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Continuity problem for BSDE and IPDE with singular terminal
condition

Dorian Cacitti-Holland ∗1, Laurent Denis †1, and Alexandre Popier‡1

1Laboratoire Manceau de Mathématiques, Le Mans Université, Avenue O. Messiaen, 72085 Le Mans cedex 9,
France.

Abstract

We study the behavior at the terminal time of the minimal supersolution of backward stochastic
differential equation with singular terminal condition by using the associated integro-partial differen-
tial equation. We prove that if there are jumps (i.e. the operator of the PDE is non local), we observe
a propagation of the singularity, contrary to the continuous case (local operator). We distinguish
different cases of driver and terminal condition. The Riccati case is central because for quadratic
and subquadratic generators the associated solution is not continuous at the terminal time, while
the solutions for stronger non linearity are continuous. Finally we study the consequence for the
numerical scheme.

Keywords. Riccati equation, backward stochastic differential equation, integro partial differential equa-
tion, singular terminal condition, implicit numerical scheme.
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1 Introduction
The notion of backward stochastic differential equations (BSDEs) was first introduced by Bismut in [10]
in the linear setting and by Pardoux & Peng in [34] for non linear equation. One particular interest
for the study of BSDE is the application to partial differential equations (PDEs). Indeed as proved
by Pardoux & Peng in [35], BSDEs can be seen as generalization of the Feynman-Kac formula for non
linear PDEs. Roughly speaking, if we can solve a system of two SDEs with one forward in time and one
backward in time, then the solution is a deterministic function and is a (weak) solution of the related
PDE. This is a method of characteristics to solve parabolic PDE. The converse assertion can be proved
provided the solution of the PDE is enough regular to apply Itô’s formula (see [15, Chapter 6]). Since
then a large literature has been developped on this topic (see in particular the books [11], [15], [36] and
the references therein). The extension to quasi-linear PDEs or to fully non linear PDEs has been already
developed (see among other [31], [44] or [47]).

Among all semi-linear PDEs, a particular form has been widely studied:

∂u

∂t
(t, x) + ∆u(t, x)− u(t, x)|u(t, x)|q−1 = 0. (1)

Baras & Pierre [8], Marcus & Veron [32] (and many other papers) have given existence and uniqueness
results for this PDE. In [32] it is shown that every positive solution of (1) possesses a uniquely determined
final trace g which can be represented by a couple (S, µ) where S is a closed subset of Rd and µ a non-
negative Radon measure on R = Rd \ S:

lim
t→T

∫
R
u(t, x)φ(x)dx =

∫
R
φ(x)dµ(x), ∀φ ∈ Cc(R).

The final trace can also be represented by a positive, outer regular Borel measure ν, and ν is not necessary
locally bounded. The two representations are related by:

∀A ⊂ Rd, A Borel,
{
ν(A) = ∞ if A ∩ S ̸= ∅
ν(A) = µ(A) if A ⊂ R.

The set S is the set of singular final points of u and it corresponds to a “blow-up” set of u. From the
probabilistic point of view, Dynkin & Kuznetsov [13] and Le Gall [30] have proved similar results for
the PDE (1) in the case 1 < q ≤ 2 using the theory of superprocesses. Now if we want to represent
the solution u of (1) using an FBSDE (F means forward), we have to deal with a singular terminal
condition ξ in the BSDE, which means that P(ξ = +∞) > 0. This singular case and the link between the
solution of the BSDE with singular terminal condition and the viscosity solution of the PDE (1) have
been studied first in [38] and developed in [40].

Besides PDEs motivation, BSDEs are a powerful tool to solve stochastic optimal control problems
(see e.g. the survey article [16] or the books [37, 46]). In [5] and [28], it is proved that BSDEs with
singular terminal condition provide a purely probabilistic solution of a stochastic control problem with a
terminal constraint on the controlled process, motivated by models of optimal portfolio liquidation under
stochastic price impact. On liquidation models see, e.g. [3, 4, 17, 22, 19, 23, 26], among many others.
The related BSDEs are of the following form

−dYt = −Yt|Yt|
q−1

ηt
dt+ λtdt− ZtdWt (2)

with lim
t→T

Yt = +∞ on S. Parameter η is a measure of the illiquidity of the market, whereas λ penalizes
the size of the remaining position of the portfolio. Here the singular set S corresponds to the scenarios
with mandatory liquidation. The important feature is that the previous BSDE is directly related to a
PDE similar to (1) and this link and PDEs technics have been used in [20, 21, 24, 42] to solve the same
optimal liquidation problem.

In the standard Lp setting (see [11, 36]), the solution of the BSDE, with terminal condition ξ, is
càdlàg1 on [0, T ] and verifies

lim
t→T

Yt = ξ. (3)

1French acronym for right-continuous with left-limits
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When ξ is not integrable, in particular if P(ξ = +∞) > 0, the classical notion of solution has to be
adapted. As proved in [28], the minimal solution only satisfies: a.s.

lim inf
t→T

Yt ≥ ξ = YT .

Therefore it is called a super-solution in [28].
We refer to the problem of establishing that a candidate solution satisfies (3) as the “continuity

problem”. In the PDE’s context, if it is quite immediately that under weak conditions, there exists a
minimal (viscosity) solution u such that

lim inf
(t,x)→(T,x0)

u(t, x) ≥ u(T, x0).

The continuity at time T is not obvious.
As explained in details in [1, Section 1.1], solving this problem is crucial to ensure:

• Uniqueness of the solution of the BSDE,

• Tight control for the liquidation problem (no extra liquidation cost or no strict super-hedging),

• Condition in optimal targeting problem [7].

From [39], it is known that the existence of the limit at time T essentially depends on the generator of
the BSDE. The solution is càdlàg on [0, T ] provided we can control the growth of the generator w.r.t. y.
But replacing ≥ by = is more delicate and has been studied in [39, 43, 33, 1].

If some partial results are available for general condition ξ, the more accurate results are given in the
Markovian case, that is when ξ = g(XT ), where X is a diffusion process and g is a function defined on
Rd with values in [0,+∞]2. In this case, the corresponding trace is S = {g = +∞} and the measure µ
has a density w.r.t. the Lebesgue measure given by g. In the rest of this paper, we only consider this
Markovian framework.

Let us now distinguish two different cases. In the first one, the forward diffusion process X is
continuous. Then the related PDE is a semi-linear parabolic PDE with only local differential operator,
as for example Equation (1). Then in [39], it is proved that if the generator is sufficiently non linear
(q > 3 for PDE (1) and BSDE (2)), Condition (3) holds. Otherwise Malliavin’s calculus is a useful tool
to prove that (3) holds under some uniform ellipticity condition on the matrix diffusion of X. It has been
done in [38] for the specific generator related to PDE (1) ; the general case is studied in another paper,
which is in the final stages of writing for upcoming submission. To summarize, with non degenerate
diffusion matrix, for continuous diffusion process X or equivalently for parabolic PDE, the continuity
property holds and this property is coherent with the results obtained in [32, 14, 30] for the PDE (1).

In the second case, X is also driven by a Poisson process (or more generally by a Poisson random
measure). Then the corresponding integro-partial differential equation (IPDE) (11) has a non-local
integral operator. This kind of IPDE with terminal singularity has not been studied with analytical
methods and is only considered (to our best knowledge) in [40]. From [39, 40], if the generator is
sufficiently non linear, continuity property again holds. In other words, the behaviors with or without
jumps (or with local or non-local operators) are the same.

The goal of this paper is to provide an explicit example for which continuity property fails. We study
the BSDE (2)

Yt = g(NT )−
∫ T

t

Ys|Ys|q−1ds−
∫ T

t

UsdÑs, 0 ≤ t ≤ T, (4)

where N is a Poisson process with intensity λ and Ñ is the compensated Poisson process: Ñt = Nt −λt.
We show that:

• The value q = 2 is critical. We construct an example for which S = {g = +∞} = [x0,∞) and
the minimal solution of the BSDE (4) or of the related PDE is the function t 7→ 1/(T − t). Hence
the continuity problem (3) does not hold whatever g1g<+∞ is. We also prove that the lack of
continuity is due to the jump part of X ; adding a Brownian part does not change this fact.

2The non-negativity of g is not necessary but it simplifies the presentation of the results.
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• For q < 2, the solution of the BSDE (4) (or of the PDE) explodes at time T . The solution is
compared with the solution for q = 2 and the first one is greater than the second. Again this
behavior does not depend on the terminal value.

• For 2 < q, continuity property holds. Note that for q > 3, the result is already proved in [39].

The main novelty of the paper is the lack of continuity at time T for BSDEs (resp. for PDEs), when
there are jumps (resp. when the operator is non-local). Here the regularity of the terminal condition (or
of the trace in the context of [32]) does not influence the behavior of the solution. Somehow the solution
forgets the terminal constraint. This property has never been observed in the literature.

The paper is organized as follows. In Section 2, we present the setting for BSDEs and PDEs and
the known results. Since our goal is to provide an example of discontinuity, the setting is not the most
general (see [11, 27, 36, 45] for the wider framework of BSDEs with or without jumps).

Section 3 studies in details the quadratic case (the generator is y 7→ −y|y|) when the forward process is
the Poisson process. The terminal condition is equal to +∞ on an interval [x0,+∞) for a fixed threshold
x0 and is finite on the complement of this interval. Our main result is in Theorem 2 and Corollary 1:
any approximating sequence of the solution (of the BSDE or of the PDE) converges to u : t 7→ 1/(T − t)
on [0, T ), whatever the value of the terminal condition on (−∞, x0) is. In other words, for this singular
terminal condition, there is only one solution equal to u on [0, T ). As a consequence, the solution of
the BSDE or of the PDE does not depend on the terminal condition. Theorem 3 shows that adding a
diffusion part does not change the result. The discontinuity comes from the jump part and cannot be
overcome by the smoothing effect of the diffusion part.

In Section 4, we deduce that the quadratic case is critical. With less non linear generators (q < 2),
the discontinuity holds (Theorem 4), whereas for more non linear generators (q > 2), continuity property
holds (Proposition 7).

The non-decreasing Poisson process X has a tendency to go into the singular set S = [x0,∞), which
intuitively explains the observed discontinuity. Indeed in Section 5, we show that if S = (−∞, x0], then
continuity again holds. Here the Poisson process tends to exit from S.

To illustrate this final discontinuity, we also study the related numerical scheme in Section 6. In our
setting, we solve an ordinary Ricatti differential equation. The implicit Euler scheme is well posed and
approximates the solution for bounded terminal condition with standard convergence rate. We prove
that the same scheme can be used in the singular case and that it behaves according to the theoretical
analysis, that is it forgets the terminal value and explodes at time T , when the discretization step tends
to zero.

Let us emphasize that most of the results of this paper are true if we work with a compound Poisson
process with positive jumps that are bounded away from zero. Nonetheless the extension to more general
Poisson random measures or to multi-dimensional processes are left for further research.

2 Framework and definitions
We consider a filtered probability space (Ω,F ,P,F = (Ft)t≥0). We assume that this set supports a one-
dimensional Brownian motion W and a Poisson process N with intensity λ. The filtration F is generated
by W and N . The compensated process Ñ = (Ñt − λt, t ≥ 0) is a martingale w.r.t. F.

For a given T ≥ 0, we denote by P the predictable σ-field on Ω × [0, T ]. On Ω × [0, T ], a function
that is P-measurable, is called predictable. D (resp. D(0, T )) is the set of all predictable processes on
[0,+∞) (resp. on [0, T ]).

Now to define the solution of our BSDE, let us introduce the following spaces for p ≥ 1.

• Dp(0, T ) is the space of all adapted processes X with right-continuous with left limits paths, such
that E

(
supt∈[0,T ] |Xt|p

)
<∞.

• Hp(0, T ) denotes the subspace of all processes X ∈ D(0, T ) such that E
[(∫ T

0
|Xt|2dt

)p/2]
is finite.

• Finally
Sp(0, T ) = Dp(0, T )×Hp(0, T )×Hp(0, T ).
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We consider the BSDE

Yt = ξ +

∫ T

t

f(s, Ys, Zs, Us)ds−
∫ T

t

ZsdWs −
∫ T

t

UsdÑs. (5)

Here, the random variable ξ is FT -measurable with values in R and the generator f : Ω× [0, T ]×R3 → R
is a random function, measurable with respect to Prog × B(R)× B(R)× B(R) where Prog denotes the
sigma-field of progressive subsets of Ω× [0, T ]. The unknowns are (Y, Z, U) such that Y is progressively
measurable and càdlàg with values in R, Z ∈ D(0, T ) such that a.s.

∫ T

0
|Zs|2ds < +∞ and U ∈ D(0, T ).

2.1 Existence of a solution for the BSDE
The next conditions on f are very standard in the BSDE theory (see for example [11, 36]). For notational
convenience we will denote f0t = f(t, 0, 0, 0).

• The function y 7→ f(t, y, z, u) is continuous and monotone: there exists µ ∈ R such that a.s. and
for any t ∈ [0, T ], (z, u) ∈ R2

(f(t, y, z, u)− f(t, y′, z, u))(y − y′) ≤ µ(y − y′)2. (A1)

• For every n > 0 the function

sup
|y|≤n

|f(t, y, 0, 0)− f0t | ∈ L1((0, T )× Ω). (A2)

• f is Lispchitz continuous in z, uniformly w.r.t. all parameters: there exists L > 0 such that for
any (t, y, u), z and z′: a.s.

|f(t, y, z, u)− f(t, y, z′, u)| ≤ L|z − z′|. (A3)

• There exists a progressively measurable process κ = κy,z,u,v : Ω× [0, T ] → R such that

f(t, y, z, u)− f(t, y, z, v) ≤ (u− v)κy,z,u,vt (A4)

with P⊗ Leb-a.e. for any (y, z, u, v), −1 ≤ κy,z,u,vt and |κy,z,u,vt | ≤ ϑ, where ϑ is a constant.

• There exists ϱ > 1 such that

E
∫ T

0

|f0s |ϱds <∞. (A5)

In [27, 45], it is proved that under Conditions (A1)-(A5) and if ξ ∈ Lϱ(Ω), then the BSDE (5) has a
unique solution (Y,Z, U) in Sϱ(0, T ). Moreover the comparison principle holds: roughly speaking, if
ξ′ ≥ ξ and f ′ ≥ f , then Y ′ ≥ Y .

Now if ξ is not integrable or if P(ξ = +∞) > 0, to ensure the existence of a solution which is finite
before time T , we suppose that there exists a constant q > 1 and a positive constant η such that for any
y ≥ 0

f(t, y, z, u) ≤ −ηy|y|q−1 + f(t, 0, z, u). (A6)

Definition 1. The generator f satisfies Condition (A) if all assumptions (A1)–(A6) hold.

Example 1. The function f(t, y, z, u) = −y|y|q−1 satisfies Condition (A).

In [28], the following result is proved.

Theorem 1 (Theorem 1 in [28]). Under Condition (A) and if ξ and f0 are non-negative, then there
exists a process (Y,Z, U) such that

• (Y,Z, U) belongs to Sϱ(0, t) for any t < T .

• Y is non-negative;

• For all 0 ≤ s ≤ t < T :

Ys = Yt +

∫ t

s

f(t, Yr, Zr, Ur)dr −
∫ t

s

ZrdWr −
∫ t

s

UsdÑs.
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• (Y,Z, U) is a super-solution in the sense that a.s.

lim inf
t→T

Yt ≥ ξ. (6)

Any process (Ỹ , Z̃, Ũ) satisfying the previous four items is called super-solution of the BSDE (5) with
singular terminal condition ξ. Finally the process (Y,Z, U) is the minimal super-solution, in the sense
that for any other supersolution, a.s. for any t, Ỹt ≥ Yt.

Note that this result holds in the more general framework with Poisson random measure and general
filtration.

As explained in the introduction, Condition (6) is too weak to ensure uniqueness of the solution and
is interpreted as an extra cost for liquidation in finance. Instead of (6), we want to have (3):

lim
t→T

Yt = ξ.

It is proved in [39, Section 3] that the existence of a left-limit at time T for Y only depends on f . A
sufficient condition is the existence of a non-increasing, of class C1 and concave function h and of a
positive constant η̃ such that for any y ≥ 0

η̃h(y) ≤ f(t, y, z, u)− f(t, 0, z, u).

In this paper, we only discuss if a.s.
lim inf
t→T

Yt = ξ. (7)

If some partial results have been obtained for the non-Markovian setting ([43, 33, 2]), more complete
results have been obtained in the Markovian setting.

2.2 Markovian setting
For x ∈ R, we consider the forward SDE: for any 0 ≤ t ≤ T

Xt = x+

∫ t

0

b(r,Xr)dr +

∫ t

0

σ(r,Xr)dWr +

∫ t

0

β(r,Xr−)dÑr. (8)

The coefficients b : [0, T ]× R → R, σ : [0, T ]× R → R and β : [0, T ]× R → R satisfy:

1. b, σ and β are jointly continuous w.r.t. (t, x) and Lipschitz continuous w.r.t. x uniformly in t, i.e.
there exists a constant K such that for any t ∈ [0, T ], for any x and y in R: a.s.

|b(t, x)− b(t, y)|+ |σ(t, x)− σ(t, y)|+ |β(t, x)− β(t, y)| ≤ K|x− y|

2. b and σ growth at most linearly:

|b(t, x)|+ |σ(t, x)| ≤ Cb,σ(1 + |x|).

3. β is bounded w.r.t. t and x: there exists a constant Cβ such that

|β(t, x)| ≤ Cβ .

Under these assumptions, the forward SDE (8) has a unique strong solution X (see [41]).
We assume that

ξ = g(XT )

where the function g is defined on R with values in [0,+∞] = [0,+∞) ∪ {+∞}. We denote

S = {x ∈ R s.t. g(x) = +∞}

the set of singularity points for the terminal condition induced by g. We suppose that S is closed and
that for all closed set K ⊂ R \ S

g(XT )1K(XT ) ∈ L1 (Ω,FT ,P) .
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In [39, Theorem 4.5], under Condition (A) on f and under this setting for ξ = g(XT ), it is proved that
(7) holds provided that in (A6) q > 3. There are also some technical conditions between the jumps of
X and the singular set S ; these conditions are discussed in Sections 3 and 5. If F is only generated by
W (in particular β = 0 in (8)), then (7) holds for any q > 1, provided that the diffusion coefficient σ is
uniformly elliptic. Indeed in this case, we can use the representation of the process Z as the Malliavin
derivative of Y .

The rest of this paper shows that the presence of jumps can completely destroy (7), that is for q ≤ 2,
it is possible to have a.s.

lim inf
t→T

Yt = +∞,

even if P(ξ = +∞) < 1.

2.3 Related PDEs
A key feature of BSDE is the link with parabolic PDE. Let us now define for (t, x) ∈ [0, T ] × R, the
forward SDE: for any 0 ≤ t ≤ s ≤ T

Xt,x
s = x+

∫ s

t

b(r,Xt,x
r )dr +

∫ s

t

σ(r,Xt,x
r )dWr +

∫ s

t

β(r,Xt,x
r−)dÑr. (9)

The coefficients b, σ and β still satisfy the previously mentioned conditions: Lipschitz continuity w.r.t.
x and at most linear growth. Then (9) has a unique strong solution Xt,x belonging in Dp(0, T ) for any
p > 1. Together with the SDE (9), we solve the BSDE: for any 0 ≤ t ≤ s ≤ T

Y t,x
s = g(Xt,x

T ) +

∫ T

s

f(r,Xt,x
r , Y t,x

r , Zt,x
r , U t,x

r )dr −
∫ T

s

Zt,x
r dWr −

∫ T

t

U t,x
r dÑr. (10)

Now the generator f : [0, T ] × R4 → R is a deterministic function, such that the random function
fX(s, y, z, u) = f(s,Xt,x

s , y, z, u) satisfies Condition (A) uniformly w.r.t. x. The function g : R → R is
measurable and non-negative and ξ = g(Xt,x

T ). Hence we can apply the previous results to ensure the
existence of a minimal super-solution (Y t,x, Zt,x, U t,x).

To make the link with IPDE, we also suppose that the generator f verifies some extra regularity
assumptions (see [9, 40]):

• f is locally Lipschitz continuous w.r.t. y: for all R > 0, there exists LR such that for any y and y′
and any (t, x, z, u)

|y| ≤ R, |y′| ≤ R =⇒ |f(t, x, y, z, u)− f(t, x, y′, z, u)| ≤ LR|y − y′|.

• The function u ∈ R 7→ f(t, x, y, z, u) is non-decreasing for all (t, x, y, z) ∈ [0, T ]× R3:

∀u ≤ u′, 0 ≤ f(t, x, y, z, u′)− f(t, x, y, z, u) ≤ ϑ(u′ − u).

ϑ is the constant of Condition (A4).

• (t, x) 7→ f(t, x, y, z, u) is continuous and for all R > 0, t ∈ [0, T ], |x| ≤ R, |x′| ≤ R, |y| ≤ R,
(z, u) ∈ R2,

|f(t, x, y, z, u)− f(t, x′, y, z, u)| ≤ ωR(|x− x′|(1 + |z|)),

where ωR(s) tends to 0 when s↘ 0.

• x 7→ f(t, x, 0, 0, 0) is of at most polynomial growth.

The generator of Example 1 satisfies these conditions. Now from [9, Proposition 2.5 and Theorem 3.4]:

Proposition 1. If g : R → R is continuous and with polynomial growth, the function u(t, x) = Y t,x
t is

the unique continuous viscosity solution of the IPDE:
∂u

∂t
(t, x) + Lu(t, x) + I(t, x, u) + f(t, x, u, u′σ,B(t, x, u)) = 0

u(T, x) = g(x)

(11)

(among the functions with polynomial growth). Moreover if g is bounded, u is also bounded.
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In the previous IPDE, we have:

• L is the local second-order differential operator, due to the continuous part of the forward SDE:

L(t, x, ϕ) = 1

2
σ2(t, x)ϕ′′(x) + b(t, x)ϕ′(x) ;

• I is a non local differential operator and comes from the jump part of the forward SDE:

I(t, x, ϕ) = ϕ(t, x+ β(t, x))− ϕ(t, x)− ϕ′(t, x)β(t, x) ;

• B is also a non local operator coming from the generator of the BSDE:

B(t, x, ϕ) = ϕ(t, x+ β(t, x))− ϕ(t, x).

From [40], we obtain the next statement3

Proposition 2. If g : R → [0,+∞] is a continuous function such that for any compact set K in R \ S,
g(XT )1K(XT ) is integrable, where S = {x ∈ R, g(x) = ∞}, then u is the minimal non-negative viscosity
solution of (11), such that:

lim inf
(t,x)→(T,x0)

u(t, x) ≥ g(x0) (12)

holds.

The continuity problem for BSDE can be written here: does the minimal viscosity solution u satisfy

lim
(t,x)→(T,x0)

u(t, x) = g(x0) ?

A natural question concerns the regularity of the solution u. In [40, Section 4.3], it is proved that if
b and σ are bounded functions and σ is uniformly elliptic, if f is Hölder continuous w.r.t. (t, x), then
u ∈ C1,2([0, T )× R) (see [40, Lemmas 5 and 6, Proposition 5]).

3 Quadratic case with right barrier
In this section, we still assume that X = N is the Poisson process (σ = 0 and β = 1), denoted Xt,x if
we want to emphasize that it starts at time t from point x:

Xt,x
s = x+

∫ s

t

λdr +

∫ s

t

dÑr = x+Ns −Nt.

We study the quadratic case: f(s, y, z, u) = −y|y| (Example 1 with q = 2), so the BSDEs (2) and (5)
become

Yt = g(XT )−
∫ T

t

Ys|Ys|ds−
∫ T

t

UsdÑs, 0 ≤ t ≤ T. (13)

We note Y t,x the solution of the BSDE whose dynamics is that of the BSDE (13) on [t, T ] whenX = Xt,x.
Moreover we consider the following function g : for x0 ∈ R and φ : R → [0,+∞)

g(x) = (+∞)1{x≥x0} + φ(x)1{x<x0}. (14)

For this case, it is obvious that the singularity set S = [x0,∞) has a compact and regular boundary {x0}
and obviously if x ≥ x0, x + 1 > x0. In other words it satisfies the technical conditions (called (E) in
[39]) mentioned in Section 2.2. But q = 2 is too small to apply some known result about the continuity
at time T . Let us remark that φ plays a role only if X starts below x0.

Let us evoke some properties for this BSDE and the truncated BSDE: for anyK > 0 and for 0 ≤ t ≤ T

Y K
t = g(XT ) ∧K −

∫ T

t

Y K
s |Y K

s |ds−
∫ T

t

UK
s dÑs. (15)

3Note that continuity of the minimal solution is not guaranteed in this proposition.
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From Section 2.1 and [28], there exists a unique solution (Y K , UK) for (15) and a minimal solution (Y, U)
for (13) such that Y is the increasing limit of Y K and since g is non-negative: a.s.

∀t ∈ [0, T ], 0 ≤ Y K
t ≤ Yt ≤

1

T − t
.

Note that these estimates do not depend on g. Moreover a.s.

lim
t→T

Yt ≥ ξ = g(XT ).

The existence of the limit follows from [39, Theorem 3.1].
Finally the related IPDE (11) is: for any (t, x) ∈ [0, T ]× R

∂u

∂t
(t, x)− λu(t, x)− u(t, x)|u(t, x)| = −λu(t, x+ 1)

u(T, x) = g(x),

(16)

and the truncated PDE:
∂uK

∂t
(t, x)− λuK(t, x)− uK(t, x)|uK(t, x)| = −λuK(t, x+ 1)

uK(T, x) = g(x) ∧K.
(17)

If g : R → [0,+∞] is continuous, then there exists a unique continuous viscosity solution uK for (17)
and a minimal viscosity solution u for (16) such that u is the increasing limit of uK and for any (t, x)

0 ≤ uK(t, x) ≤ u(t, x) ≤ 1

T − t
.

Recall that uK(t, x) = Y K,t,x
t and u(t, x) = Y t,x

t .
We are going to show that we have

lim
t→T

Yt > ξ = YT , Yt =
1

T − t
∀t ∈ [0, T ).

In other words we show that there exist cases for which the solution is non continuous at time T .
Contrary to [39, 40], the main changements are the quadratic driver (corresponding to q = 2 in (A6))
and simple jumps associated to a Poisson process (without jumps, for uniformly elliptic diffusions, we
have continuity whatever the power q).

3.1 Solving the PDE and behavior at time T

Here we are going to resolve the PDEs (16) and (17), without the help of BSDE’s theory. Let us state
some results concerning the ODE: y′(t)− λy(t)− y(t)|y(t)|+ λψ(t) = 0, 0 ≤ t ≤ T,

y(T ) = χ ∈ R.
(18)

Lemma 1. If ψ ∈ C0([0, T ]), then there exists a unique bounded solution y. Moreover if χ ≥ 0 and if
for any t ψ(t) ≥ 0, then y(t) ≥ 0 for any t. The solution satisfies:

∀t < T, y(t) ≤ 1

(T − t)2

∫ T

t

[
λψ(s)(T − s)2 + 1

]
e−λ(s−t)ds.

As a consequence, if ψ(t) ≤ 1/(T − t), then the same estimate holds for y.

Proof. The function (t, y) 7→ λy + y|y| − λψ(t) is continuous w.r.t. t and is locally Lipschitz continuous
w.r.t. y. Hence there exists a unique solution of the ODE, defined on an interval (τ, T ]. We also have

y′(t) = (λ+ |y(t)|)y(t)− λψ(t).
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So for τ < t ≤ T

y(t) = χ exp

(
−
∫ T

t

(λ+ |y(s)|)ds

)
+ λ

∫ T

t

ψ(s) exp

(
−
∫ s

t

(λ+ |y(u)|)du
)
ds.

Thus:

|y(t)| ≤ |χ|+ λ

∫ T

t

|ψ(s)|ds ≤ |y(T )|+ λ

∫ T

0

|ψ(s)|ds.

As ψ ∈ C0([0, T ]), the function y is bounded on (τ, T ], independently of τ . Hence there exists a global
solution defined on [0, T ]. And if χ and ψ are non-negative, the function y is also non-negative.

Now we prove the a priori estimate on y (adaptation of [28]). Let us solve the following linear ODE
on the interval [0, T − ε] for 0 < ε < T ,

(yε)′ − λyε − 2
1

T − t
yε +

1

(T − t)2
+ λψ(t), yε(T − ε) = y(T − ε).

The solution yε is given by

yε(t) = y(T − ε) exp

(
−
∫ T−ε

t

(
λ+ 2

1

T − s

)
ds

)
+ λ

∫ T−ε

t

ψ(s) exp

(
−
∫ s

t

(
λ+ 2

1

T − u

)
du

)
ds

+

∫ T−ε

t

1

(T − s)2
exp

(
−
∫ s

t

(
λ+ 2

1

T − u

)
du

)
ds

= y(T − ε)e−λ(T−ε−t) exp

(
−2

∫ T−ε

t

1

T − s
ds

)
+ λ

∫ T−ε

t

ψ(s)e−λ(s−t) exp

(
−2

∫ s

t

1

T − u
du

)
ds

+

∫ T−ε

t

1

(T − s)2
e−λ(s−t) exp

(
−2

∫ s

t

1

T − u
du

)
ds

But

exp

(
−2

∫ s

t

1

T − u
du

)
=

(
T − s

T − t

)2

.

Thus

yε(t) =
1

(T − t)2
ε2y(T − ε)e−λ(T−ε−t) +

1

(T − t)2

∫ T−ε

t

[
λψ(s) +

1

(T − s)2

]
e−λ(s−t)(T − s)2ds.

Using the inequality y2 ≥ 2cy − c2 with c = 1/(T − t), we have the inequality between the two
generators

λy + 2
1

T − t
y − 1

(T − t)2
− λψ(t) ≤ λy + y2 − λψ(t).

Thus, with the comparison result for backward ODE, we deduce that for any t ∈ [0, T − ε]

y(t) ≤ yε(t) =
1

(T − t)2
ε2y(T − ε)e−λ(T−ε−t) +

1

(T − t)2

∫ T−ε

t

[
λψ(s) +

1

(T − s)2

]
e−λ(s−t)(T − s)2ds.

Letting ε go to zero, since the function y is bounded, we deduce that for any t < T

y(t) ≤ 1

(T − t)2

∫ T

t

[
λψ(s) +

1

(T − s)2

]
e−λ(s−t)(T − s)2ds

=
1

(T − t)2

∫ T

t

[
λψ(s)(T − s)2 + 1

]
e−λ(s−t)ds.

If ψ(t) ≤ 1

T − t
, a computation shows that the same estimate holds for y:

y(t) ≤ 1

(T − t)2

∫ T

t

[λ(T − s) + 1] e−λ(s−t)ds

=
1

(T − t)2

(
−e

−λ(T−t)

λ
+
λ(T − t) + 1

λ
+
e−λ(T−t)

λ
− 1

λ

)
=

1

T − t
.

This achieves the proof of the lemma.
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Remark 1. Let us emphasize that the mapping (y(T ), ψ) 7→ y is non-decreasing: if χ̂ ≥ χ ≥ 0 and
ψ̂(t) ≥ ψ(t) ≥ 0 for any t, then ŷ(t) ≥ y(t) ≥ 0.

Indeed we have

ŷ(t)− y(t) = χ̂− χ−
∫ T

t

(λŷ(s) + ŷ(s)|ŷ(s)| − λψ̂(s)− λy(s)− y(s)|y(s)|+ λψ(s))ds

= χ̂− χ−
∫ T

t

(λŷ(s)− λy(s) + ŷ(s)|ŷ(s)|︸ ︷︷ ︸
=ŷ(s)2

− y(s)|y(s)|︸ ︷︷ ︸
=y(s)2

)ds+ λ

∫ T

t

ψ̂(s)− ψ(s)ds

= χ̂− χ−
∫ T

t

(λ+ a(s)) (ŷ(s)− y(s))ds+ λ

∫ T

t

ψ̂(s)− ψ(s)ds,

with
a(s) =

ŷ(s)|ŷ(s)| − y(s)|y(s)|
ŷ(s)− y(s)

1ŷ(s)≤y(s) ≥ 0.

Thus

ŷ(t)− y(t) = (χ̂− χ) exp

(
−
∫ T

t

(λ+ a(s))ds

)

+ λ

∫ T

t

(ψ̂(s)− ψ(s)) exp

(
−
∫ s

t

(λ+ a(u))du

)
ds ≥ 0.

We begin with the case x ≥ x0. We rewrite the PDEs
∂u

∂t
(t, x)− λu(t, x)− u(t, x)|u(t, x)| = −λu(t, x+ 1),

u(T, x) = +∞,

(19)

and 
∂uK

∂t
(t, x)− λuK(t, x)− uK(t, x)|uK(t, x)| = −λuK(t, x+ 1),

uK(T, x) = K.

(20)

Lemma 2. On [0, T ]× [x0,∞), for any K > 0, the solutions of (19) and (20) are:

u(t, x) =
1

T − t
, uK(t, x) =

1

T − t+
1

K

.

Proof. For the equation (20), we notice that the function t 7−→ 1

T − t+
1

K

satisfies the PDE and is

continuous and bounded. By uniqueness of the viscosity solution ([9, Theorem 3.5]), we have

uK(t, x) =
1

T − t+
1

K

.

Then the minimal solution is the increasing limit of uK :

u(t, x) = lim
K→+∞

uK(t, x) =
1

T − t
.

Clearly, it satisfies PDE (19) on [0, T )× [x0,+∞).
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We consider now the case x ∈ [x0 − 1, x0). So x+ 1 ≥ x0 and we rewrite the PDE (17) for uK
∂uK

∂t
(t, x)− λuK(t, x)− uK(t, x)|uK(t, x)| = −λ 1

T − t+
1

K

,

uK(T, x) = φ(x) ∧K.

Note that it is an ODE with parameter x.

Lemma 3. On [0, T ]× [x0 − 1, x0), for any K > 0, the solution of (17) is

uK(t, x) =
1

T − t+
1

K

−
1φ(x)<K

eλ(T−t) (K(T − t) + 1)
2

(
1

K − φ(x)
+

∫ T

t

e−λ(T−s)

(K(T − s) + 1)2
ds

) , (21)

and
u(t, x) = lim

K→+∞
uK(t, x) =

1

T − t
1{t<T} + φ(x)1{t=T}.

Proof. Here x is a fixed parameter in [x0 − 1, x0). We begin with the equation in uK . We recognize a

Riccati equation whose a particular solution of the dynamic is t 7−→ 1

T − t+
1

K

. We make the variable

changement

uK(t, x) =
1

T − t+
1

K

− wK(t, x)

where wK is a non-negative function. The sign of wK comes from the a priori estimate on uk given by
[28, Lemma 1]. So the function wK(·, x) satisfies the ODE

∂wK

∂t
(t, x)−

λ+
2

T − t+
1

K

wK(t, x) + wK(t, x)2 = 0.

We recognize a Bernoulli equation. We make the variable changement, under reserve of non cancellation,

yK(t, x) =
1

wK(t, x)
.

So the function yK(·, x) satisfies a first order linear differential equation. Solving this ODE and going
back to uK , we obtain that if φ(x) < K

uK(t, x) =
1

T − t+
1

K

− 1

eλ(T−t) (K(T − t) + 1)
2

(
1

K − φ(x)
+

∫ T

t

e−λ(T−s)

(K(T − s) + 1)2
ds

)
and for φ(x) = K

uK(t, x) =
1

T − t+
1

K

.

Let us pass to the limit on K for t < T . Since φ(x) < +∞, we have

lim
K→+∞

(K(T − t) + 1)
2 1

K − φ(x) ∧K
= +∞

whereas

0 ≤
∫ T

t

e−λ(T−s)

(K(T − s) + 1)2
ds ≤

∫ T

t

1

(K(T − s) + 1)2
ds =

T − t

K(T − t) + 1
.

Therefore we obtain for any t < T .

u(t, x) = lim
K→+∞

uK(t, x) =
1

T − t
.
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This function u satisfies the PDE
∂u

∂t
(t, x)− λu(t, x)− u(t, x)|u(t, x)| = −λ 1

T − t
,

u(T, x) = φ(x).

(22)

Again it is an ODE with parameter x. Since ψ =
1

T − ·
̸∈ C0([0, T ]), we cannot apply Lemma 1.

Nonetheless we have :

Lemma 4. This function u(·, x) = 1

T − ·
is the unique non-negative solution of (22) defined on [0, T ).

Proof. Again x is fixed and we assume there exists a non-negative solution u(·, x) defined on [0, T ). So
the function u(·, x) satisfies the forward PDE

∂u

∂t
(t, x)− λu(t, x)− u(t, x)2 = −λ 1

T − t

u(0, x) = a,

(23)

with a ≥ 0 defined by a = u(0, x). According to the Cauchy-Lipschitz theorem, this ODE has a unique

solution u(·, x) defined on [0, τa) (τa also depends on x, but we do not write this dependence). If a =
1

T

then the function t 7−→ 1

T − t
is solution and well defined on [0, T ). In that case

u(t, x) =
1

T − t
.

We are going to show it is the only possibility. We suppose by absurd a ̸= 1

T
. We also have a Riccati

equation whose a particular solution is t 7−→ 1

T − t
. So, by applying the previous method, we obtain an

explicit solution

u(t, x) =
1

T − t
+

1

(T − t)2

T 2
e−λt

(
c− T 2

∫ t

0

eλs

(T − s)2
ds

) , (24)

with c =
(
a− 1

T

)−1

=

(
u(0, x)− 1

T

)−1

. Now if a >
1

T
then by divergence of the integral

∫ t

0

eλs

(T − s)2
ds

in T , there exists τa ∈ [0, T ) such that∫ τa

0

eλs

(T − s)2
ds =

c

T 2
=

1

T 2a− T
> 0.

So the function u(·, x) is defined only on [0, τa) with τa < T , what contradicts our assumption on u.

Now if a <
1

T
then the function u(·, x) is defined on [0, T ) and

u(t, x) =
1

T − t
+

1

(T − t)2

T 2
e−λt

 1

a− 1

T

− T 2

∫ t

0

eλs

(T − s)2
ds


=

1

T − t
+

1

(T − t)2e−λt
1

aT 2 − T
− e−λt(T − t)2

∫ t

0

eλs

(T − s)2
ds

.
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Integrating by parts leads to

u(t, x) =
1

T − t

1 + 1

(T − t)e−λt

(
a

aT − 1
+ λ ln(T ) + λ2

∫ t

0

eλs ln(T − s)ds

)
− 1− λ(T − t) ln(T − t)



=

e−λt

(
a

1− aT
− λ ln(T )− λ2

∫ t

0

eλs ln(T − s)ds

)
+ λ ln(T − t)

(T − t)e−λt

(
a

1− aT
− λ ln(T )− λ2

∫ t

0

eλs ln(T − s)ds

)
+ 1 + λ(T − t) ln(T − t)

.

Therefore we obtain for any x
u(t, x) ∼

t→T
λ ln(T − t). (25)

In particular, u(·, x) becomes negative when t tends to T , which contradicts our assumption on u. Thus

a =
1

T
and

u(t, x) =
1

T − t

is the only non-negative solution defined on [0, T ).

We suppose now x ∈ [x0 − 2, x0 − 1). Then x+ 1 ∈ [x0 − 1, x0) and we rewrite the PDE (17)
∂uK

∂t
(t, x)− λuK(t, x)− uK(t, x)2 = −λuK(t, x+ 1),

uK(T, x) = φ(x) ∧K,
(26)

where uK(t, x+ 1) is given by (21) with φ(x+ 1) instead of φ(x) :

uK(t, x+ 1) =
1

T − t+
1

K

−
1φ(x+1)<K

eλ(T−t) (K(T − t) + 1)
2

(∫ T

t

e−λ(T−s)

(K(T − s) + 1)2
ds+

1

K − φ(x+ 1)

) .
Existence of uK , solution of (26), is given by Lemma 1 (x is a parameter) since uK(·, x+1) is a bounded
function. Moreover since uK(·, x + 1) is bounded from above by 1/(T − ·) and is non-decreasing w.r.t.
K, and with Remark 1, we have the estimate : for K ≤ K̂

0 ≤ uK(t, x) ≤ uK̂(t, x) ≤ 1

T − t
.

Nonetheless we cannot derive the explicit expression of uK , but we prove that uK still converges to
t 7→ 1/(T − t). And from our previous result (Lemma 4), this function is the unique non-negative
solution of (22) on [x0 − 2, x0 − 1).

Lemma 5. For any x ∈ [x0 − 2, x0 − 1), the solution uK(·, x) of (26) converges:

uK(t, x) −→
K→+∞

1

T − t
.

Proof. Since uK(·, x) is a non-decreasing sequence of functions, it converges to some limit function u(·, x)
such that for any t < T :

0 ≤ uK(t, x) ↗
K→+∞

u(t, x) ≤ 1

T − t
.

For any t < T

uK(t, x) = uK(0, x) +

∫ t

0

[
λuK(s, x) + uK(s, x)|uK(s, x)| − λuK(s, x+ 1)

]
ds.

Using dominated convergence theorem and Lemma 3, we can pass to the limit:

u(t, x) = u(0, x) +

∫ t

0

[
λu(s, x) + u(s, x)|u(s, x)| − λ

1

T − s

]
ds.
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Thus u solves the PDE (22): on [0, T )

∂u

∂t
(t, x)− λu(t, x)− u(t, x)|u(t, x)| = −λ 1

T − t
.

If we assume
u(0, x) = a <

1

T
− ε

for some ε > 0, then, according to the performed reasoning in the proof of Lemma 4, the solution u is

equal to zero in a time τ ∈ [0, T ) what it cannot be. Thus u(0, x) =
1

T
and

uK(0, x) −→
K→+∞

1

T
.

Now we consider the difference function

eK(t, x) = uK(t, x)− 1

T − t
= uK(t, x)− u∞(t), 0 ≤ t < T.

By performing the difference between the two PDEs

∂eK

∂t
(t, x)− λeK(t, x)− (uK(t, x)2 − u∞(t)2) = −λ(uK(t, x+ 1)− u∞(t)),

i.e., according to the identity a2 − b2 = (a− b)(a+ b),

∂eK

∂t
(t, x)−

(
λ+ uK(t, x) + u∞(t)

)
eK(t, x) = −λ(uK(t, x+ 1)− u∞(t)).

If we denote
aK(t, x) = λ+ uK(t, x) + u∞(t), cK = eK(0, x) = uK(0, x)− 1

T

the difference function eK is given by

eK(t, x) =

(
cK − λ

∫ t

0

(uK(s, x+ 1)− u∞(s)) exp

(
−
∫ s

0

aK(r, x)dr

)
ds

)
exp

(∫ t

0

aK(s, x)ds

)
.

We are going to study the behavior of each term when K → +∞. We already know that

cK = eK(0, x) = uK(0, x)− 1

T
−→

K→+∞
0.

The term
aK(t, x) = λ+ uK(t, x) + u∞(t) ∈ [0, λ+ 2u∞(t)]

is bounded w.r.t. K, so exp

(∫ t

0

aK(s, x)ds

)
also. Finally for the last, apply the dominated convergence

theorem: ∫ t

0

(uK(s, x+ 1)− u∞(s)) exp

(
−
∫ s

0

aK(r, x)dr

)
ds −→

K→+∞
0.

Therefore we obtain
eK(t, x) −→

K→+∞
0,

i.e.
uK(t, x) −→

K→+∞
u∞(t) =

1

T − t
.

Theorem 2. The solution uK of (17) converges to the solution u of (16), which is given by

u(t, x) =
1

T − t
1{t<T} + g(x)1{t=T}, 0 ≤ t ≤ T, x ∈ R.

This solution u is the unique non-negative solution defined on [0, T ].
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Proof. For x ≥ x0, it results from Lemma 2. Then we argue by recursion on the intervals [x0−k−1, x0−k),
with k ∈ N. The initialization step comes from Lemma 3. We suppose the result for the x ∈ [x0 − k −
1, x0−k), then, by applying the proof of Lemma 5 we obtain the result for the x ∈ [x0−k−2, x0−k−1).
The recurrence principle allows to conclude. Uniqueness comes from Lemma 4.

Remark 2. Of course the same study can be done for f(t, x, y, u) = −ηy|y| with some constant η > 0.

Then the solution becomes u(t, x) =
1

η(T − t)
.

The next result is used below to control the martingale part of the BSDE.

Proposition 3. For any K > 0, the difference uK(t, x+1)−uK(t, x) is the sum of a non-negative term
and a bounded term controlled for x < x0 by

|x0 − x| sup
y∈[x,x0)

|φ(y + 1)− φ(y)|.

Proof. For x ≥ x0−1, we have: uK(t, x+1)−uK(t, x) ≥ 0 ; it is an immediate consequence of Lemmata
2 and 3 and the formulas therein. Now for x < x0 − 1, the difference ∆(t, x) = uK(t, x + 1) − uK(t, x)
satisfies: for any t ∈ [0, T ]

∆′(t, x)− (λ+ uK(t, x+ 1) + uK(t, x))∆(t, x) + λ∆(t, x+ 1) = 0.

Hence for any x < x0 − 1:

∆(t, x) = (φ(x+ 1)− φ(x)) exp

(
−
∫ T

t

(λ+ uK(s, x+ 1) + uK(s, x))ds

)

+

∫ T

t

λ∆(r, x+ 1) exp

(
−
∫ r

t

(λ+ uK(s, x+ 1) + uK(s, x))ds

)
dr.

Since uK is non-negative, the first term is bounded by |φ(x+ 1)− φ(x)|.
Now for x ∈ [x0 − 2, x0 − 1), x + 1 ∈ [x0 − 1, x0), thus ∆(r, x + 1) ≥ 0. Thus the claim is true on

[x0 − 2, x0 − 1):
∆(t, x) = ∆+(t, x) + Γ(t, x)

where ∆+(t, x) ≥ 0 and |Γ(t, x)| ≤ |φ(x+ 1)− φ(x)|.
For x ∈ [x0 − 3, x0 − 2),∫ T

t

λ∆(r, x+ 1) exp

(
−
∫ r

t

(λ+ uK(s, x+ 1) + uK(s, x))ds

)
dr

=

∫ T

t

λ∆+(r, x+ 1) exp

(
−
∫ r

t

(λ+ uK(s, x+ 1) + uK(s, x))ds

)
dr

+

∫ T

t

λΓ(r, x+ 1) exp

(
−
∫ r

t

(λ+ uK(s, x+ 1) + uK(s, x))ds

)
dr.

And ∫ T

t

λ|Γ(r, x+ 1)| exp
(
−
∫ r

t

(λ+ uK(s, x+ 1) + uK(s, x))ds

)
dr

≤
∫ T

t

λ|φ(x+ 2)− φ(x+ 1)| exp (−λ(r − t)) dr ≤ |φ(x+ 2)− φ(x+ 1)|.

Thus again for 2 < x0 − x ≤ 3
∆(t, x) = ∆+(t, x) + Γ(t, x)

where ∆+(t, x) ≥ 0 and |Γ(t, x)| ≤ 2 supy∈[x,x0) |φ(y + 1)− φ(y)|.
We conclude by recursion.
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3.2 Consequence for the BSDE (13)
Here we still consider the terminal condition ξ = g(XT ), with g given by (14) and the BSDE (13) is:

Yt = g(XT )−
∫ T

t

Ys|Ys|ds−
∫ T

t

UsdÑs, 0 ≤ t < T.

We denote by (Y K , UK) the solution of the same BSDE (13) with terminal condition g(XT ) ∧K. The
first immediate consequence is the next result:

Corollary 1. A.s. for any t ∈ [0, T )

lim
K→+∞

Y K
t =

1

T − t
, lim

K→+∞
UK
t = 0.

The solution Y of the BSDE (13) is given by

Yt =
1

T − t
1{t<T} + g(XT )1{t=T}, 0 ≤ t ≤ T.

Moreover the process UK is the sum of a non-negative term and of a term controlled by Φ(Xs−) where
Φ(x) = |x0 − x| supy∈[x,x0) |φ(y + 1)− φ(y)|.

Proof. We can apply Itô’s formula to uK(t,Xt) (only regularity w.r.t. t is required) to obtain the solution
Y K :

Y K
t = uK(t,Xt) = g(XT ) ∧K −

∫ T

t

∂uK

∂t
(s,Xs)ds−

∑
t<s≤T

[
uK(s,Xs)− uK(s,Xs−)

]
= g(XT ) ∧K −

∫ T

t

[λ(uK(s,Xs− + 1)− uK(s,Xs−)) + uK(s,Xs−)
2]ds

−
∫ T

t

[
uK(s,Xs− + 1)− uK(s,Xs−)

]
dNs

= g(XT ) ∧K −
∫ T

t

(Y K
s )2ds−

∫ T

t

[
uK(s,Xs− + 1)− uK(s,Xs−)

]
(dNs − λds).

Hence UK
s = uK(s,Xs−+1)−uK(s,Xs−). The conclusion follows from Proposition 3 and when we pass

to the limit when K tends to ∞.

Therefore we do not have the continuity of the process Y at the terminal time T : a.s.

lim
t→T

Yt = +∞ > ξ = YT .

This property does not depend on a particular choice of φ on (−∞, x0). The singularity is propagated
by the jumps of the forward process.

Note that Remark 2 still holds for the BSDE.

3.3 When we add a diffusion term
As mentioned in the introduction, if there is no jump and if the diffusion is uniformly elliptic, continuity
at time T holds. Here we study the BSDE (13)

Yt = g(XT )−
∫ T

t

Ys|Ys|ds−
∫ T

t

ZsdWs −
∫ T

t

UsÑ(ds),

with g given by (14):
g(x) = (+∞)1{x0≤x} + φ(x)1{x<x0},

and now we add a diffusion part in X, namely:

Xt = x+Nt +

∫ t

0

b(Xs)ds+

∫ t

0

σ(Xs)dWs,
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So the associated PDE (16) becomes
∂u

∂t
(t, x) + Lu(t, x)− λu(t, x)− u(t, x)|u(t, x)| = −λu(t, x+ 1)

u(T, x) = g(x),

(27)

with

Lu(t, x) = b(x)
∂u

∂x
(t, x) +

1

2
σ(x)2

∂2u

∂x2
(t, x).

If λ = 0, we have a standard parabolic PDE which is studied in [32]. We want to prove that the minimal

solution is again u(t, x) =
1

T − t
. Compared to Theorem 2, the differential operator L does not change

the behavior of the solution.
First note that t 7→ 1

T − t
solves the PDE (27) on [x0,∞) where g(x) = +∞. We also consider the

truncated version of the PDE:
∂uK

∂t
(t, x) + LuK(t, x)− λuK(t, x)− uK(t, x)|uK(t, x)| = −λuK(t, x+ 1)

uK(T, x) = g(x) ∧K.
(28)

An auxiliary function. Let us consider the following PDE on [0, T ]× R

∂uK

∂t
(t, x) + LuK(t, x)− λuK(t, x)− uK(t, x)|uK(t, x)| = −λ 1

T − t+
1

K

, (29)

with uK(T, x) = g(x) ∧K. This PDE is related with the BSDE without jumps

Y
K

t = g(Xt) ∧K −
∫ T

t

Y
K

s |Y K

s |ds− λ

∫ T

t

Y
K

s ds+ λ

∫ T

t

ds

T − s+
1

K

−
∫ T

t

Z
K

s dWs, (30)

where

Xt = x+

∫ t

0

b(Xs)ds+

∫ t

0

σ(Xs)dWs.

Lemma 6. There exists a unique solution (Y
K
, Z

K
) to the BSDE (30) such that a.s. for any t,

0 ≤ Y
K

t ≤ 1

T − t+
1

K

.

This sequence converges to (Y , Z) in Sp(0, T − ε) for any p > 1 and ε > 0 and for any 0 ≤ t ≤ s < T

Y t = Y s −
∫ s

t

Y
2

rdr − λ

∫ s

t

Y rdr + λ

∫ s

t

dr

T − r
−
∫ s

t

ZrdWr.

Proof. The driver is given by

fK(s, y) = −y|y| − λy +
λ

T − s+
1

K

.

It is continuous and monotone w.r.t. y and bounded w.r.t. s. The terminal condition is bounded. Thus
the solution (Y

K
, Z

K
) exists and is unique in Sϱ(0, T ) for any ϱ > 1. Comparison principle implies that

a.s. for any t,

0 ≤ Y
K

t ≤ 1

T − t+
1

K

,

18



since fK(s, y) ≥ −y|y| − λy and

 1

T − t+
1

K

, 0

 is the solution with terminal value K. Moreover for

K ≤ K ′, a.s. Y
K

t ≤ Y
K′

t . Hence
Y t = lim

K→∞
Y

K

t

exists and satisfies 0 ≤ Y t ≤ 1/(T − t). The rest of the Lemma can be deduced with the same arguments
as in [28, Proposition 3].

Proposition 4. For any t < T , Y t =
1

T − t
. In particular

lim
t→T

Y t = +∞.

Proof. The BSDE (30) can be considered as a linear BSDE and thus

Y
K

t = E

(g(Xt) ∧K)e−λ(T−t) exp

(
−
∫ T

t

|Y K

r |dr

)
+ λ

∫ T

t

e−λ(s−t)

T − s+
1

K

exp

(
−
∫ s

t

|Y K

r |dr
)
ds

∣∣∣∣Ft


≥ λE

∫ T

t

e−λ(s−t)

T − s+
1

K

exp

(
−
∫ s

t

|Y K

r |dr
)
ds

∣∣∣∣Ft


≥ λE

∫ T

t

e−λ(s−t)

T − s+
1

K

exp

(
−
∫ T

t

|Y K

r |dr

)
ds

∣∣∣∣Ft


≥ λe−λT

∫ T

t

1

T − s+
1

K

dsE

[
exp

(
−
∫ T

t

|Y K

r |dr

)∣∣∣∣Ft

]

= λe−λT ln(K(T − t) + 1)E

[
exp

(
−
∫ T

t

|Y K

r |dr

)∣∣∣∣Ft

]
.

Since Y
K

converges to Y and Y is finite on [0, T ), we deduce that for any t < T

lim
K→∞

E

[
exp

(
−
∫ T

t

|Y K

r |dr

)∣∣∣∣Ft

]
= 0,

in particular by Fatou’s lemma,

E

[
exp

(
−
∫ T

t

|Y r|dr

)∣∣∣∣Ft

]
= 0. (31)

Now consider the difference

1

T − t+ 1
K

− Y
K

t = (K − g(XT ) ∧K)−
∫ T

t

(
λ+

1

T − s+ 1
K

+ Y
K

s

)(
1

T − s+ 1
K

− Y
K

s

)
ds (32)

+

∫ T

t

Z
K

s dWs

= E

[
K − g(XT ) ∧K
K(T − t) + 1

e−λ(T−t) exp

(
−
∫ T

t

|Y K

r |dr

)∣∣∣∣Ft

]
. (33)

Since for t < T ,

0 ≤ K − (g(XT ) ∧K)

K(T − t) + 1
≤ 1

T − t
, and lim

K→+∞

K − (g(XT ) ∧K)

K(T − t) + 1
=

1

T − t
1g(XT )<+∞,
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we deduce
lim

K→+∞

(
1

T − t+ 1
K

− Y
K

t

)
= 0

and that Y t = 1/(T − t), which achieves the proof.

According to [9, 40], we have the following link between the BSDE and the PDE:

Lemma 7. If the function g ∧ K is continuous, then there exists a unique bounded and continuous
viscosity solution uK to (29). Moreover for any t, x and K

0 ≤ uK(t, x) ≤ 1

T − t+ 1
K

.

Finally if b is bounded and σ is uniformly elliptic, that is, there exists ν > 0 such that for any (t, x)

ν ≤ σ(t, x)2 ≤ 1

ν,

then for any ε, uK belongs to C1,2([0, T − ε]× R).

Proof. The regularity of uK is proved in [40, Section 4.3] and follows from classical results for PDEs, see
among others [18, 29].

Now evoke that for any (t, x)

uK(t, x) = Y
K,t,x

t .

From this proposition and this lemma, we deduce that for x ∈ R and t < T

lim
K→+∞

uK(t, x) = lim
K→+∞

Y
K,t,x

t =
1

T − t
.

Back to the PDEs (28) and (27). On [x0,+∞), g(x) ∧ K = K and the solution is uK(t, x) =
1

T − t+
1

K

. Therefore we can deduce that for x ∈ [x0 − 1, x0) the PDE (28) is

∂uK

∂t
(t, x) + LuK(t, x)− λuK(t, x)− uK(t, x)|uK(t, x)| = −λ 1

T − t+
1

K

,

with uK(T, x) = g(x) ∧ K and thus on [0, T ] × [x0 − 1, x0), uK(t, x) = uK(t, x). Hence the minimal

solution of (27) satisfies for x ∈ [x0 − 1, x0) and t < T : u(t, x) =
1

T − t
. In particular

lim
t→T

u(t, x) = +∞ > g(x) = u(T, x).

Now to handle the case x ∈ [x0 − 2, x0 − 1), let us introduce a second auxiliary PDE: on [0, T ]× R
∂ũK

∂t
(t, x) + LũK(t, x)− λũK(t, x)− ũK(t, x)|ũK(t, x)| = −λuK(t, x+ 1)

ũK(T, x) = g(x) ∧K.

The associated BSDE is

Ỹ K
t = g(XT ) ∧K −

∫ T

t

Ỹ K
s |Ỹ K

s |ds− λ

∫ T

t

Ỹ K
s ds+ λ

∫ T

t

uK(s,Xs + 1)ds−
∫ T

t

Z̃K
s dWs. (34)

Lemma 8. There exists a unique solution (Ỹ K , Z̃K) to the BSDE (34) such that a.s. for any t,

0 ≤ Ỹ K
t ≤ 1

T − t+
1

K

.

This sequence converges to (Ỹ , Z̃) in Sp(0, T − ε) for any p > 1 and ε > 0 and for any 0 ≤ t ≤ s < T

Ỹt = Ỹs −
∫ s

t

Ỹ 2
r dr − λ

∫ s

t

Ỹrdr + λ

∫ s

t

dr

T − r
−
∫ s

t

Z̃rdWr.
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Proof. This proof can be deduced with the same arguments as in Lemma 6.

Now we state the same result as in Proposition 4:

Proposition 5. For any t < T , a.s. Ỹt =
1

T − t
. In particular

lim
t→T

Ỹt = +∞.

Proof. The proof is rather similar as the proof of Proposition 4. However since the BSDE (34) contains a
stochastic term uK(s,Xs+1) (instead of the deterministic and explicit 1/(T −s+1/K)), new arguments
have to be used.

We notice that (Ỹ K , Z̃K) is solution of a linear BSDE:

Ỹ K
t = E

[
(exp

(
−
∫ T

t

|Ỹ K
s |ds

)
e−λ(T−t)g(XT ) ∧K)

∣∣∣∣Ft

]

+ λE

[∫ T

t

exp

(
−
∫ s

t

|Ỹ K
r |dr

)
e−λ(s−t)uK(s,Xs + 1)ds

∣∣∣∣Ft

]

≥ λe−λTE

[
exp

(
−
∫ T

t

|Ỹ K
r |dr

)∫ T

t

uK(s,Xs + 1)ds

∣∣∣∣Ft

]
,

with for t < t, Ỹ K
t ≤ 1/(T − t) < +∞,∫ T

t

uK(s,Xs + 1)ds
a.s.−→

K→+∞

∫ T

t

1

T − s
ds = +∞,

and

exp

(
−
∫ T

t

|Ỹ K
r |dr

)
a.s.

↘
K→+∞

exp

(
−
∫ T

t

|Ỹr|dr

)
.

Thus:

exp

(
−
∫ T

t

|Ỹ K
r |dr

)
a.s.

↘
K→+∞

0. (35)

Then with Ỹ K
s ≥ 0, for any t < T

0 ≤ 1

T − t+ 1
K

− Ỹ K
t

= K −
∫ T

t

1

(T − s+ 1
K )2

ds

− g(XT ) ∧K +

∫ T

t

Ỹ K
s |Ỹ K

s |ds+ λ

∫ T

t

Ỹ K
s ds− λ

∫ T

t

uK(s,Xs + 1) +

∫ T

t

Z̃sdWs

= K − g(XT ) ∧K −
∫ T

t

(
λ+

1

T − s+ 1
K

+ Ỹ K
s

)(
1

T − s+ 1
K

− Ỹ K
s

)
ds

+ λ

∫ T

t

(
1

T − s+ 1
K

− uK(s,Xs + 1)ds

)
+

∫ T

t

Z̃sdWs.
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Using the explicit formula for the solution of a linear BSDE leads to:

0 ≤ 1

T − t+ 1
K

− Ỹ K
t

= E

[
e−λ(T−t)

1
K

T − t+ 1
K

exp

(
−
∫ T

t

Ỹ K
s ds

)
(K − g(XT ) ∧K)

∣∣∣∣Ft

]

+ λE

[∫ T

t

e−λ(s−t)T − s+ 1
K

T − t+ 1
K

exp

(
−
∫ s

t

Ỹ K
r dr

)(
1

T − s+ 1
K

− uK(s,Xs + 1)

)
ds

∣∣∣∣Ft

]

= e−λ(T−t) 1

T − t+ 1
K

E

[
exp

(
−
∫ T

t

Ỹ K
s ds

)(
1− g(XT ) ∧K

K

) ∣∣∣∣Ft

]

+ λ
1

T − t+ 1
K

E

[∫ T

t

(
T − s+

1

K

)
e−λ(s−t) exp

(
−
∫ s

t

Ỹ K
r dr

)(
1

T − s+ 1
K

− uK(s,Xs + 1)

)
ds

∣∣∣∣Ft

]

≤ Cλ,T

T − t+ 1
K

E

[
exp

(
−
∫ T

t

Ỹ K
s ds

)

+

∫ T

t

(
T − s+

1

K

)
exp

(
−
∫ s

t

Ỹ K
r dr

)(
1

T − s+ 1
K

− uK(s,Xs + 1)

)
ds

∣∣∣∣Ft

]
,

with, according to (33),

0 ≤ 1

T − s+ 1
K

− uK(s,Xs + 1) ≤ e−λT

T − s+ 1
K

E

[
exp

(
−
∫ T

s

Y
K

r dr

)∣∣∣∣Fs

]
.

Thus:

0 ≤ 1

T − t+ 1
K

− Ỹ K
t

≤ Cλ,T

T − t+ 1
K

E

[
exp

(
−
∫ T

t

Ỹ K
s ds

)
+

∫ T

t

exp

(
−
∫ s

t

Ỹ K
r dr

)
E

[
exp

(
−
∫ T

s

Y
K

r dr

)∣∣∣∣Fs

]
ds

∣∣∣∣Ft

]

=
Cλ,T

T − t+ 1
K

E

[
exp

(
−
∫ T

t

Ỹ K
s ds

)
+

∫ T

t

exp

(
−
∫ s

t

Ỹ K
r dr

)
exp

(
−
∫ T

s

Y
K

r dr

)
ds

∣∣∣∣Ft

]

≤ Cλ,T

T − t+ 1
K

E

[
exp

(
−
∫ T

t

Ỹ K
s ds

)
+

∫ T

t

exp

(
−
∫ T

s

Y
K

r dr

)
ds

∣∣∣∣Ft

]
.

From (31) and (35), we deduce the statement of the proposition.

Therefore for any t < T and any x ∈ R,

lim
K→+∞

ũK(t, x) = lim
K→+∞

Ỹ K,t,x
t =

1

T − t
.

And for such x ∈ [x0 − 2, x0 − 1) and for all t ∈ [0, T ],

uK(t, x) = ũK(t, x).

We deduce for x ∈ [x0 − 2, x0 − 1)

lim
K→+∞

uK(t, x) =
1

T − t
.

Then, by recurrence, for all x ∈ R:

u(t, x) = lim
K→+∞

uK(t, x) =
1

T − t
.

Theorem 3. The minimal super-solution (Y,Z, U) verifies: a.s.

lim
t→T

Yt = +∞ > ξ = g(XT ).

Proof. From Lemma 7, the solutions uK are smooth. Thus Y K
t = uK(t,Xt). Passing through the limit

on K, we deduce that Yt = 1/(T − t) a.s. The conclusion follows immediately.
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4 Other generators
We now use the results of the previous section, to show that the quadratic case is pivotal. We consider
the BSDE (5) and we assume that the generator f satisfies Condition (A), such that existence of a
solution is guaranteed.

We suppose that X is the Poisson process and that the terminal condition is still given by (14).
We denote by (Y (2),K , Z(2),K , U (2),K) = (Y (2),K , 0, U (2),K) the solution of BSDE (13) with terminal
condition g(XT ) ∧K.

4.1 For q < 2

Let us start with the particular case: f(t, x, y, u) = −y|y|q−1 for 1 < q < 2.

Proposition 6. The minimal super-solution (Y,U) of the BSDE (5) with generator y 7→ −y|y|q−1 for
1 < q < 2 satisfies: a.s. for any t ∈ [(T − 1) ∨ 0, T )

Yt ≥
1

T − t
.

In particular a.s. limt→T Yt = +∞.

Proof. (Y (q),K , U (q),K) denotes the solution of the BSDE with terminal condition g(XT ) ∧K. Then

Y
(q),K
t − Y

(2),K
t =

∫ T

t

(−Y (q),K
s |Y (q),K

s |q−1 + Y (2),K
s |Y (2),K

s |)ds

−
∫ T

t

(
U (q),K
s − U (2),K

s

)
dÑs

=

∫ T

t

aKs (Y (q),K
s − Y (2),K

s ) +

∫ T

t

(−Y (2),K
s |Y (2),K

s |q−1 + Y (2),K
s |Y (2),K

s |)ds

−
∫ T

t

(
U (q),K
s − U (2),K

s

)
dÑs

with, by decrease of the function y 7−→ −y|y|q−1,

aKs =
−Y (q),K

s |Y (q),K
s |q−1 + Y

(2),K
s |Y (2),K

s |q−1

Y
(q),K
s − Y

(2),K
s

1{Y (q),K
s ̸=Y

(2),K
s } ≤ 0.

The formula for linear BSDE implies that

Y
(q),K
t − Y

(2),K
t = E

[∫ T

t

(
−Y (2),K

s |Y (2),K
s |q−1 + Y (2),K

s |Y (2),K
s |

)
ΓK
t,sds

∣∣∣∣Ft

]

with ΓK
t,s = exp

(∫ s

t

aKu du

)
∈ [0, 1]. In other words

Y
(q),K
t − Y

(2),K
t ≥ E

[∫ T

t

ΓK
t,s

(
−Y (2),K

s |Y (2),K
s |q−1 + Y (2),K

s |Y (2),K
s |

)
1[0,1](Y

(2),K
s )ds

∣∣∣∣Ft

]

since for y ≥ 1, y|y|q−1 = yq ≤ y2 = y|y|. By the dominated convergence theorem, we deduce that for
any T − 1 < t < T

Y
(q)
t − Y

(2)
t = lim

K→+∞
Y

(q),K
t − Y

(2),K
t ≥ 0,

that is : a.s. for (T − 1) ∨ 0 ≤ t < T

Y
(q)
t ≥ 1

T − t
.

This achieves the proof.

Our proof shows that more general generators can be considered.
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Theorem 4. If Condition (A) holds, if f0 is non-negative, if u 7→ f(t, y, z, u) is non-decreasing and if
for q < 2 and some R > 0

∀y > R, f(t, y, z, u)− f(t, 0, z, u) ≥ −yq,

then the minimal super-solution of the BSDE (5) verifies: a.s.

lim
t→T

Yt = +∞.

Proof. If (Y K , ZK , UK) denotes the solution of the BSDE (5) with terminal condition g(XT ) ∧K, then
using a standard linearization method :

Y K
t − Y

(2),K
t =

∫ T

t

(
f(s, Y K

s , ZK
s , U

K
s ) + Y (2),K

s |Y (2),K
s |

)
ds−

∫ T

t

ZK
s dWs

−
∫ T

t

(
UK
s − U (2),K

s

)
dÑs

=

∫ T

t

aKs (Y (q),K
s − Y (2),K

s )ds+

∫ T

t

bKs Z
K
s ds−

∫ T

t

ZK
s dWs

+

∫ T

t

(
f(s, Y (2),K

s , 0, UK
s )− f(s, Y (2),K

s , 0, U (2),K
s )

)
ds−

∫ T

t

(
UK
s − U (2),K

s

)
dÑs

+

∫ T

t

f(s, 0, 0, 0)ds

+

∫ T

t

(
f(s, Y (2),K

s , 0, 0)− f(s, 0, 0, 0) + Y (2),K
s |Y (2),K

s |
)
ds

+

∫ T

t

(
f(s, Y (2),K

s , 0, U (2),K
s )− f(s, Y (2),K

s , 0, 0)
)
ds

with

aKs =
f(s, Y K

s , ZK
s , U

K
s )− f(s, Y

(2),K
s , ZK

s , U
K
s )

Y K
s − Y

(2),K
s

1{Y K
s ̸=Y

(2),K
s },

bKs =
f(s, Y

(2),K
s , ZK

s , U
K
s )− f(s, Y

(2),K
s , 0, UK

s )

ZK
s

1{ZK
s ̸=0}.

The process bK is bounded and the process aK is bounded from above. Solving this linear BSDE leads
to

Y K
t − Y

(2),K
t = E

[∫ T

t

(
f(s, 0, 0, 0) +AK

s +BK
s

)
EK
t,sds

∣∣∣∣Ft

]
where EK is non-negative and belongs to any Lϱ([0, T ]× Ω),

BK
s = f(s, Y (2),K

s , 0, U (2),K
s )− f(s, Y (2),K

s , 0, 0),

and

AK
s = f(s, Y (2),K

s , 0, 0)− f(s, 0, 0, 0) + Y (2),K
s |Y (2),K

s |

≥
(
f(s, Y (2),K

s , 0, 0)− f(s, 0, 0, 0) + Y (2),K
s |Y (2),K

s |
)
1{

Y
(2),K
s ≤R

}
+
(
−Y (2),K

s |Y (2),K
s |q−1 + Y (2),K

s |Y (2),K
s |

)
1{

Y
(2),K
s ≥R

}
≥
(
f(s, Y (2),K

s , 0, 0)− f(s, 0, 0, 0) + Y (2),K
s |Y (2),K

s |
)
1{

Y
(2),K
s ≤R

}
if R > 1. From our assumptions, with the dominated convergence theorem, we obtain that for every

t ∈
[
T − 1

R
, T

]
lim inf
K→∞

E

[∫ T

t

AK
s EK

t,sds

∣∣∣∣Ft

]
≥ 0.
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Moreover
|BK

s | ≤ C|U (2),K
s | = C|uK(s,Xs− + 1)− uK(s,Xs−)| ≤ C

2

T − s
.

Thus for any ε > 0

lim
K→∞

E

[∫ T−ε

t

BK
s EK

t,sds

∣∣∣∣Ft

]
= 0

Let us decompose U (2),K
s = Û

(2),K
s + Ũ

(2),K
s , with Û (2),K

s ≥ 0. Then

BK
s = f(s, Y (2),K

s , 0, U (2),K
s )− f(s, Y (2),K

s , 0, Ũ (2),K
s ) + f(s, Y (2),K

s , 0, Ũ (2),K
s )− f(s, Y (2),K

s , 0, 0).

Since u 7→ f(t, y, z, u) is non-decreasing, the first term is non-negative, whereas the second is bounded
by C|Ũ (2),K

s | ≤ CΦ(Xs−) (see Corollary 1). Hence for any ε > 0

E

[∫ T

T−ε

BK
s EK

t,sds

∣∣∣∣Ft

]
≥ −CE

[∫ T

T−ε

|Φ(Xs−)|ϱ
∗
ds

∣∣∣∣Ft

]
.

Evoke that f(s, 0, 0, 0) is also non-negative. Hence

Y K
t ≥ Y

(2),K
t + E

[∫ T

t

AK
s EK

t,sds

∣∣∣∣Ft

]
+ E

[∫ T−ε

t

BK
s EK

t,sds

∣∣∣∣Ft

]
− CE

[∫ T

T−ε

|Φ(Xs−)|ϱ
∗
ds

∣∣∣∣Ft

]
.

Then passing to the limit on K gives : a.s. Yt ≥ Y
(2)
t −CE

[∫ T

T−ε
|Φ(Xs−)|ϱ

∗
ds

∣∣∣∣Ft

]
on [T − 1

R , T ]. Note

that
Φ(Xs−) ≤ |Xs− − x0| sup

y∈[X0,x0)

|φ(y + 1)− φ(y)|.

Letting ε go to zero, we obtain that a.s. Yt ≥ Y
(2)
t on [T − 1

R , T ], which achieves the proof of the
proposition.

4.2 The case q > 2

From [39, Section 4] we already know that for q > 3, continuity holds: a.s. limt→T Yt = g(XT ). From
the previous section, we also know that continuity fails for q ≤ 2. In this part, we prove that continuity
remains true for 2 < q ≤ 3.

We still consider the terminal condition g(XT ) with g given by (14) and the truncated BSDE is : for
0 ≤ t ≤ T

Y K
t = g(XT ) ∧K −

∫ T

t

Y K
s |Y K

s |q−1ds−
∫ T

t

UK
s dÑs. (36)

Again from [28], there exists a unique solution (Y K , UK) for (36) and a minimal solution (Y,U) for (13)
such that Y is the increasing limit of Y and since g is non-negative: a.s.

∀t ∈ [0, T ], 0 ≤ Y K
t ≤ Yt ≤

(
p− 1

T − t

)p−1

.

Here p is the Hölder conjugate of q. Note that these estimates do not depend on g. Moreover a.s.

lim
t→T

Yt ≥ ξ = g(XT ).

Finally the related IPDE (11) is: for any (t, x) ∈ [0, T ]× R
∂u

∂t
(t, x)− λu(t, x)− u(t, x)|u(t, x)|q−1 = −λu(t, x+ 1)

u(T, x) = g(x),

(37)

and the truncated PDE:
∂uK

∂t
(t, x)− λuK(t, x)− uK(t, x)|uK(t, x)|q−1 = −λuK(t, x+ 1)

uK(T, x) = g(x) ∧K.
(38)
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With the same arguments as for Lemma 2, on [0, T ]× [x0,∞), the solutions are

u(t, x) =

(
p− 1

T − t

)p−1

, uK(t, x) =

(
p− 1

T − t+K1−q

)p−1

.

Thus on [0, T ]× [x0 − 1, x0), the PDE (38) becomes

∂uK

∂t
(t, x)− λuK(t, x)− uK(t, x)|uK(t, x)|q−1 = −λuK(t, x+ 1) = −λ

(
p− 1

T − t+K1−q

)p−1

.

The statement of Lemma 1 remains valid, that is uK is well-defined, is non-decreasing w.r.t. K and
converges to u as K tends to ∞. Moreover for any t < T

uK(t, x) = uK(T, x)−
∫ T

t

[
λuK(s, x) + uK(s, x)|uK(s, x)|q−1

]
ds+ λ

∫ T

t

(
p− 1

T − s+K1−q

)p−1

ds

= g(x) ∧K −
∫ T

t

[
λuK(s, x) + uK(s, x)|uK(s, x)|q−1

]
ds

+ λ
(p− 1)p−1

2− p

(
(T +K1−q)2−p − (T − t+K1−q)2−p

)
.

It is equivalent to

uK(t, x)+

∫ T

t

[
λuK(s, x) + uK(s, x)|uK(s, x)|q−1

]
ds = g(x) ∧K

+ λ
(p− 1)p−1

2− p

(
(T +K1−q)2−p − (T − t+K1−q)2−p

)
.

Here is the key point : q > 2 implies that p < 2 or 2 − p > 0. Hence we can pass to the limit w.r.t. K
and the right-hand side is finite and equal to

g(x) + λ
(p− 1)p−1

2− p

(
T 2−p − (T − t)2−p

)
.

By the monotone convergence theorem, the left-hand side converges to

u(t, x) +

∫ T

t

[
λu(s, x) + u(s, x)|u(s, x)|q−1

]
ds

and is larger than u(t, x). We deduce that

u(t, x)+

∫ T

t

[
λu(s, x) + u(s, x)|u(s, x)|q−1

]
ds = g(x) + λ

(p− 1)p−1

2− p

(
T 2−p − (T − t)2−p

)
and that t 7−→ u(t, x) is bounded by g(x) + λ

(p− 1)p−1

2− p
T 2−p. Therefore

lim
t→T

∫ T

t

[
λu(s, x) + u(s, x)|u(s, x)|q−1

]
ds = 0

and for x ∈ [x0 − 1, x0)
lim
t→T

u(t, x) = g(x).

We can iterate these arguments on [x0 − 2, x0 − 1) since uK(t, x+ 1) ≤ u(t, x+ 1) and t 7→ u(t, x+ 1) is
a bounded function. Then by recursion we prove that:

Proposition 7. If q > 2, the PDE (37) has a unique solution u, which is equal to t 7→
(
p− 1

T − t

)p−1

for

x ≥ x0, such that t 7→ u(t, x) is bounded for any x < x0 and that limt→T u(t, x) = g(x).

In other words continuity holds for q > 2. For the BSDE, from the representation Y K
t = uK(t,Xt),

we immediately deduce that a.s.
lim
t→T

Yt = g(XT ).
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Remark 3. Note that the same result holds if the generator is of the form (s, y) 7→ −y|y|q−1 + f0s where
f0 is a deterministic and integrable function.

We replace the explicit expression of the solution on [x0,+∞), by the solution of the ODE

y′ = y|y|q−1 − f0s , y(T ) = +∞

which is bounded by
1

(T − t)p

∫ T

0

[
(p− 1)p−1 + (T − s)pf0s

]
ds

(see [28]) and is still integrable on (0, T ) if q > 2.
As a consequence, under condition (A) with q > 2, and if f0 is deterministic and integrable (or

bounded from above by a deterministic and integrable function), then the solution of the BSDE (5)
satisfies a.s.

lim
t→T

Yt = g(XT ).

The proof is based on a comparison principle between the solution of (5) and the solution of the BSDE
with generator (s, y) 7→ −y|y|q−1 + f0s .

5 Poisson case with left barrier
As mentioned in Section 2.2, continuity property is proved in [40] under a sufficient condition, which link
the set S to the jumps of X. This assumption is verified for the terminal value given by (14).

Let us show here that this condition is unnecessary. We again consider that X is a Poisson process.
Now the function g is defined with x0 ∈ R and φ : R −→ [0,∞) a continuous function with polynomial
growth:

g(x) = (+∞)1{x≤x0} + φ(x)1{x>x0}. (39)

Note that S = (−∞, x0] has a compact boundary, but x ∈ S does not imply that x + 1 ∈ S. Moreover
in general, the truncated function g ∧K is not continuous at the point x0.

Nonetheless since the forward process is a Poisson process, if the process is greater than x0 at some
time τ , it remains greater than x0 after. Let us consider the unique solution of the BSDE:

YK
t = φ(XT ) ∧K +

∫ T

t

f(s,YK
s ,UK

s )ds−
∫ T

t

UK
s dÑs,

where f still verifies Condition (A).
Let us fix τ < T and consider the Fτ -measurable set Aτ = {Xτ > x0}. Then on Aτ , for any

τ ≤ t ≤ T , Xt ≥ Xτ > x0 and g(XT ) = φ(XT ). Multiplying the two BSDEs by 1Aτ
, we deduce that for

any τ < t ≤ T , YK
t = Y K

t on Aτ . Letting K go to +∞ leads to: Yt = Yt on the set Aτ , where (Y,U)
solves the BSDE:

Yt = φ(XT ) +

∫ T

t

f(s,Ys,Us)ds−
∫ T

t

UsdÑs.

Note that the existence and uniqueness of (Y,U) is ensured by the growth assumption on φ. In particular
a.s. on the set Aτ

lim
t→T

Yt = φ(XT ).

Now we take a increasing sequence of τn converging to T . Since the family Aτ is a non-decreasing
family of sets, a.s. ⋃

n∈N
{Xτn > x0} = {XT− > x0} = {XT > x0}

since T cannot be a jump time of X. According to the Theorem 1, we deduce that a.s.

lim
t→T

Yt = g(XT ).

We proved that

Proposition 8. The minimal super-solution (Y,U) of the BSDE (5) with terminal condition ξ = g(XT )
for g given by (39), satisfies (3).
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With our choice of X, the PDE (11) becomes:

∂u

∂t
(t, x) + λu(t, x+ 1)− λu(t, x) + f(t, x, u(t, x), λ(u(t, x+ 1)− u(t, x))) = 0. (40)

Here the function f satisfies Condition (A) (uniformly in x) and the regularity conditions mentioned
just before Proposition 1.

Proposition 9. The minimal viscosity solution u of the PDE (40), with terminal condition g given by
(39) is continuous on [0, T ]× R \ {x0}.

Proof. For a starting point x > x0 at time t, we have : for any t ≤ s ≤ T , Xt,x
s > x0. Hence a.s.

g(Xt,x
T ) = φ(Xt,x

T ). We can apply Proposition 1 to deduce that the quantity û(t, x) = Yt,x
t solves the

PDE (40) with terminal condition φ, and that on {x > x0}, û = u. In other words, the solution uK of
the PDE (40), with terminal condition g(x) ∧K, converges to û on (x0,+∞). And we know that u = û
is continuous on [0, T ]× (x0,∞).

Now for x ∈ (x0 − 1, x0], to solve the PDE (40), let us consider the ordinary differential equation
with parameter x:

(yK,x)′(t) + λû(t, x+ 1)− λyK,x(t) + f(t, x, yK,x(t), λ(û(t, x+ 1)− yK,x(t))) = 0

with terminal condition yK(T ) = K. It is equivalent to

yK,x(t) = K +

∫ T

t

F (s, x, yK,x(s))ds.

The generator F satisfies Conditions (A1) to (A5), hence the solution yK,x exists and is unique. Since
û = u for x > x0, it is immediate that ǔK(t, x) = yK,x(t) is the solution of (40) with terminal condition
ǔK(T, x) = K.

Moreover F is continuous w.r.t. x. Hence standard stability estimate on BSDE (see [35, Theorem
2.9] or [25] for the Lipschitz case or [36, Theorem 5.10]) implies that x 7→ yK,x is also continuous w.r.t.
x, uniformly in K. Roughly speaking for (x, x′)

(yK,x(t)− yK,x′
(t))2 = 2

∫ T

t

(yK,x(s)− yK,x′
(s))(F (s, x, yK,x(s))− F (s, x′, yK,x′

(s)))ds

≤ Cµ,ϑ

∫ T

t

(yK,x(s)− yK,x′
(s))2ds+ λ2

∫ T

t

(û(s, x+ 1)− û(s, x′ + 1))2ds

+

∫ T

t

(F (s, x, yK,x(s))− F (s, x′, yK,x(s)))2ds.

Using regularity condition on f w.r.t. x and Gronwall’s lemma, we deduce the regularity of x 7→ yK,x

uniformly w.r.t. K. Hence passing to the limit on K for ǔK , (t, x) 7→ u(t, x) is also continuous on
[0, T ]× (x0 − 1, x0]. Iterating this procedure, we deduce that u is continuous on [0, T ]× (−∞, x0].

At the point x0, g is not continuous. But if limx→x0
φ(x) = +∞, then u is also continuous at x0.

Remark 4. Note that the arguments can be generalized to any non-decreasing forward process X. For
example X can be a Lévy subordinator and the BSDE is driven by the Poisson random measure associated
to X.

6 Associated Euler scheme
We are interesting here in the convergence of the numerical scheme for the ODE: for t ∈ [0, T )

u′(t)− λu(t)− u(t)|u(t)| = −λ 1

T − t
,

u(T ) = χ ∈ [0,+∞).

This ODE is the same as the ODE (23), but with a terminal condition, and has been used to solve the
PDE (22) and in Lemma 4, we prove that the unique non-negative solution u is given by:

u(t) =
1

T − t
, ∀t < T,
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Figure 1: Backward Euler Numerical Method for T = 1 and λ = 10. On the left, χ = 10; on the right
N = 1000.

whatever χ is. Our aim is to illustrate this behavior for the numerical scheme and to show that the
approximating sequence generated to the scheme converges to u for any χ.

We consider a regular subdivision 0 = t0 < ... < tN = T of the interval [0, T ] with a step hN =
T

N
.

We use here the implicit Euler method to define the scheme uN (tk) by

uN (tN ) = χ

and by the implicit descending recurrence relation

uN (tk+1) = uN (tk)− hNf(tk, uN (tk)),

with
f(t, u) = λu+ u2 − λ

1

T − t
.

We have the convergence on all closed intervals of [0, T ) :

Theorem 5. For all 0 < α < 1, we have

max
0≤k≤⌊αN⌋

∣∣∣∣uN (tk)−
1

T − tk

∣∣∣∣ −→
N→+∞

0.

We implemented the scheme. On Figure 1, on the left graph, the terminal value χ = 10 is fixed and
N increases. On the interval [0, 0.8], the curves are overlaid on each other. On the right, N is equal to
1000 and χ increases; again on [0, 0.93], the curves are overlaid.

To proof this theorem, firstly we are going to study the behavior of the scheme at the time t0 = 0
thanks to the inferior and superior limits. Secondly we are using the results of convergence of forward
schemes. To study the behavior of the scheme, we can explicit its expression.

Lemma 9. The implicit backward Euler scheme can be written explicit : for all k ∈ J0, N − 1K, we have

uN (tk) =

√
(1 + hNλ)2 + 4hN

(
uN (tk+1) + hNλ

1

T − tk

)
− (1 + hNλ)

2hN
≥ 0.

Proof. We prove by recurrence the non negativity of uN (tk). For k = N , we have uN (tN ) = χ ≥ 0. Then
if we assume uN (tk+1) ≥ 0 for k ∈ J0, N − 1K, thus

0 ≤ uN (tk+1) + λhN
1

T − tk
= uN (tk) + hN (λuN (tk) + uN (tk)|uN (tk)|) = F (uN (tk)),

with F (x) = hN (λx+ x|x|). F is non-decreasing with F (0) = 0. Thus uN (tk) ≥ 0.
Then we have that uN (tk) is a non-negative root of the polynome

P = hNX
2 + (1 + λhN )X −

(
uN (tk+1) + λhN

1

T − tk

)
,
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of discriminant
∆ = (1 + λhN )2 + 4hN

(
uN (tk+1) + λhN

1

T − tk

)
> 0,

so the root are

x1 =
−(1 + λhN ) +

√
∆

2hN
> 0, x2 =

−(1 + hN )−
√
∆

2hN
< 0.

Therefore we obtain the expression of the lemma.

With this lemma, we have the following inequalities which will be useful to obtain contradictions if
we assume the inferior and superior limits are different from the wished limit.

Lemma 10. For all k ∈ J0, NK,

0 ≤ uN (tk) ≤ χ+ λ

N∑
i=1

1

i
.

Proof. We show by descending recurrence on k ∈ J0, NK the property

uN (tk) ≤ χ+ λ

N−k∑
i=1

1

i
.

For k = N , we directly have
uN (tk) = uN (tN ) = χ.

Then we suppose the result at rank k + 1 for k ∈ J0, N − 1K. Then, we have the expression of uN (tk) in
function of uN (tk+1) according to the lemma 9,

uN (tk) =

√
(1 + hNλ)2 + 4hN

(
uN (tk+1) + hNλ

1

T − tk

)
− (1 + hNλ)

2hN

=

2

(
uN (tk+1) + hNλ

1

T − tk

)
√
(1 + hNλ)2 + 4hN

(
uN (tk+1) + hNλ

1

T − tk

)
+ (1 + hNλ)

≤ uN (tk+1) + hNλ
1

T − tk

≤ χ+ λ

N−k−1∑
i=1

1

i
+ hNλ

1

NhN − khN
= χ+ λ

N−k∑
i=1

1

i
.

The recurrence principle allows to conclude and to obtain the inequality of this lemma.

From this lemma, we deduce the rough estimate that for any 0 ≤ k ≤ N : uN (tk) ≤ χ + λ(1 + γ) +
λ ln(N), with the Euler’s constant γ.

Lemma 11. The inferior limit in t0 = 0 satisfies

lim inf
N→+∞

uN (t0) ≥
1

T
.

Proof. We assume by contradiction that lim infN→+∞ uN (t0) <
1

T
. Then, for all ε > 0, there exists a

subsequence of (uN (t0))N∈N which we note (UN )N∈N, and N0 ∈ N such that

lim
N→+∞

UN = ℓ <
1

T
− 2ε, ∀N ≥ N0, 0 ≤ UN ≤ 1

T
− ε.

For all a ∈
[
0,

1

T
− ε

]
the solution va of the ODE (23) with initial condition a is given by (24):

va(t) =
1

T − t

1− 1

T − t

T (1− aT )
e−λt + (T − t)e−λt

∫ t

0

eλs

(T − s)2
ds

 , t ∈ [0, T ).

30



So, for ε <
e−λT

T
,

va(t) ≤ v
1
T −ε(t) ≤ 1

T − t

1− 1

T − t

εT 2
e−λt + (T − t)

∫ t

0

1

(T − s)2
ds


=

e−λt − εT

(T − t)e−λt + εtT
≤ 1

(T − t)e−λT + εtT

=
1

Te−λT + (εT − e−λT )t
≤ 1

Te−λT + (εT − e−λT )T
=

1

εT 2
,

According to (25), we have
v

1
T −ε(t) ∼

t→T
λ ln(T − t) < 0.

So, for η > 0, there exists τε ∈ (0, T ) such that: v
1
T −ε(τε) < −η. Moreover

va(t) ≥ v0(t) =
1

T − t

1− 1

T − t

T
e−λt + (T − t)e−λt

∫ t

0

eλs

(T − s)2
ds



= −
λe−λt

∫ t

0

eλs

T − s
ds

1− λ(T − t)e−λt

∫ t

0

eλs

T − s
ds

.

By continuity on the interval [0, τε], the function v0 is bounded from below by a constant Kε < 0. So,

on this interval, each solution va is bounded between Kε and
1

T 2ε
. Then we can consider the ODE (23)

starting at time 0 from UN , with a driver f̃ which is bounded, of class C1 with bounded derivative, such
that the bounds for f̃ do not depend on a or N . Thus the associated Euler scheme

wN (t0) = UN

wN (tk+1) = wN (tk) + hN

(
λwN (tk) + wN (tk)|wN (tk)| − λ

1

T − tk

)
satisfies the standard conistency and stability results for Euler’s scheme (see [6, Theorem 2.4] or [12,
Chapter VIII]): there exists a constant C > 0 which depends on the driver f̃ , such that

max
0≤k≤⌊ τεN

T ⌋
|wN (tk)− vℓ(tk)| ≤ C|wN (t0)− ℓ|+ C

N
, C > 0.

where we have chosen a = ℓ <
1

T
− 2ε <

1

T
− ε. But we have

wN (t0) = UN −→
N→+∞

ℓ,
1

N
−→

N→+∞
0.

So, for N big enough,
max

0≤k≤⌊ τεN
T ⌋

|wN (tk)− vℓ(tk)| ≤
η

2
.

Furthermore
vℓ(τε) ≤ v

1
T −ε(τε) < −η,

the function vℓ is continuous on [0, τε] and tN =

⌊
τεN

T

⌋
T

N
−→

N→+∞
τε. So, for N big enough,

vℓ(tN ) < −3η

4
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Thus

wN (tN ) = wN (tN )− vℓ(tN ) + vℓ(tN ) ≤ max
0≤k≤⌊ τε

T ⌋
|wN (tk)− vℓ(tk)|+ vℓ(tN ) <

η

2
− 3η

4
= −η

4
< 0.

But, after extraction, the sequence wN (tk) satisfies the same Euler scheme than uN (tk), so, after extrac-
tion,

uN
(
tN
)
= wN

(
tN
)
< 0.

However the scheme uN (tk) cannot be negative according to the lemma 9. We obtain a contradiction,
therefore

lim inf
N→+∞

uN (t0) ≥
1

T
.

Lemma 12. The superior limit in t0 = 0 satisfies

lim sup
N→+∞

uN (t0) ≤
1

T
.

Proof. We again prove this result by contradiction. We assume

lim sup
N→+∞

uN (t0) >
1

T
.

Then, for all ε > 0, there exists a subsequence of (uN (t0))N∈N, which we note (UN )N∈N, and N0 ∈ N
such that

lim
N→+∞

UN = ℓ >
1

T
+ 2ε, ∀N ≥ N0, UN ≥ 1

T
+ ε.

But, for a >
1

T
, the differential equation (23) does not admit solution on [0, T ) (Lemma 4). More

precisely, the solution is defined on [0, τ) with τ defined like the first time in [0, T ) such that

1

Ta− 1
= T

∫ τ

0

eλs

(T − s)2
ds.

If a ≥ 1

T
+ ε, then we have

T

T − τ
− 1 = T

∫ τ

0

1

(T − s)2
ds ≤ T

∫ τ

0

eλs

(T − s)2
ds =

1

Ta− 1
≤ 1

εT
.

So
τ ≤ T

1 + εT
.

In other words, each solution va of the differential equation (23) which satisfies va(0) = a ≥ 1

T
+ ε,

explodes before the time
T

1 + εT
. Now we consider the Euler scheme


wN (t0) = a ≥ 1

T
+ ε

wN (tk+1) = wN (tk) + hN

(
λwN (tk) + wN (tk)|wN (tk)| − λ

1

T − tk

)
,

for 0 ≤ tk ≤ T

1 + εT
i.e. k ∈

s
0,

⌊
N

1 + εT

⌋{
. On this interval we have

0 ≤ 1

T − tk
≤ 1 + ε

εT 2
< +∞.
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Let us now prove by recursion that for N larger than some constant depending on T and ε, and for
any k

wN (tk) ≥
1

T − tk
+ ε.

This property holds for k = 0. If the property is satisfied for k then

wN (tk+1) = wN (tk) + hN

(
λwN (tk) + wN (tk)

2 − λ
1

T − tk

)
≥ wN (tk) + hNwN (tk)

2 + hNλε ≥ wN (tk) + hNwN (tk)
2.

But
1

T − tk+1
=

1

T − tk − hN
=

1

T − tk
+

hN
(T − tk)(T − tk − hN )

.

So

wN (tk+1)−
1

T − tk+1
≥ wN (tk)−

1

T − tk
+ hN

(
wN (tk)

2 − 1

(T − tk)(T − tk − hN )

)
≥ ε+ hN

(
ε2 +

2ε

T − tk
+

1

(T − tk)2
− 1

(T − tk)(T − tk − hN )

)
= ε+ hN

(
ε2 +

2ε

T − tk
− hN

(T − tk)2(T − tk − hN )

)
,

with
1

(T − tk)2(T − tk − hN )
=

1

(T − tk)2
1

T − tk+1
≤ (1 + ε)2

ε2T 4

1 + ε

εT 2
=

(1 + ε)3

ε3T 6
.

So, for N larger than ε5T 5/(1 + ε)3

wN (tk+1)−
1

T − tk+1
≥ ε+ hN

(
ε2 +

2ε

T − tk
− hN

(1 + ε)3

ε3T 6

)
≥ ε.

Hence the property is proved for any k and the recurrence formula can be rewritten

wn(tk+1) = wN (tk) + hNwN (tk)
2 + hNλ

(
wN (tk)−

1

T − tk

)
≥ wN (tk) + hNwN (tk)

2.

If we define wN (tk) the sequence defined by
wN (t0) =

1

T
+ ε

wN (tk+1) = wN (tk) + hNwN (tk)|wN (tk)|

this sequence is well-defined, non-negative and non-decreasing. From the previous property of wN (tk), a
direct comparison for the schemes leads to:

wN (tk) ≤ wN (tk).

We consider the sequence

yN (tk) =
1

wN (tk)
.

So

yN (tk+1) =
1

wN (tk+1)
=

1

wN (tk) + hNwN (tk)2
=

1

1

yN (tk)
+

hN
yN (tk)2

=
yN (tk)

1 +
hN

yN (tk)

,

and
yN (t0) =

1

wN (t0)
=

1
1

T
+ ε

=
T

1 + εT
.
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Assume that for the biggest k : k̂ =

⌊
N

1 + εT

⌋
,

yN (tk̂) > 2
√
T
√
hN .

So, since the sequence yN (tk) is non-increasing in k, we have

yN (t0) ≥ ... ≥ yN (tk) ≥ yN (tk+1) ≥ ... ≥ yN (tk̂) > 2
√
T
√
hN .

Thus, from the inequality
1

1 + u
≤ 1− u+ u2,

yN (tk+1) = yN (tk)
1

1 +
hN

yN (tk)

≤ yN (tk)

(
1− hN

yN (tk)
+

h2N
yN (tk)2

)

= yN (tk)− hN +
h2N

yN (tk)
< yN (tk)− hN +

1

2
√
T
h

3
2

N .

So, by successive iterations,

yN (tk) < yN (t0)− khN + k
1

2
√
T
h

3
2

N

=
T

1 + εT
− k

T

N
+ k

T

N

1

2
√
T

√
hN .

But, for k̂ ≥ N

1 + εT
− 1, we have

T

1 + εT
− k̂

T

N
≤ T

1 + εT
− T

1 + εT
+
T

N
=
T

N
.

Hence with k̂ ≤ N

yN (tk̂) <
T

N
+ k̂

T

N

1

2
√
T

√
hN ≤ T

N
+

T

2
√
T

√
hN =

√
hN

(√
T√
N

+

√
T

2

)
≤ 2

√
T
√
hN

what contradicts the assumption. Therefore

0 ≤ yN (tk̂) ≤ 2
√
T
√
hN = 2T

1√
N
.

Thus
wN (tk̂) ≥ wN (tk̂) =

1

yN (tk̂)
≥ 1

2T

√
N.

Now if we consider a = ℓ >
1

T
+ 2ε >

1

T
+ ε, we can deduce, after extraction,

uN (tk̂) ≥
1

2T

√
N,

what cannot be according to the lemma 9. Therefore we have

lim sup
N→+∞

uN (t0) ≤
1

T
.

As a consequence of the two previous lemmata, we state

Proposition 10. We have the limit in t0 = 0 :

lim
N→+∞

uN (t0) =
1

T
.
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Finally we obtain Theorem 5 by using the convergence results about the forward Euler scheme.

Proof of Theorem 5. We consider the forward numerical scheme
wN (tk+1) = wN (tk) + hN

(
λwN (tk) + wN (tk)|wN (tk)| − λ

1

T − tk

)
wN (t0) = uN (t0)

,

associated to the differential equation
w′(t) = λw(t) + w(t)|w(t)| − λ

1

T − t
= f(t, w(t)), 0 ≤ t < T

w(0) = uN (t0).

To obtain the exact solution, we have to distinguish if uN (t0) <
1

T
, uN (t0) >

1

T
or uN (t0) =

1

T
. The

last case is direct because, in that case, the exact solution is wN (t) =
1

T − t
, 0 ≤ t < T . In a first time,

if
uN (t0) <

1

T
,

then the solution is given by (24):

wN (t) =
1

T − t

1− 1

T − t

T (1− uN (t0)T )
e−λt + (T − t)e−λt

∫ t

0

eλs

(T − s)2
ds

 .

Let us prove that for N large enough (depending on the convergence proved in the previous proposition),
wN is non-negative and bounded from above on [0, αT ]. Indeed with an integration by part, we obtain

wN (t) =
1

T − t

1− 1

T − t

T (1− uN (t0)T )
e−λt + 1− (T − t)e−λt

T
− (T − t)λe−λt

∫ t

0

eλs

T − s
ds

 .

Therefore the function wN is positive until the first time t = t(N) such that

T − t

T (1− uN (t0)T )
e−λt − (T − t)e−λt

T
− (T − t)λe−λt

∫ t

0

eλs

T − s
ds = 0,

which is equivalent to
1

1

uN (t0)
− T

=

∫ t

0

eλs

T − s
ds.

Thus
1

1

uN (t0)
− T

=

∫ t

0

eλs

T − s
ds < eλT

∫ t

0

ds

T − s
= eλT ln

(
T

T − t

)
,

and we deduce that

t(N) > T

1− exp

− e−λT

1

uN (t0)
− T


 −→

N→+∞
T,

because uN (t0) −→
N→+∞

1

T
. Therefore for N large enough, the time t(N) is greater than αT , that wN is

positive on [0, αT ]. Furthermore the function wN is bounded from above on [0, αT ] by

Cα =
1

T − αT
,
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because
wN (t) ≤ 1

T − t
, 0 ≤ t ≤ αT.

Now if uN (t0) >
1

T
, then the exact solution wN is still given by (24), is non-decreasing, but is only

defined on [0, τ) with τ defined by

1

uN (t0)−
1

T

=

∫ τ

0

eλs

(T − s)2
ds.

But uN (t0) −→
N→+∞

1

T
, so

1

uN (t0)−
1

T

−→
N→+∞

+∞, thus, for N big enough, we have τ > αT . So the

function wN is defined and continuous on [0, αT ] and bounded from above by, for ε > 0 and N large

enough such that uN (t0) <
1

T
+ 1

Cα,N = wN (αT )

=
1

T − αT

1− 1

T − αT

T (1− uN (t0)T )
e−λαT + (T − αT )e−λαT

∫ αT

0

eλs

(T − s)2
ds



≤ 1

T − αT

1− 1

−(1− α)e−λαT + (T − αT )e−λαT

∫ αT

0

eλs

(T − s)2
ds

 =: Cα.

Therefore, in each case, the solution is non-negative and bounded from above by some constant Cα on
[0, αT ].

We can consider the function ψ defined by

ψ(w) =

 λw si w < 0
λw + w2 si 0 ≤ w ≤ Cα

(λ+ 2Cα)w − C2
α si w > Cα.

ψ is of class C1 on R and Lipschitz continuous with a Lipschitz constant equal to λ+ 2Cα. We consider
the function f̃ defined by

f̃(t, w) = ψ(w)− λ
1

T − t
, w ∈ R, 0 ≤ t < T.

This function is equal to f on [0, T ) × [0, C − α] and inherits the regularity property of ψ w.r.t. w.
Therefore, with the previous inequalities, the function wN satisfies the differential equation w′(t) = f̃(t, w(t)), 0 ≤ t < T

w(0) = uN (t0)

with driver f̃ . So, according to [6] or [12], there exists a constant C such that

max
0≤k≤⌊αN⌋

|wN (tk)− wN (tk)| ≤ C(|wN (t0)− wN (t0)︸ ︷︷ ︸
=uN (t0)

|+ ThN ) = CThN .

This constant C depends on T , λ and α, but not on N . A direct computation shows that C can be
chosen equal to

eλ+2Cα

[
λ

1

T 2(1− α)2
+ λ2

1

T (1− α)
+

(
λ2 + 2λ

1

T (1− α)

)
Cα + 3λC2

α + 2λC3
α

]
,
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which shows the dependence w.r.t. α. Therefore, since uN (tk) = wN (tk) by definition of the numerical
schemes satisfied by these two sequences,

max
0≤k≤⌊αN⌋

|uN (tk)− wN (tk)| ≤ CThN −→
N→+∞

0.

Therefore all that remains is to study the second term in the inequality

max
0≤k≤⌊αN⌋

|uN (tk)− u(tk)| ≤ max
0≤k≤⌊αN⌋

|uN (tk)− wN (tk)|+ max
0≤k≤⌊αN⌋

|wN (tk)− u(tk)|,

with
u(t) =

1

T − t
, 0 ≤ t < T.

We have

|wN (tk)− u(tk)| =
1

T − tk
T (1− uN (t0)T )

e−λtk + (T − tk)e
−λtk

∫ tk

0

eλs

(T − s)2
ds

≤ 1
T − tk

T (1− uN (t0)T )
e−λtk

=
T (1− uN (t0)T )e

λtk

T − tk

≤ T (1− uN (t0)T )e
−λt⌊αN⌋

T − t⌊αN⌋
.

So

max
0≤k≤⌊αN⌋

|wN (tk)− u(tk)| ≤
T (1− uN (t0)T )e

−λt⌊αN⌋

T − t⌊αN⌋
−→

N→+∞
0,

because
uN (t0) −→

N→+∞

1

T
and t⌊αN⌋ = ⌊αN⌋ T

N
−→

N→+∞
αT < T.

Finally we have shown
max

0≤k≤⌊αN⌋
|uN (tk)− u(tk)| −→

N→+∞
0

which achieves the proof of Theorem 5.
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