensions of FDs use partial orders as predicates. This is the case of ordered
dependencies [DH82, GH83], ordered FDs [Ng01], and also of some sequential dependencies
[GKK+09] and denial constraints [BBFL05] for instance. To our knowledge, the role of
symmetry in EVPP has received little attention. For sequential dependencies [GKK+09], a
measure different than the g3-error have been used. The predicates of Theorem 3 are reflexive,
transitive and antisymmetric. Hence they are partial orders. Consequently, the FDs in this
context are ordered functional dependencies as defined by Ng [Ng01]. We obtain the following
corollary:

Corollary 1. EVPP is NP-complete for ordered functional dependencies.

Ordered functional dependencies are a restricted case of ordered dependencies [GH83],
sequential dependencies [GKK+09], and denial constraints [BBFL05] (see [SGHW20]). The
hardness of computing the g3-error for these dependencies follows from Corollary 1.

The hierarchy depicts quite accurately the current knowledge about EVPP and the delim-
itation between tractable and intractable cases. However, this analysis may require further
refinements. Indeed, there may be particular types of FDs with predicates where EVPP
is tractable in polynomial time, even though their predicates belong to a class for which
the problem is NP-complete. For instance, assume that each attribute A in R is equipped
with a total order ϕA. We show in Proposition 1 and Corollary 2 that in this case, EVPP
can be solved in polynomial time, even though the predicates are reflexive, transitive and
antisymmetric.

Proposition 1. Let (R,Φ) be a relation scheme with predicates. Then, EVPP can be solved
in polynomial time for a given FD X ! A if ϕB is transitive for each B ∈ X and ϕA is a
total order.

Proof. Let (R,Φ) be a relation scheme with predicates and X ! A a functional dependency.
Assume that ϕB is transitive for each B ∈ X and that ϕA is a total order. Let r be a relation
over (R,Φ). Let G = (r, E) be the undirected graph underlying CGΦ(r,X ! A), that is,
(ti, tj) ∈ E if and only if (ti, tj) or (tj , ti) is an edge of CGΦ(r,X ! A).

We show that G is a comparability graph. To do so, we associate the following predicate
≤ to CGΦ(r,X ! A): for each pair ti, tj of tuples of r, ti ≤ ti and ti ≤ tj if (ti, tj) is a
counterexample to X ! A. We show that ≤ is a partial order:

• reflexivity. It follows by definition.

• antisymmetry. We use contrapositive. Let ti, tj be two distinct tuples of r and as-
sume that (ti, tj) belongs to CGΦ(r,X ! A). We need to prove that (tj , ti) does
not belong to CGΦ(r,X ! A), i.e. it is not a counterexample to X ! A. First,

9

(ti, tj) ∈ CGΦ(r,X ! A) implies that ϕA(ti[A], tj [A]) = false. Then, since ϕA is a total
order, ϕA(tj [A], ti[A]) = true. Consequently, (tj , ti) cannot belong to CGΦ(r,X ! A)
and ≤ is antisymmetric.

• transitivity. Let ti, tj , tk be tuples of r such that (ti, tj) and (tj , tk) are in CGΦ(r,X !
A). Applying transitivity, we have that

∧
B∈X ϕB(ti[B], tk[B]) = true. We show

that ϕA(ti[A], tk[A]) = false. Since (ti, tj) is a counterexample to X ! A, we have
ϕA(ti[A], tj [A]) = false. As ϕA is a total order, we deduce that ϕA(tj [A], ti[A]) =
true. Similarly, we obtain ϕA(tk[A], tj [A]) = true. As ϕA is transitive, we derive
ϕA(tk[A], ti[A]) = true. Now assume for contradiction that ϕA(ti[A], tk[A]) = true.
Since, ϕA(tk[A], tj [A]) = true, we derive ϕA(ti[A], tj [A]) = true by transitivity of
ϕA, a contradiction. Therefore, ϕA(ti[A], tk[A]) = false. Using the fact that

∧
B∈X

ϕB(ti[B], tk[B]) = true, we conclude that (ti, tk) is also a counterexample to X ! A.
The transitivity of ≤ follows.

Consequently, ≤ is a partial order and G is indeed a comparability graph. Since MIS can be
solved in polynomial time for comparability graphs [Gol04], the result follows.

We can deduce the following corollary on total orders, that can be used for ordered
dependencies.

Corollary 2. Let (R,Φ) be a relation scheme with predicates. Then, EVPP can be solved
in polymomial time if each predicate in Φ is a total order.

In particular, Golab et al. [GKK+09] proposed a polynomial-time algorithm for a vari-
ant of g3 applied to a restricted type of sequential dependencies using total orders on each
attribute.

7 Conclusion and future work

In this work, we have studied the complexity of computing the g3-error when equality is
replaced by more general predicates. We studied four common properties of binary pred-
icates: reflexivity, symmetry, transitivity, and antisymmetry. We have shown that when
symmetry and transitivity are taken together, the g3-error can be computed in polynomial
time. Transitivity strongly impacts the structure of the conflict-graph of the counterexam-
ples to a functional dependency in a relation. Thus, it comes as no surprise that dropping
transitivity makes the g3-error hard to compute. More surprisingly, removing symmetry in-
stead of transitivity leads to the same conclusion. This is because deleting symmetry makes
the conflict-graph directed. In this case, the orientation of the edges weakens the impact
of transitivity, thus allowing the conflict-graph to be complex enough to make the g3-error
computation problem intractable.

We believe our approach sheds new light on the problem of computing the g3-error, and
that it is suitable for estimating the complexity of this problem when defining new types of
FDs, by looking at the properties of predicates used to compare values.

We highlight now some research directions for future works. In a recent paper [LKR20],
Livshits et al. study the problem of computing optimal repairs in a relation with respect
to a set of functional dependencies. A repair is a collection of tuples which does not violate
a prescribed set of FDs. It is optimal if it is of maximal size among all possible repairs.
Henceforth, there is a strong connection between the problem of computing repairs and
computing the g3-error with respect to a collection of FDs. In their work, the authors
give a dichotomy between tractable and intractable cases based on the structure of FDs. In
particular, they use previous results from Gribkoff et al. [GVdBS14] to show that the problem

10

is already NP-complete for 2 FDs in general. In the case where computing an optimal repair
can be done in polynomial time, it would be interesting to use our approach and relax equality
with predicates in order to study the tractability of computing the g3-error on a collection of
FDs with relaxed equality.

From a practical point of view, the exact computation of the g3-error is extremely expen-
sive in large datasets. Recent works [CDP16, FGPS22] have proposed to use approximation
algorithms to compute the g3-error both for equality and predicates. It could be of interest
to identify properties or classes of predicates where more efficient algorithms can be adopted.
It is also possible to extend the existing algorithms calculating the classical g3-error (see e.g.
[HKPT99]). They use the projection to identify equivalence classes among values of A and
X. However, when dropping transitivity (for instance in similarity predicates), separating
the values of a relation into “similar classes” requires to devise a new projection operation, a
seemingly tough but fascinating problem to investigate.

Acknowledgment. We thank the reviewers for their valuable feedback.. We also thank
the Datavalor initiative of Insavalor (subsidiary of INSA Lyon) for funding part of this work.

References

[BBFL05] Leopoldo Bertossi, Loreto Bravo, Enrico Franconi, and Andrei Lopatenko. Com-
plexity and approximation of fixing numerical attributes in databases under in-
tegrity constraints. In International Workshop on Database Programming Lan-
guages, pages 262–278. Springer, 2005.

[Ber73] Claude Berge. Graphs and hypergraphs. North-Holland Pub. Co., 1973.

[Ber11] Leopoldo Bertossi. Database repairing and consistent query answering. Synthesis
Lectures on Data Management, 3(5):1–121, 2011.

[BFG+07] Philip Bohannon, Wenfei Fan, Floris Geerts, Xibei Jia, and Anastasios Kementsi-
etsidis. Conditional functional dependencies for data cleaning. In 2007 IEEE 23rd
international conference on data engineering, pages 746–755. IEEE, 2007.

[BW01] Renaud Bassée and Jef Wijsen. Neighborhood dependencies for prediction. In
Pacific-Asia Conference on Knowledge Discovery and Data Mining, pages 562–
567. Springer, 2001.

[CDP15] Loredana Caruccio, Vincenzo Deufemia, and Giuseppe Polese. Relaxed functional
dependencies—a survey of approaches. IEEE Transactions on Knowledge and
Data Engineering, 28(1):147–165, 2015.

[CDP16] Loredana Caruccio, Vincenzo Deufemia, and Giuseppe Polese. On the discov-
ery of relaxed functional dependencies. In Proceedings of the 20th International
Database Engineering & Applications Symposium, pages 53–61, 2016.

[CGF+09] Graham Cormode, Lukasz Golab, Korn Flip, Andrew McGregor, Divesh Srivas-
tava, and Xi Zhang. Estimating the confidence of conditional functional depen-
dencies. In Proceedings of the 2009 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’09, page 469–482, New York, NY, USA, 2009.
Association for Computing Machinery.

11

[DH82] Jirun Dong and Richard Hull. Applying approximate order dependency to re-
duce indexing space. In Proceedings of the 1982 ACM SIGMOD international
conference on Management of data, pages 119–127, 1982.

[DP02] Brian A Davey and Hilary A Priestley. Introduction to lattices and order. Cam-
bridge university press, 2002.

[Fan08] Wenfei Fan. Dependencies revisited for improving data quality. In Proceedings of
the twenty-seventh ACM SIGMOD-SIGACT-SIGART symposium on Principles
of database systems, pages 159–170, 2008.

[FGPS22] Pierre Faure--Giovagnoli, Jean-Marc Petit, and Vasile-Marian Scuturici. Assess-
ing the existence of a function in a dataset with the g3 indicator. In IEEE
International Conference on Data Engineering, 2022.

[GH83] Seymour Ginsburg and Richard Hull. Order dependency in the relational model.
Theoretical computer science, 26(1-2):149–195, 1983.

[GJ79] Michael R Garey and David S Johnson. Computers and intractability, volume
174. freeman San Francisco, 1979.

[GKK+08] Lukasz Golab, Howard Karloff, Flip Korn, Divesh Srivastava, and Bei Yu. On
generating near-optimal tableaux for conditional functional dependencies. Pro-
ceedings of the VLDB Endowment, 1(1):376–390, 2008.

[GKK+09] Lukasz Golab, Howard Karloff, Flip Korn, Avishek Saha, and Divesh Srivastava.
Sequential dependencies. Proceedings of the VLDB Endowment, 2(1):574–585,
2009.

[Gol04] Martin Charles Golumbic. Algorithmic graph theory and perfect graphs. Elsevier,
2004.

[GRT97] Vassilis Giakoumakis, Florian Roussel, and Henri Thuillier. On p_4-tidy graphs.
Discrete Mathematics and Theoretical Computer Science, 1:17–41, 1997.

[GVdBS14] Eric Gribkoff, Guy Van den Broeck, and Dan Suciu. The most probable database
problem. In Proceedings of the First international workshop on Big Uncertain
Data (BUDA), pages 1–7, 2014.

[HKPT98] Ykä Huhtala, Juha Karkkainen, Pasi Porkka, and Hannu Toivonen. Efficient dis-
covery of functional and approximate dependencies using partitions. In Proceed-
ings 14th International Conference on Data Engineering, pages 392–401. IEEE,
1998.

[HKPT99] Yka Huhtala, Juha Kärkkäinen, Pasi Porkka, and Hannu Toivonen. Tane: An
efficient algorithm for discovering functional and approximate dependencies. The
computer journal, 42(2):100–111, 1999.

[KM95] Jyrki Kivinen and Heikki Mannila. Approximate inference of functional depen-
dencies from relations. Theoretical Computer Science, 149(1):129–149, 1995.

[KSSV09] Nick Koudas, Avishek Saha, Divesh Srivastava, and Suresh Venkatasubramanian.
Metric functional dependencies. In 2009 IEEE 25th International Conference on
Data Engineering, pages 1275–1278. IEEE, 2009.

12

[LKR20] Ester Livshits, Benny Kimelfeld, and Sudeepa Roy. Computing optimal repairs
for functional dependencies. ACM Transactions on Database Systems (TODS),
45(1):1–46, 2020.

[LL12] Mark Levene and George Loizou. A guided tour of relational databases and
beyond. Springer Science & Business Media, 2012.

[MR92] Heikki Mannila and Kari-Jouko Räihä. The design of relational databases.
Addison-Wesley Longman Publishing Co., Inc., 1992.

[NC01] Noel Novelli and Rosine Cicchetti. Functional and embedded dependency infer-
ence: a data mining point of view. Information Systems, 26(7):477–506, 2001.

[Ng01] Wilfred Ng. An extension of the relational data model to incorporate ordered
domains. ACM Transactions on Database Systems (TODS), 26(3):344–383, 2001.

[Pol74] Svatopluk Poljak. A note on stable sets and colorings of graphs. Commentationes
Mathematicae Universitatis Carolinae, 15(2):307–309, 1974.

[SCP13] Shaoxu Song, Lei Chen, and S Yu Philip. Comparable dependencies over hetero-
geneous data. The VLDB journal, 22(2):253–274, 2013.

[SGHW20] Shaoxu Song, Fei Gao, Ruihong Huang, and Chaokun Wang. Data dependen-
cies extended for variety and veracity: A family tree. IEEE Transactions on
Knowledge and Data Engineering, 12 2020.

[Son10] Shaoxu Song. Data dependencies in the presence of difference. PhD thesis, Hong
Kong University of Science and Technology, 2010.

13

A Proof of Theorem 2

Theorem (2). The problem EVPP is NP-complete even when the predicates used on each
attributes are symmetric (sym) and reflexive (ref).

Proof. We first show that EVPP belongs to NP. Let (R,Φ) be a relation scheme with pred-
icates, r a relation over (R,Φ), X ! A a functional dependency over (R,Φ) and k ∈ R.
We have that gΦ3 (X ! A, r) ≤ k if and only if there exists a subrelation s in r satisfying
s |=Φ X ! A and 1− |s|

|r| ≤ k, or |s| ≥ (1− k)× |r| equivalently. Therefore, a certificate for
EVPP is a subrelation s containing at least (1− k)× |r| tuples and satisfying X ! A (with
respect to Φ). Since predicates can be computed in polynomial time by assumption, it takes
polynomial time to check that s |=Φ X ! A. Thus, EVPP belongs to NP.

To show NP-completeness, it is convenient to use a reduction from Maximum Clique
(MC) rather than MIS, even though the problems are polynomially equivalent:

Maximum Clique (MC)
Input: A graph G = (V,E), k ∈ N.
Output: yes if G has a clique with at least k vertices.

Let G = (V,E) be a graph with V = {u1, . . . , un} for some n ∈ N, and E = {e1, . . . , em}
for some m ∈ N. Let k be an integer such that k ≤ |V |. We construct an instance of
EVPP. We begin with a relation scheme with predicates (R,Φ) where R = {B1, . . . , Bm, A},
Φ = {ϕ1, . . . , ϕm, ϕA} , and:

• for each 1 ≤ i ≤ m, dom(Bi) = {0, 1, 2} and ϕi is defined as follows:

ϕi(x, y) =

{
true if x = y or x+ y < 3

false otherwise.

Observe that ϕi is reflexive and symmetric.

• dom(A) = {1, . . . , n}, and the predicate ϕA for A is defined by ϕA(x, y) = true if and
only if x = y. Thus, ϕA is reflexive and symmetric.

Observe that the predicates can be computed in polynomial time in the size of their input.
Now, we build a relation r = {t1, . . . , tn} (one tuple per vertex in G) over (R,Φ). For each
1 ≤ i ≤ n, we put ti[A] = i and for each 1 ≤ j ≤ m:

ti[Bj] =

0 if ui /∈ ej

1 if ej = (ui, uℓ) and i < ℓ

2 if ej = (uℓ, ui) and ℓ < i

Finally, let k′ = 1 − k
n , and consider the functional dependency X ! A where X =

{B1, . . . , Bm}. We obtain an instance of EVPP which can be constructed in polynomial
time in the size of G. The reduction is illustrated on an example in Figure 5.

To conclude the proof, we have to prove that G contains a clique K such that |K| ≥ k if
and only if gΦ3 (X ! A, r) ≤ k′. To do so, we show that for every distinct tuples ti, tj of r,∧

1≤ℓ≤m ϕℓ(ti[Bℓ], tj [Bℓ]) = true if and only if (ui, uj) is not an edge of G.
We begin with the only if part. Hence, assume that for each 1 ≤ ℓ ≤ m, we have

ϕℓ(ti[Bℓ], tj [Bℓ]) = true. By definition of ϕℓ, we have two cases:

• ti[Bℓ] = tj [Bℓ]. By construction of r, it follows that ti[Bℓ] = 0. Hence, neither ui nor
uj belongs to eℓ.

14

B1 B2 B3 B4 A

1

2

3

4

1

2 1 1

1

2

2 2

0 0

0

000

0 0

t1

t2

t3

t4

r

u1

u2

u4

u3

e1

e4

e3

e2

G = (V,E)

Figure 5: Reduction of Theorem 2. In grey, a clique and its associated subrelation satisfying
X ! A.

• ti[Bℓ] + tj [Bℓ] < 3. It follows that either ti[Bℓ] = 0 or tj [Bℓ] = 0. Without loss of
generality, assume that ti[Bℓ] = 0. Then, again by construction of r, we deduce that
ui /∈ eℓ.

Thus, (ui, uj) is not an edge of G.
We move to the if part. We use contrapositive. Hence, assume there exists some Bℓ,

1 ≤ ℓ ≤ m, such that ϕℓ(ti[Bℓ], tj [Bℓ]) = false. By definition of ϕℓ, we deduce that ti[Bℓ] ̸=
tj [Bℓ] and ti[Bℓ]+ tj [Bℓ] ≥ 3. Without loss of generality, we obtain ti[Bℓ] = 1 and tj [Bℓ] = 2.
Therefore, by construction of r, ui ∈ eℓ and uj ∈ eℓ must hold. As ti[Bℓ] ̸= tj [Bℓ], we deduce
that (ui, uj) = eℓ, concluding this part of the proof.

Consequently, a subset K of V is a clique in G if and only if the corresponding set of
tuples s(K) is a subrelation of r which satisfies X ! A. Therefore, G contains a clique K
such that |K| ≥ k if and only if gΦ3 (X ! A, r) ≤ k′ holds, which concludes the proof.

B Proof of Theorem 3

Theorem (3). The problem EVPP is NP-complete even when the predicates used on each
attribute are transitive (tra), reflexive (ref), and antisymmetric (asym).

Proof. The fact that EVPP belongs to NP has been shown in Theorem 2.
To show NP-completeness, we use a reduction from MIS in 2-subdivision graphs, in

which MIS remains NP-complete [Pol74]. Let G = (V,E) be an (undirected) graph where
V = {u1, . . . , un} and E = {e1, . . . , em}. Without loss of generality, we assume that G is
loopless and that each vertex belongs to at least one edge. Let V2 = V ∪ {vik | 1 ≤ k ≤
m, 1 ≤ i ≤ n and ui ∈ ek} be a new set of vertices. We construct a set E2 of edges. It
is obtained from E by replacing each edge ek = (ui, uj) by a path made of three edges
{(ui, vik), (vik, v

j
k), (v

j
k, uj)}. The graph G2 = (V2, E2) is the 2-subdivision of G. Every 2-

subdivision graph is the 2-subdivision of some graph. The graph G2 can be built in polynomial
time in the size of G.

Now we construct an instance of EVPP. Let {a1, . . . , an} be a set of characters. We build
a relation scheme with predicates (R,Φ) where R = {B,A}, Φ = {ϕB, ϕA}, and:

• dom(B) is the set of pairs of symbols associated to {a1, . . . , an}×{a1, . . . , an}. We add
a predicate ϕB as follows:

ϕB(x, y) =

true if x = y

true if x ̸= y and x[1] = x[2] and x[1] ∈ {y[1], y[2]}
false otherwise.

15

The predicate is reflexive by definition. We prove that it is transitive. Let x, y, z ∈
dom(B) and assume that ϕB(x, y) = ϕB(y, z) = true. If x = y = z, we readily have
ϕB(x, z) = true. Since x ̸= z implies x ̸= y or y ̸= z, it is sufficient to show that
ϕ(x, z) = true in these two cases. Assume first that x ̸= y. Then ϕB(x, y) = true if
and only if x = aiai and y ∈ {aiaj , ajai} for 1 ≤ i, j ≤ n, i ̸= j. It follows that ϕB(y, z)
holds if and only if z = y. Thus, ϕB(x, z) = ϕB(x, y) = true is valid. Let us assume
now that y ̸= z. Then, ϕB(y, z) = true implies that y = aiai for some 1 ≤ i ≤ n, by
definition of ϕB. Therefore, ϕB(x, y) = true entails x = y. We deduce ϕB(x, z) = true.
Consequently, ϕB is transitive. At last, assume that ϕB(x, y) = true with x ̸= y.
Hence, y[1] ̸= y[2] and ϕB(y, x) cannot be true. Therefore, ϕB(x, y) = ϕB(y, x) = true
entails x = y. Thus, ϕB is also antisymmetric.

• dom(A) = {1, . . . , n} and ϕA(x, y) = true if and only if x = y. In other words, ϕA is
the usual equality. Hence, it enjoys both reflexivity, transitivity and antisymmetry.

Observe that all predicates can be computed in polynomial time in the size of their input.
Now we construct a relation r = {t1, . . . , tn} ∪ {tik | 1 ≤ k ≤ m, 1 ≤ i ≤ n, vik ∈ V2} (one
tuple per vertex in G2) over (R,Φ):

• for each 1 ≤ i ≤ n, ti[B] = aiai and ti[A] = i,

• for each 1 ≤ k ≤ m and each 1 ≤ i ≤ n such that vik ∈ V2, let ek = (ui, uj), 1 ≤ j ≤ n,
be the corresponding edge of G. Then, we put tik[B] = aiaj if i < j and ajai otherwise.
As for A, we define tik[A] = j.

Finally, we consider the functional dependency B ! A. The whole reduction can be computed
in polynomial time in the size of G. It is illustrated on an example in Figure 6. Intuitively,
ϕB guarantees that two tuples representing adjacent vertices of G2 will agree on B in (R,Φ).
However, the transitivity of ϕB will produce pairs of tuples which agree on B even though
they are not adjacent in G2. More precisely, ϕB returns true in two cases:

• when it compares ti to tik and tjk for each edge ek of G to which ui belongs, and

• when it compares tik to tjk for each edge ek of G.

The role of ΦA is then to assert that non-adjacent tuples cannot produce counterexamples.
We begin with the if part. Consider two (distinct) vertices of V2 that are connected in

G2. Because G2 is the 2-subdivision of G, we have the following cases:

• ui, v
i
k for some 1 ≤ i ≤ n and 1 ≤ k ≤ m. For B, we have ti[B] = aiai and tik[B] = aiaj

(or ajai) for some 1 ≤ j ≤ n. Therefore, ϕB(ti[B], tik[B]) = true holds. However,
ti[A] ̸= tik[A] also by definition of r. Thus, {ti, tik} ̸|=Φ B ! A.

• vik, v
j
k for some 1 ≤ i < j ≤ n (without loss of generality) and 1 ≤ k ≤ m. Then,

tik[B] = tjk[B], tik[A] = j, and tjk[A] = i. It follows that {tjk, t
i
k} ̸|=Φ B ! A, by

definition of ϕB and ϕA.

Thus, if two vertices are connected in G2, the corresponding tuples in r do not satisfy the
functional dependency B ! A, concluding this part of the proof.

We show the only if part using contrapositive. Consider two distinct vertices of V2 that
are not connected in G2. We have four cases:

• ui, uj for some 1 ≤ i < j ≤ n. By definition of r, we have ti[B] = aiai and tj [B] = ajaj .
Thus, ϕB(ti[B], tj [B]) = ϕB(tj [B], ti[B]) = false, and {ti, tj} |=Φ B ! A holds.

16

B1 B2 A

1

2

3

4

a1b0t1

t2

t3

t4

r

G = (V,E) G2 = (V2, E2)

t11

t21

t22

t32

t23

t43

t44

t14

1

2

2

3

4

2

4

1

a2b0

a3b0

a4b0

a1a1

a2a2

a3a3

a4a4

a1b1 a1a2

a1a2a2b1

a2a3

a2a3

a2a4

a2a4

a1a4

a1a4

a2b2

a3b2

a2b3

a4b3

a1b4

a4b4

u1

u3

u4

u2

e2

e1

e4

e3

v14

u4

u2

v23
v11

v32

v21

u1

u3

v22

v44

v43

Figure 6: Reduction of Theorem 3. In grey, an independent set and its associated subrelation
satisfying B ! A.

• vik, v
j
ℓ for some 1 ≤ k, ℓ ≤ m and 1 ≤ i, j ≤ n. Then, tik[B][1] ̸= tik[B][2] and

tjℓ [B][1] ̸= tjℓ [B][2]. According to G2, vik and vjℓ are not connected if and only if
k ̸= ℓ. Consequently, tik[B] ̸= tjℓ [B] by definition of r. Hence, ϕB(t

i
k[B], tjℓ [B]) =

ϕB(t
j
ℓ [B], tik[B]) = false. We deduce that {tik, t

j
ℓ} |=Φ B ! A.

• ui, v
j
k for some 1 ≤ i, j ≤ n, 1 ≤ k ≤ m and ui /∈ ek in G. Then, ti[B] = aiai and since

ui /∈ ek, we have tjk[B] = ajaℓ (or aℓaj) for some 1 ≤ ℓ ≤ n and i ̸= j, ℓ. By definition of
ϕB, we deduce that ϕB(ti[B], tjk[B]) = ϕB(t

j
k[B], ti[B]) = false must hold. Therefore,

{ti, tkj } |=Φ B ! A is true too.

• ui, v
j
k for some 1 ≤ i, j ≤ n, 1 ≤ k ≤ m and ui ∈ ek in G. Then, necessarily i ̸= j by

construction of G2. Consequently, we must have ti[A] = tkj [A] = i by definition of r.
Therefore, ϕA(ti[A], tjk[A]) = true and {ti, tjk} |=Φ B ! A holds.

Thus, whenever two vertices of G2 are disconnected, the corresponding set of tuples of r
satisfies B ! A. This concludes the proof of the equivalence.

Consequently, G2 has an independent set of size k if and only if there exists a subrelation
s of r of size k which satisfies B ! A, concluding the proof.

17

	Introduction
	Preliminaries
	The g3-error
	Predicates to relax equality
	Predicates properties in the g3-error
	Discussions
	Conclusion and future work
	References
	Proof of Theorem 2
	Proof of Theorem 3

