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Abstract 

Adopting land management practices that increase the stock of soil organic carbon 

(SOC) in croplands is widely promoted as a win-win strategy to enhance soil health and 

mitigate climate change. In this context, the definition of reference SOC content and 

stock values is needed to provide reliable targets to farmers, policymakers, and stake-

holders. In this study, we used the LUCAS dataset to compare different methods for 

evaluating reference SOC content and stock values in European croplands topsoils (0-
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20 cm depth). Methods gave generally similar estimates although being built on very 

different assumptions. In the absence of an objective criterion to establish which ap-

proach is the most suitable to determine SOC reference values, we propose an ensem-

ble modelling approach that consists in extracting the estimates using different relevant 

methods and retaining the median value among them. Interestingly, this approach led 

us to select values from the three different approaches with similar frequencies. Using 

estimated bulk density values, we obtained a first rough estimate of 3.5 Gt C of SOC 

storage potential in the cropland topsoils that we interpret as a long-term aspirational 

target that would be reachable only under extreme changes in agricultural practices. 

The use of additional methods in the ensemble modelling approach and more valid sta-

tistical spatial estimates may further refine our approach designed for the estimation of 

SOC reference values for croplands. 

Keywords: Soil organic carbon, carbon storage, climate mitigation, LUCAS dataset, da-

ta-driven modelling, ensemble modelling. 

1. Introduction 

Soil organic matter plays a fundamental role in providing ecosystem services such as 

biomass production and flood and erosion mitigation (Comerford et al., 2013; Johannes 

et al., 2017). Moreover, soil organic carbon (SOC), the main component of soil organic 

matter, is one of the main global carbon pools (Lal, 2004a). However, the conversion of 

natural vegetation to agricultural land has caused a depletion in SOC stock (tons of car-

bon per unit surface), threatening ecosystem functioning, and causing greenhouse gas 

emissions (Lal, 2004a; Lal, 2004b; Macías and Camps Arbestain, 2010; Poeplau et al., 

2011; Dutta and Dutta, 2016; Sanderman et al., 2017; Garnier et al., 2022). Accordingly, 
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increasing SOC content (grams of carbon per kilogram of fine earth) in soils is widely 

promoted as a means to improve soil health and mitigate climate change (Lal, 2004b; 

Bispo et al., 2017; Shukla et al., 2019; Powlson et al., 2022) and programs encouraging 

carbon sequestration in soils are being developed (Chabbi et al., 2017; IPBES, 2018; 

Shukla et al., 2019; Montanarella and Panagos, 2021; Oldfield et al., 2022). As a con-

sequence, the definition of reference SOC content values is essential to provide reliable 

targets to farmers, policymakers and stakeholders. 

Reference SOC content values may depend on the scope of the specific program or ini-

tiative: preserving soil health or soil-based ecosystem services might require minimal 

SOC content values that ensure specific soil functions (Bonfante et al., 2020; Wood and 

Blankinship, 2022; Loveland, 2023); on the other hand, as a first approximation, we can 

hypothesise that the higher the soil carbon content is the better for climate mitigation 

and soil health, as long as SOC storing practices do not generate enhanced emissions 

of greenhouse gases (Powlson et al., 2011). Thus, SOC targets for climate mitigation do 

not necessarily coincide with targets for soil health. Moreover, determining reference 

values requires defining under what conditions they should be reached (Smith, 2004). 

Some approaches aim at estimating maximal reachable SOC contents (Hassink, 1997; 

Chen, Arrouays, Angers, Martin and Walter, 2019; Georgiou et al., 2022), while others 

add constraints, for example restricting to SOC contents actually observed in field 

measurements (Schneider, Poeplau and Don, 2021; Drexler et al., 2022; Guillaume et 

al., 2022) or keeping similar land cover (Chen, Arrouays, Angers, Chenu et al., 2019). 

Additionally, while the necessity of considering the influence of climatic and pedological 

variables on SOC storage potentials is generally recognized in these studies, they high-
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ly differ in the set of parameters and how they are employed. 

As a consequence, SOC storage potential estimates ΔSOC, calculated as the differ-

ence between a reference value and the actual SOC content of a soil and expressed as 

stocks or concentrations differences, depend on several modelling choices, namely the 

algorithm(s) used for the estimation of the reference values and the choice of a refer-

ence system, the pedoclimatic variables that are taken into consideration, and the con-

straints under which the SOC content is expected to evolve. 

The goal of this study is to explore, for the first time and on a very large dataset of more 

than 20000 measurements (LUCAS dataset, Orgiazzi et al., 2018), the consequences of 

these modelling choices on the determination of SOC reference values for croplands 

topsoils (0-20 cm depth) of the European Union (EU27) and the United Kingdom. To 

this goal, we compared the estimates resulting from three modelling approaches: (i) a 

proposed novel method that uses SOC contents in natural systems as references for 

given pedoclimates; (ii) the data-driven reciprocal modelling approach developed by 

Schneider, Poeplau and Don et al. (2021), that estimates changes in SOC content upon 

conversion to grassland (Schneider, Poeplau and Don, 2021); and (iii) the carbon land-

scape zones approach developed by Chen et al. (2019), that uses best-performing 

croplands in given pedoclimates and for given net primary production levels as refer-

ences (Chen, Arrouays, Angers, Chenu et al., 2019). We compared both the SOC ref-

erence values obtained with the different models and the resulting ΔSOC. We then 

combined the three methods using an ensemble modelling framework. The ensemble 

modelling framework allows to seek consensus and mitigate local over- or under-

estimations from single models. 
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2. Methods 

2.1 Data 

2.1.1 Soil data 

Soil data (0-20cm) were extracted from the LUCAS Topsoil dataset (EUROSTAT, 2009; 

EUROSTAT, 2012; European Commission, 2013; ESDAC, 2013; EUROSTAT, 2015; 

ESDAC, 2020). Specifically, we used four subsets: 

● Dataset n. 1 - LUCAS 2009 and 2012: topsoil data and land cover data of mineral 

soils (SOC < 120 gC kg-1) with cropland, grassland, or woodland land cover 

(15251 sites). Sites were sampled in 2009, apart from sites in Romania, Bulgaria, 

Malta, and Cyprus that were sampled in 2012. 

● Dataset n. 2 - LUCAS 2015: topsoil data and land cover data of mineral soils 

(SOC < 120 gC kg-1) with cropland, grassland, or woodland land cover that were 

also sampled in LUCAS 2009/12 (15251 sites). 

● Dataset n. 3 - LUCAS croplands: croplands of dataset n. 2 that were also 

croplands in dataset n. 1. (7324 sites). 

● Dataset n. 3bis : subset of dataset n. 3 including only cropland sites that fell in 

the predictor space of the "data-driven reciprocal modelling" model (see Section 

2.3) as described by Schneider, Poeplau and Don (2021) and for which net pri-

mary production data could be extracted (see Section 2.1.3) (6777 sites). 

We used SOC content measurements from LUCAS 2015 and texture measurements 

from LUCAS 2009/12, because the texture was not re-measured in the second LUCAS 

campaign for resampled sites (European Commission, 2020). The texture was meas-

ured using laser diffraction in LUCAS 2015 instead of sieving and sedimentation used in 
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LUCAS 2009/12 (European Commission, 2020). To ensure a homogeneous dataset, we 

decided to use only texture data from the LUCAS 2009/12, i.e. we discarded sites that 

were sampled in the LUCAS 2015 campaign only. 

LUCAS data are openly available in ESDAC and Eurostat at the following urls. LUCAS 

2009/12 Topsoil (ESDAC, 2013): https://esdac.jrc.ec.europa.eu/content/lucas-2009-

topsoil-data; LUCAS 2015 Topsoil (ESDAC, 2020): 

https://esdac.jrc.ec.europa.eu/content/lucas2015-topsoil-data; LUCAS 2009 land cover 

data (EUROSTAT, 2009): https://ec.europa.eu/eurostat/web/lucas/data/primary-

data/2009; LUCAS 2012 land cover data (EUROSTAT, 2012): 

https://ec.europa.eu/eurostat/web/lucas/data/primary-data/2012; LUCAS 2015 land 

cover data (EUROSTAT, 2015): https://ec.europa.eu/eurostat/web/lucas/data/primary-

data/2015. 

2.1.3 Climate data 

Climate data at the LUCAS sites were extracted from the Climatic Research Unit da-

taset (Harris et al., 2020), available at 

https://catalogue.ceda.ac.uk/uuid/89e1e34ec3554dc98594a5732622bce9 (last ac-

cessed 6th October 2022). Specifically, the data that we extracted were the following: 

- Mean annual temperature: average over 30 years (1985 to 2015); 

- Standard deviation of monthly average temperature over the year: average over 

30 years (1985 to 2015); 

- Total annual precipitation: average over 30 years (1985 to 2015); 

- Aridity index: difference between the potential evapotranspiration and the total 

annual precipitation, average over 30 years (1985 to 2015); 
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- Mean monthly temperature: average over 10 years (2005 to 2015); 

- Mean monthly precipitation: average over 10 years (2005 to 2015); 

- Monthly potential evapotranspiration: average over 10 years (2005 to 2015). 

Monthly data were averaged over 10 years because they were used in the "carbon 

landscape zones" method together with net primary production data extracted over 10 

years. 

2.1.3 Net primary production data 

Net primary production (NPP) data at 8974 LUCAS 2015 croplands sites were extracted 

from the MODIS/Terra MOD17A2H dataset (Running et al., 2015). The data were ac-

cessed using the Google Earth Engine, product MOD17A2H 

(https://developers.google.com/earth-

engine/datasets/catalog/MODIS_006_MOD17A2H#description, last accessed 6th Octo-

ber 2022). For each month of the year, the monthly NPP was extracted as the mean 

daily NPP (from 8-days data covering the month) multiplied by the number of days in 

the month. Data were averaged over 10 years (2005 to 2015). By default, the NPP was 

extracted with a spatial resolution of 1 km. However, data could not be found for 105 

sites. For these points, we looked for data at an increasingly larger spatial resolution (2 

km: 64 sites, 3 km: 10 sites, 4 km: 6 sites). Data was not found for 25 sites. 

2.2 Conversion of soil organic carbon contents to stocks 

To ensure the comparability of the results across different methods and with literature 

data, we have expressed reference values and SOC storage potentials in terms of SOC 

content (grams of organic carbon per kilogram of fine earth, gC kg-1) and in terms of 

SOC stock (tons of organic carbon per hectare, Mg ha-1). 
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The SOC content values and the reference values SOCref expressed in gC kg-1 were 

converted to SOC stock values (Mg ha-1) using the formula in eq. 1 proposed by  

Schneider, Poeplau and Don. (2021) and Lugato, Panagos, Bampa et al. (2014): 

𝑆𝑂𝐶𝑠𝑡𝑜𝑐𝑘 = (𝑆𝑂𝐶𝑐𝑜𝑛𝑡𝑒𝑛𝑡 10⁄ ) ∗ 𝐵𝐷 ∗ 𝐷𝑒𝑝𝑡ℎ ∗ (1 − 𝐶𝑜𝑎𝑟𝑠𝑒𝑣𝑜𝑙𝑢𝑚𝑒𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛) (1) 

where Depth = 20cm, 𝑆𝑂𝐶𝑐𝑜𝑛𝑡𝑒𝑛𝑡 is expressed in gC kg-1, 𝐶𝑜𝑎𝑟𝑠𝑒𝑣𝑜𝑙𝑢𝑚𝑒𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 is the vol-

ume fraction of coarse fragments (unitless), and BD is the bulk density of the fine earth, 

expressed in g cm-3. The BD was estimated using the pedotransfer function in eq. 2 

proposed by Hollis et al. (2012): 

𝐵𝐷 = 0.80806 + 0.823844 ∗ 𝑒−0.27993×(𝑆𝑂𝐶𝑐𝑜𝑛𝑡𝑒𝑛𝑡 10⁄ )+0.0014065∗𝑠𝑎𝑛𝑑−0.0010299∗𝑐𝑙𝑎𝑦 (2) 

where sand and clay are the mass percentage of sand and clay, respectively, and 

𝑆𝑂𝐶𝑐𝑜𝑛𝑡𝑒𝑛𝑡 is expressed in gC kg-1. This function fitted the bulk density of 333 cultivated 

topsoils with a root mean square error of 0.13 g cm-3 in the original study (Hollis et al., 

2012). 

The volume fraction of coarse fragments was estimated from the mass fraction of 

coarse fragments available in the LUCAS dataset using eq. 3 (Pacini et al., 2023): 

𝐶𝑜𝑎𝑟𝑠𝑒𝑣𝑜𝑙𝑢𝑚𝑒𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 =
𝐶𝑜𝑎𝑟𝑠𝑒𝑚𝑎𝑠𝑠𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛

𝜌𝑐𝑜𝑎𝑟𝑠𝑒
𝐵𝐷 + (1 −

𝜌𝑐𝑜𝑎𝑟𝑠𝑒
𝐵𝐷 )𝐶𝑜𝑎𝑟𝑠𝑒𝑚𝑎𝑠𝑠𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛

 (3) 

where 𝐶𝑜𝑎𝑟𝑠𝑒𝑚𝑎𝑠𝑠𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 is the mass fraction of coarse fragments (unitless). We as-

sumed a constant density 𝜌𝑐𝑜𝑎𝑟𝑠𝑒 = 2.6 g cm-3 for the coarse fragments. 

2.3 Estimating soil organic carbon content reference values 

2.3.1 Natural references per pedoclimate 

The "natural reference per pedoclimate" is a novel approach based on pedoclimatic 

contextualisation of SOC content values. Pedoclimatic contextualization was performed 

by clustering the LUCAS 2015 dataset (dataset n. 2) according to its pedoclimatic fea-
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tures.  

As pedological features, we selected the clay and silt contents and the carbonate con-

tent. As climate features we selected the mean annual temperature, the standard devia-

tion of monthly average temperature over the year, the total annual precipitation, and 

the aridity index (difference between the potential evapotranspiration and the total an-

nual precipitation). These pedoclimatic features have been selected because they are 

known to influence the SOC content(Roussel and Bourmeau, 2001; Arrouays et al., 

2006; Fernández-Ugalde and Tóth, 2017; Chenu et al., 2019; Büchi et al., 2022) and, as 

a first approximation, are independent of human activity. The goal is to isolate the fac-

tors that influence the SOC content regardless of the land management practices so 

that “intrinsic” SOC potentials independent of the human activity can be estimated. Be-

cause of this reason, the soil pH and C:N ratio were not retained as predictors, even 

though they influence the SOC content (Rasmussen et al., 2018). 

The clustering was performed in two parallel steps using the Python library Scikit-learn 

(version 1.1.1) (Pedregosa et al., 2011). First, sites were clustered according to the four 

climatic features: mean annual temperature, standard deviation of monthly average 

temperature over the year, total annual precipitation, and aridity index. Second, sites 

were clustered according to their texture (clay and silt content) and carbonate content. 

Then, the two clustering results are combined in a unique label "x-y" with x being the 

climate label and y the soil label of the site (as en example, pedoclimatic cluster 2-0 

means climate cluster n. 2 and soil cluster n. 0). The combined label defines the pedo-

climatic cluster of a site. Performing two clustering procedures in parallel has the ad-

vantage of providing a higher interpretability of the results, because it allows to inde-
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pendently distinguish the type of climate and the type of soil of a given site. 

The clustering algorithm (Gaussian mixture or agglomerative clustering) and the number 

of clusters for each of the clustering procedures were chosen according to the following 

criteria: 

- interpretability: not too many clusters to ensure enough discrimination between 

the clusters and thus the possibility to characterise them; 

- representativity of the clusters: not too many clusters to limit the number of small-

population clusters, and choose algorithms that promote homogeneous cluster 

populations; 

- clustering performance: high silhouette score and low Davies Bouldin score for 

agglomerative clustering, low Bayesian information criterion (BIC score) for 

Gaussian mixture; 

- geographic definition: for climate clustering only, ensure that the clusters are ge-

ographically well-defined (visual examination). 

We discarded agglomerative clustering in the climate clustering step because it resulted 

in Davies Bouldin scores near 1, meaning that clusters are similar one to another. In-

stead, we used the Gaussian mixture clustering algorithm, with full covariance type and 

fixing the number of clusters to eleven. The BIC score decreased with the number of 

clusters in the range we tested (3 to 19 clusters). However, we decided to limit the 

number of clusters to reduce the total number of pedoclimatic clusters after combination 

with the soil clustering. We guided the choice of the number of clusters by visually 

checking that climatic clusters were not highly dispersed geographically. Supplementary 

Figure 1A reports the climate clusters obtained using 10 to 12 clusters with the Gaussi-
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an mixture algorithm and using 11 clusters with the agglomerative clustering algorithm: 

we selected the Gaussian mixture algorithm with 11 clusters because it provides the 

most well-defined clusters. The resulting model outputs a "climate-label" for a given site, 

which is an integer between 0 and 10. 

For the soil clustering step, we selected the agglomerative clustering algorithm, with 

ward linkage and fixing the number of clusters to four. The number of clusters was set 

to four because the Davies Bouldin score was minimal with four clusters and the silhou-

ette score decreased for more than five clusters. The resulting model outputs a "soil-

label" for a given site, which is an integer between 0 and 3. We did not use Gaussian 

mixture clustering because it resulted in less well-defined clusters in terms of carbonate 

content and texture (compare Supplementary Figure 1B with Table 2 and Figure 2). 

After combining the climate and soil clustering results, 44 pedoclimatic clusters were 

defined, with 3 to 1659 different sites per cluster (clusters 5-0 and 4-1, respectively). 

As a first approximation, grasslands and woodlands can be considered as natural sys-

tems, where the SOC content has been much less affected by human activity compared 

to croplands (Poeplau et al., 2011; Sanderman et al, 2017). Thus, they represent a ref-

erence of reachable SOC content values in a given pedoclimatic context under natural 

vegetation. Accordingly, a single SOC reference value expressed as SOC content 

(SOCref) was defined per pedoclimatic cluster based on the distribution of SOC content 

in grasslands and woodlands in that cluster. For each pedoclimatic cluster, we selected 

grasslands and woodlands in dataset n. 2 that belong to the cluster and we tested sev-

eral percentiles of SOC content as a potential SOCref value. We tested the percentiles 

p = 0.4, 0.45, 0.5, and 0.55, i.e. the SOCref of a pedoclimatic cluster is the minimal SOC 
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of the best 60% (55%, 50%, 45% respectively) grasslands and woodlands in the pedo-

climatic cluster. Following the procedure proposed by Chen, Arrouays, Anger, Chenu et 

al. (2019)  to estimate the confidence intervals for the SOCref values, we performed 

bootstrapping: the percentile of each cluster was calculated after sampling 85% of the 

grasslands and woodland with replacement. The procedure was repeated 100 times 

and the SOCref value for the pedoclimatic cluster was defined as the mean of the 100 

percentile values of SOC. 

Additionally, we used the following procedure to populate pedoclimatic clusters contain-

ing fewer than 30 grasslands and woodlands prior to random sampling. First, a K-

nearest neighbours model was trained using all grasslands and woodlands and based 

on the pedoclimatic features. We used the implementation of the Python library Scikit-

learn (version 1.1.1) (Pedregosa et al., 2011). The model takes the pedoclimatic fea-

tures of a site as input and outputs the K identifiers of the grassland or woodland sites 

that are the closest to the input site in the features space, as well as the corresponding 

K distances in the features space. Then, we set K=1 and extracted the first neighbours 

of all the sites that are already in the cluster. These are candidate sites to populate the 

cluster. The candidate sites were sorted according to their distances from the sites al-

ready in the cluster. If the cluster initially contained N sites, then 30-N sites had to be 

added and Nc candidate sites (with Nc ≤ N) had been extracted. If Nc ≥ 30-N, then the 

first 30-N candidates were added to the cluster. Otherwise, all Nc sites were added to 

the cluster and the procedure was repeated with K=2 (second neighbours), K=3 (third 

neighbours), etc., until the populated cluster contained 30 sites. Seventeen pedoclimatic 

clusters over 44 were populated according to this procedure (0-3, 1-0, 2-0, 2-3, 3-0, 3-3, 
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4-0, 4-3, 5-0, 5-3, 6-0, 6-3, 7-0, 7-3, 8-0, 8-3 and 9-0). 

We converted the SOCref values from content to stock using the formula described in 

section 2.2. 

Finally, for each site in the LUCAS 2015 croplands database (database n. 3), we ex-

tracted the pedoclimatic cluster to which it belongs and calculated the SOC storage po-

tential as the difference between the SOCref of the pedoclimatic cluster and actual SOC 

content of the site. 

2.3.2 Data-driven reciprocal modelling 

The data-driven reciprocal modelling method in its original implementation is described 

by Schneider, Poeplau and Don (2021) and applied to the prediction of SOC stock stor-

age potentials of LUCAS 2015 croplands if they were converted to grasslands. In sum-

mary, the method consists of two steps. First, a random forest model that predicts the 

SOC stock from pedoclimatic features is trained on LUCAS 2015 grasslands. Then, the 

trained model is used to predict SOC stock in croplands that belong to the model's do-

main of applicability. It is estimated that the residuals of the prediction, i.e. the difference 

between the predicted SOC stock and the actual SOC stock, represent the potential 

change in SOC stock that would be observed if the cropland site were converted to 

grassland. Thus, the predicted "grassland-equivalent" SOC stocks can be interpreted as 

reference values SOCref for the LUCAS croplands that take into account the pedocli-

matic features of the site. 

In their case study, Schneider, Poeplau and Don (2021) used the following pedoclimatic 

features as predictors of SOC stocks: soil texture, pH, C:N ratio, carbonates content, 

soil group, elevation, slope, orientation of the slope (called "aspect" in the LUCAS da-
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taset), and climate data. In this study, to allow for comparison with the "natural refer-

ences per pedoclimate” method, we trained a modified version of the model. The first 

difference is that we removed the pH and C:N ratio from the list of predictors. The sec-

ond difference is that we trained the model for the prediction of SOC contents instead of 

SOC stocks and only then we converted the observed SOC contents and the predicted 

SOCref values into stocks. 

2.3.3 Carbon landscape zones 

In 2019, Chen et al. proposed a method to estimate the SOC storage potential of 

French croplands based on the concept of carbon landscape zones (Chen, Arrouays, 

Angers, Chenu et al., 2019). In summary, the method consists of grouping cropland 

sites into carbon landscape zones based on their pedoclimatic features (clay content 

and climatic decomposition index) and on theNPP. Then, a reference SOC stock value, 

SOCref, is defined for each carbon landscape zone as a specific percentile of the ob-

served SOC stock values among croplands that belong to the carbon landscape zone. 

We tested four percentiles: 0.8, 0.85, 0.9, or 0.95, i.e. the SOCref of a carbon landscape 

zone is the minimal SOC of the best 20% (15%, 10%, 5%, respectively) croplands in the 

carbon landscape zone. As in the "natural references per pedoclimate" method, the 

SOCref values are calculated by averaging over 100 random bootstrapping procedures. 

The most important difference with respect to the "natural references per pedoclimate" 

and the "data-driven reciprocal modelling" methods is that the SOCref values are esti-

mated relative to other croplands and not to natural systems. Moreover, NPP is used as 

a feature, differently from the other methods. 

The method was originally developed for estimating SOC storage potential of croplands 
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at the national scale in France (Chen, Arrouays, Angers, Chenu et al., 2019), using the 

French soil monitoring network (RMQS) dataset (Jolivet et al., 2006). Here, we applied 

the same methodology to the LUCAS croplands dataset (database n. 3) with two differ-

ences. The first difference from the original methodology is that the clustering was per-

formed using pedoclimatic features and NPP extracted at the LUCAS cropland sites on-

ly and not over the whole territory of the EU27 and the United Kingdom. This choice 

was made for two reasons: first, to reduce the computational effort without reducing the 

accuracy of the climatic and NPP data, and second, to use only measured texture data 

and not spatial predictions. The second difference is that the SOCref values were ex-

tracted for each carbon landscape zone from the SOC content statistics and not from 

the SOC stock statistics. Only then, the conversion to SOC stocks was performed. 

The number of carbon landscape zones was set to twenty to minimise the Bayesian in-

formation criterion (BIC) while keeping a minimal number of ten LUCAS croplands in 

each carbon landscape zone. The BIC values as a function of the number of carbon 

landscape zones are shown in Supplementary Figure 3A. 

2.4 Ensemble modelling 

We combined the "natural references per pedoclimate", "data-driven reciprocal model-

ling" and "carbon landscape zones" results using an ensemble modelling approach that 

consists in keeping the median estimate among the three, for each cropland site. 

2.5 Estimation of the cumulative soil organic carbon storage potential 

of European croplands 

We determined the median SOCref and then estimated the total SOC storage potential 

in croplands topsoils of the European Union and the United Kingdom by first computing 
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the median of the ΔSOC of all LUCAS sites per country, expressed in Mg ha-1, and sec-

ondly by multiplying it by the country’s croplands area and finally by summing the na-

tional estimates over the countries. The country croplands area data were obtained from 

Eurostat (Main farmland use by NUTS 2 regions, 

https://ec.europa.eu/eurostat/databrowser/view/EF_LUS_MAIN__custom_3779332/defa

ult/table?lang=en, last visited 7th November 2022). We used data from 2016 and 

summed the arable land and permanent crop areas. It should be noted that the median 

ΔSOC per country is not an unbiased estimate, because LUCAS sampling sites were 

not chosen using probability sampling (Teuling et al., 2021). Nevertheless, we used the 

median ΔSOC per country for simplicity. 

2.6 Correlation coefficients calculation 

We calculated the Spearman correlation coefficients between the estimates obtained 

using the three different approaches and between the estimates and the geographical 

coordinates of the sites using the Python library Scipy version 1.11.1. 

3. Results and Discussion 

3.1 Natural references per pedoclimate  

3.1.1 Pedoclimatic clusters 

The pedoclimatic clusters for the LUCAS dataset are shown in Figure 1A and the geo-

graphical regions to which the LUCAS sites of each pedoclimatic cluster belongs are 

reported in Table 1. Table 2 reports the carbonates content statistics and Figure 2 

shows the texture triangles of sites based on the soil cluster. From these distributions, 

at first order, the soil clusters correspond to calcareous soils (soil cluster n. 0), sandy 

soils (soil cluster n. 1), clay soils (soil cluster n. 3), and soils with average pedological 
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features (soil cluster n. 2) (Table 1). Using only four classes of soils results in a very 

rough pedological classification; however, this allows for populating all pedoclimatic 

clusters after combining the soil and climate labels. 

We found that the SOC contents distributions in the 0-20 cm depth are different across 

different pedoclimatic clusters and for the same land cover (cropland, grassland, or 

woodland) (Supplementary Figure 2A), supporting the need for the pedoclimatic contex-

tualization of SOC content measurements prior to the definition of reference SOC val-

ues. As an example, considering only clusters including at least 30 croplands, the low-

est values of SOC in croplands are found in the cluster 7-1 (sandy soils in central Spain, 

median SOC = 6 gC kg-1) and the highest values are found in cluster 5-3 (clay soils in 

Scandinavia, median SOC = 30 gC kg-1) (Table 1). This is consistent with highest ex-

pected SOC contents in clay soils (Martin et al., 2011; Poeplau et al., 2020) and in cold-

er climates (de Brogniez et al., 2014). 

We also found that none of the LUCAS croplands and only nine grasslands and two 

woodlands belonged to the cluster 2-3, that means that soil of type 3 is rare in the geo-

graphical region of the climate cluster 2 (Portugal, north of Spain, Brittany, Ireland, Scot-

land, or the west of England). This pedoclimatic cluster is discarded in the following. 

3.1.2 Estimation of soil organic carbon reference values 

For each pedoclimatic cluster, we defined a reference SOC value, SOCref, for 

croplands as a percentile of the observed SOC content among grasslands and wood-

lands. 

The percentile used to define the SOCref values should be low enough to take into ac-

count that the reduced carbon input in croplands compared to grasslands and wood-
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lands inhibits the possibility of reaching the highest SOC contents observed in natural 

systems (Powlson et al., 2022), i.e. the SOCref values should be reachable under 

cropland land cover. However, the percentile should also be high enough to discard 

young grasslands and woodlands that have recently been converted from croplands. 

We tested the percentiles p = 0.4, 0.45, 0.5, and 0.55 and we found that the corre-

sponding SOCref values do not diverge when the percentile is changed within this 

range (Supplementary Figure 3). We choose to use p = 0.5, i.e. the SOCref correspond-

ing to median SOC content values for grasslands and woodlands in a pedoclimatic clus-

ter. The choice of the percentile is necessarily arbitrary; however, using median values 

of grassland SOC contents as reference is consistent with the observation from long-

term experiments at Rothamsted Research (UK) that 40 to 70% of the SOC stock of 

topsoils (0-23 cm depth) under natural vegetation could be reached under arable land 

use undergoing well-chosen agricultural practices (Powlson et al., 2022). 

To allow for comparison with the "data-driven reciprocal modelling" and the "carbon 

landscape zones" approach, we have restricted the analysis to the dataset n.3bis. 

Figure 3A shows the SOCref values of the LUCAS cropland sites. As expected, there is 

a high variability depending on the pedoclimatic cluster, with SOCref ranging from 10 

gC kg-1 to 61 gC kg-1 (15 Mg ha-1 to 167 Mg ha-1 in terms of stock). The lowest SOCref 

values are observed in central Spain and the highest SOCref values are observed most-

ly in the United Kingdom, Ireland, Brittany (north-west of France), and Portugal. It 

should be noted that the SOCref values expressed as SOC stocks are not constant 

within a pedoclimatic cluster, because the conversion from SOC content to SOC stock 

is done based on the specific cropland site texture and SOC content. A high variability 
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of SOCref is consistent with the observation that SOC distributions are distinct across 

pedoclimatic clusters (Supplementary Figure 2A). 

We have estimated the ΔSOC of croplands as the difference between the reference 

value SOCref and the actual SOC. Figure 4A shows the results on LUCAS croplands, 

expressed both in terms of SOC content and in terms of SOC stock. Broad geographical 

trends are visible: lower SOC storage potentials are found in Spain and in eastern Eu-

rope and highest values are observed in France, Scotland, Portugal, and Italy. This may 

suggest that the pedoclimatic clustering did not allow to completely get rid of the influ-

ence of pedoclimatic variables on SOC storage and isolating the effect of agricultural 

practices on SOC storage. However, heterogeneous values of ΔSOC are observed 

within the pedoclimatic clusters and there is no trend of ΔSOC with latitude (Spearman 

correlation coefficient = 0.1). This reassures on the efficacy of the pedoclimatic cluster-

ing method in isolating the effect of agricultural practices. It is possible that the observed 

broad geographical trends reflect spatial patterns of adaption of beneficial or detrimental 

agricultural practices and, probably, of land-use history (Heikkinen et al., 2013; Van 

Wesemael et al., 2010). 

3.2 Data-driven reciprocal modelling 

We have extracted the reference values SOCref and the resulting ΔSOC using the "da-

ta-driven reciprocal modelling" for the LUCAS croplands dataset (dataset n. 3bis). The 

results are shown in Figure 3B (SOCref values) and Figure 4B (ΔSOC values), ex-

pressed in terms of SOC content and SOC stocks. Compared to the "natural references 

per pedoclimate" method, a clearer influence of the latitude on the reference values is 

observed: higher SOCref in northern Europe and lower values in southern Europe (Fig-
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ure 3B). This trend is found also for the ΔSOC values (Figure 4B). The existence of a 

trend of ΔSOC values with geographic coordinates may imply that the “Data-driven re-

ciprocal modeling” method is slightly less appropriate in normalizing for the effect of pe-

doclimatic variables on SOC storage compared to the pedoclimatic clustering, Never-

theless, it has the advantage of providing continuous estimates of SOCref values as a 

function of pedoclimatic variables, contrarily to the clustering approaches that assign the 

same SOCref value to all croplands that belong to the same cluster, raising issues for 

the estimations at the frontier between clusters (“natural references per pedoclimate” 

and “carbon landscape zones” approaches). 

3.3 Carbon landscape zones 

3.3.1 Carbon landscape zones 

The carbon landscape zones of the EU27 and United Kingdom are shown in Figure 1B. 

The frontiers among the carbon landscape zones resemble the frontiers among the cli-

mate clusters found with the pedoclimatic clustering method (Figure 1). However, some 

differences exist and are related to the fact that different pedoclimatic features are used 

and that the carbon landscape zones clustering also incorporates information on the 

NPP. 

Similarly to what was found for the pedoclimatic clusters, we found that the SOC con-

tent distributions of croplands of different carbon landscape zones are distinct (Supple-

mentary Figure 2B), supporting the ability of the "carbon landscape zones" method to 

contextualise SOC content measurements. Indeed, different distributions of SOC are 

expected under different pedoclimatic contexts (here one carbon landscape zone is one 

context). Nevertheless, some overlap among the distributions is observed, consistent 
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with a wide range of SOC values within the same carbon landscape zone depending on 

the adopted agricultural practices. 

3.3.2 Estimation of soil organic carbon reference values 

For each carbon landscape zone, we calculated a reference value SOCref as a specific 

percentile of the SOC content of croplands that belong to it. We tested four percentiles: 

0.8, 0.85, 0.9, or 0.95 (Supplementary Figure 3B). We found that the SOCref values di-

verge when the percentile is increased from 0.9 to 0.95, thus we fixed the percentile to 

0.9 and calculated the reference values SOCref for all carbon landscape zones ex-

pressed as SOC content. Then, the reference values SOCref were converted to stocks. 

The results are shown in Figure 3C. The resulting estimations of SOC storage potentials 

ΔSOC are shown in Figure 4C. Compared to the methods described above, the "carbon 

landscape zones" approach issues the most homogeneous estimations for the refer-

ence values across Europe, with the SOCref values ranging from 17 to 33 gC kg-1 (16 

Mg ha-1 to 107 Mg ha-1 in terms of stock). As a consequence, no ΔSOC values above 

30 gC kg-1 are observed. No clear pattern of ΔSOC is observed with latitude and longi-

tude. The fact that the SOCref estimates with this method, that uses croplands as refer-

ences, are more homogeneous compared to the values estimated with the other two 

methods, that use grasslands and woodlands as references, may be related to the fact 

that cropland soil are less heterogeneous than forest and grassland soils. Indeed, forest 

soils can be stonier and vary greatly even on a short spatial scale (Barré et al., 2017). 

 

3.4 Reachability of soil organic carbon reference values estimated 

with the novel "natural references per pedoclimate" method 
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We investigated the possibility for a cropland to reach the SOCref value of its pedocli-

matic cluster obtained using this method by assessing whether cropland sites with neg-

ative ΔSOC exist in each pedoclimatic cluster. We found that in dataset n. 3bis, 700 

croplands over 6777 have negative ΔSOC evaluated with the "natural references per 

pedoclimate" method and that only four pedoclimatic clusters, 2-0, 5-0, 8-3, and 10-3, 

do not contain any cropland with negative ΔSOC (Supplementary Figure 5A). This sug-

gests that the SOCref values estimated using the “natural references per predoclimate” 

are generally reachable in croplands. Nevertheless, even though we selected only sites 

that were classified as croplands in both LUCAS 2009 and LUCAS 2015 campaigns, we 

cannot discard the possibility that croplands with the highest SOC concentrations per 

pedoclimate correspond to sites that were under a different land cover before 2009.  

Determining under what conditions the SOCref values can be reached is impossible 

without historic data on land cover, agricultural practices, and associated SOC dynam-

ics. 

The pedoclimatic cluster 5-0 contains only one cropland and none of the approaches 

predict a positive ΔSOC for it, while the pedoclimatic clusters 2-0 and 8-3 contain only 

seven and eleven croplands, respectively, among which only one and four croplands, 

respectively, have negative predicted ΔSOC using the "data-driven reciprocal model-

ling" and the "carbon landscape zones" approaches (Supplementary Figure 5A). Thus, 

the absence of negative ΔSOC using "natural references per pedoclimate" in the clus-

ters 5-0, 2-0, and 8-3 is most probably due to the small number of occurrences of 

croplands in these pedoclimatic contexts. For comparison, the median number of 

croplands per pedoclimatic cluster is 79. Thus, the observed absence of negative  
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ΔSOC values is likely due to undersampling. 

The pedoclimatic cluster 10-3 contains 44 croplands of the dataset n. 3bis. The "data-

driven reciprocal modelling" and the "carbon landscape zones" approaches predict neg-

ative ΔSOC values in this pedoclimatic context for two and seven croplands, respective-

ly (Supplementary Figure 5A). The pedoclimatic cluster 10-3 includes clay soils mostly 

located in France, England, Belgium, the Netherlands, and west Germany (Table 1). 

Supplementary Table 1 reports the statistics for the SOC content in cluster 10-3 for 

croplands, grasslands, and woodlands. The statistics show that few cases of very high 

values of SOC content are found among the grasslands and woodlands in this cluster. 

Relatively high levels of SOC are expected because of the large clay fraction in soil 

cluster label 3 (Figure 2); however, these extreme cases may raise the reference value 

SOCref to a value (61 gC kg-1) that could be unreachable in croplands in the pedocli-

matic cluster 10-3. Nevertheless, the minimum ΔSOC observed in this cluster is 0.8 gC 

kg-1 suggesting that croplands in cluster 10-3 can actually reach such high reference 

values. It is possible that the "carbon landscape zones" method, that uses croplands as 

references, is more adapted for the specific case of the pedoclimatic cluster 10-3. 

3.5 Comparison of the soil organic carbon reference values estimated 

with the three methods 

The pairwise Spearman correlation coefficients between the SOCref values estimated 

with the  three methods are all between 0.4 and 0.6 (p-value < 10-6). Thus, all methods 

produce weakly but significantly correlated SOCref estimations. 

Some correlation between the SOCref values estimated with the different methods is 

expected from their common goal. The fact that the correlation is weak between the 
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"natural references per pedoclimate", "carbon landscape zones", and "data-driven recip-

rocal modelling" methods is not surprising because of the different hypotheses underly-

ing the three methods. Indeed, the three methods used different land covers as refer-

ences, are based on different algorithms and use different pedoclimatic variables. 

The estimated reference values SOCref have similar medians across the three methods 

(between 26 and 28 gC kg-1 in terms of SOC content or between 64 and 72 Mg ha-1 in 

terms of SOC stock) and follow the order "carbon landscape zones" < "natural refer-

ences per pedoclimate" < "data-driven reciprocal modelling" (Figure 3, median values). 

Accordingly, the total SOC storage potential for the European Union and United King-

dom is 3.1 Gt C, 3.4 Gt C and 4.1 Gt C using the estimations from the "carbon land-

scape zones", "natural references per pedoclimate", and "data-driven reciprocal model-

ling" methods, respectively. 

Nevertheless, the differences between the "carbon landscape zones", "natural refer-

ences per pedoclimate", and "data-driven reciprocal modelling" methods are not homo-

geneous in space. Figure 5 shows the pairwise differences between the reference val-

ues SOCref for the SOC content of croplands evaluated with the three methods. Over-

all, in central and northern Europe (colder climate) the reference values follow the order 

"carbon landscape zones" < "natural references per pedoclimate" < "data-driven recip-

rocal modelling", while in southern Europe (warmer climate) the reference values follow 

the order "data-driven reciprocal modelling" < "carbon landscape zones" < "natural ref-

erences per pedoclimate". This shows that the "data-driven reciprocal modelling" is the 

most sensitive to climate, as it accentuates the expected trend of higher SOC contents 

in colder climates, where grassland productivity is higher (Smit et al., 2008) and the 
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SOC mineralization rate might be lower (Clivot et al., 2019). Nevertheless, we observe 

three main exceptions: 

- Brittany (France): the "natural references per pedoclimate" method predicts high-

er reference values than the "data-driven reciprocal modelling" and the  "carbon 

landscape zones" methods, with differences or more than 20 gC kg-1 between 

the "natural references per pedoclimate" and the "carbon landscape zones" 

methods (circle in Figure 5B). 

- Central Spain (southern Europe): the "carbon landscape zones" method predicts 

higher reference values than both the "natural references per pedoclimate" and 

the "data-driven reciprocal modelling" methods (triangle in Figure 5B). The "natu-

ral references per pedoclimate" and the "data-driven reciprocal modelling" meth-

ods predict similar values (Figure 5A). 

- Denmark and north of Germany (northern Europe): the "carbon landscape 

zones" method predicts higher reference values than the "natural references per 

pedoclimate" method (rectangle in Figure 5B). 

These peculiar cases are discussed in the following section. 

3.6 The peculiar cases of Brittany, central Spain, Denmark and the 

north of Germany. 

3.6.1 Brittany 

The "natural references per pedoclimate" method predicted larger SOCref values in Brit-

tany, specially with respect to the "carbon landscape zones" method (Figure 5B). This 

region belongs to the climate cluster n. 2 and comprises sites of mainly soil cluster n. 2 

that is characterized by average pedological features (Table 1). Cluster 2-2 also con-
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tains grassland sites located in the United Kingdom and Ireland, as well as woodland 

sites located in the north of Spain that have particularly high values of SOC content, 

nearing the threshold of 120 gC kg-1 that we used to select mineral soils (Supplemen-

tary Figure 6). This results in a high SOCref value (46 gC kg-1) that may be impossible 

to reach in Brittany. The "carbon landscape zones" method associated most of Britta-

ny’s cropland sites to the carbon landscape zone n. 5, that does not include croplands 

of Ireland, the United Kingdom, and the north of Spain. The difference most probably 

comes from the fact that the "carbon landscape zones" method takes into account the 

NPP, whose values are distinct in Brittany compared to Ireland and the United Kingdom 

(Supplementary Figure 4C, principal components of NPP). Moreover, the principal com-

ponents of the climatic decomposition index (CDI) clearly distinguish Brittany from the 

north of Spain (Supplementary Figure 4C), while the difference between their climates is 

lost in the pedoclimatic clustering. These results show that the pedoclimatic clustering of 

the "natural references per pedoclimate" method probably fails to pick-up the peculiar 

pedoclimate of Brittany. The "data-driven reciprocal modelling" method predicted both 

moderate and high reference values in Brittany (Figure 3), intermediate between the 

predictions obtained with the natural references per pedoclimate" and "carbon land-

scape zones" methods (Figures 4A and 4C). The fact that the "data-driven reciprocal 

modelling" provides estimates intermediate between the two methods suggests that it 

may be the least biased. However, it is impossible to establish with certainty which es-

timates are the closest to reality without experimental data on SOC dynamics under 

well-characterised agricultural practices in this region. Such data would be particularly 

valuable, but are currently, to our best knowledge, non-existent. 
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3.6.2 Central Spain 

In central Spain, the SOCref values estimated using the three methods follow the order 

"natural references per pedoclimate" ~ "data-driven reciprocal modelling" < "carbon 

landscape zones", while in most of southern Europe the "natural references per pedo-

climate" predicted the highest values (Figure 4). Central Spain is an arid region where 

irrigation is widely employed (Wriedt et al., 2009). Highly productive irrigated croplands 

versus unproductive grasslands and woodlands in this area may explain why the "car-

bon landscape zones" method, which uses best-performing croplands as references, 

estimated higher SOC storage potentials than the methods that use natural references. 

In this case, the estimations obtained using the "natural references per pedoclimate" or 

the "data-driven reciprocal modelling" approaches may be more representative of the 

potential SOC content reachable without irrigation. 

3.6.3 Denmark and the north of Germany 

Differently from the rest of northern Europe, the "carbon landscape zones" method pre-

dicted higher reference values than the "natural references per pedoclimate" method in 

Denmark and the north of Germany (rectangle in Figure 5B). Moreover, the "natural ref-

erences per pedoclimate" and the "data-driven reciprocal modelling" approaches yield-

ed estimations that differ by more than 20 gC kg-1 in this area (Figure 5A). Recent work 

has highlighted that black sands soils, characterised by sand content > 80% and C:N 

ratio > 13 and present in the north of Germany, Denmark, Belgium, and the Nether-

lands, should be treated separately when assessing SOC storage potentials because of 

their unusually high SOC contents due to historic heathland and peatland land cover 

(Poeplau et al., 2020; Schneider, Amelung and Don, 2021; Dexlet et al., 2022). In the 
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dataset n.3bis, we find 66 black sands soils according to this definition (sand content > 

80% and C:N ratio > 13), most of which are in Denmark and the north of Germany 

(Supplementary Figure 7).  

A local model adapted to the specificity of black sands soils may be needed to correctly 

assess SOC reference values in this area, for example the "data-driven reciprocal mod-

elling" method in its original implementation that includes the C:N ratio as a predictive 

feature (Schneider, Poeplau and Don, 2021), or the benchmarking of German Agricul-

tural Soils Inventory proposed by Drexler et al. (2022) where black sands soils are iso-

lated in a specific stratum.  

3.7 Ensemble modelling 

The examples reported in the previous sections (pedoclimatic cluster 10-3, Brittany, 

Central Spain, Denmark, and North of Germany) show that the hypotheses underlying 

each method have a potentially large influence on the estimates of the local SOC stor-

age potentials. These peculiar cases could be identified using the comparison across 

different methods, while the use of a unique method would have not allowed to pinpoint 

possible over- or underestimations of the SOC storage potentials. 

Determining which model performs the best is hard, if not impossible, as validating the 

SOC storage potential estimates would require monitoring SOC dynamics in the long-

run across different pedoclimates and under different land management practices with 

high spatial accuracy. Reliable data of this kind are scarce at local scale and non-

existent at the scale of Europe. 

Nevertheless, farmers, policymakers and stakeholders need quantifiable SOC targets 

that can be widely applied and are ambitious yet reachable. Perhaps, in the absence of 
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any possible validation procedure, the most conservative approach is to evaluate the 

SOC reference values using different methods and seek consensus, e.g. by taking the 

median estimate. This is an ensemble modelling technique that is generally used to 

provide robustness to the estimations and has been recently applied, for instance, to the 

estimation of the SOC dynamics in long-term bare-fallow soils (Farina et al., 2021). 

Figure 6A-D show the reference values SOCref and the corresponding SOC storage 

potentials estimates ΔSOC for the LUCAS croplands evaluated as the median of the 

estimates from the "natural references per pedoclimate", "data-driven reciprocal model-

ling", and "carbon landscape zones" methods. This corresponds to always selecting the 

intermediate of the three estimated values. We found that each method was selected for 

around a third of the LUCAS croplands, with no evident spatial pattern (Figure 6E). 

The proposed ensemble modelling approach has the advantage of discarding extremely 

high and low estimates from single methods that are probably erroneous. As an exam-

ple, the estimates from the "data-driven reciprocal modelling" approach are kept for al-

most all croplands in Brittany (Figure 6E), where the "natural references per pedocli-

mate" and the "carbon landscape zones" approaches provide highly divergent values 

(Figure 5). Similarly, the estimates from the "carbon landscape zones" approach were 

discarded in the ensemble modelling results for central Spain (Figure 6E), where using 

croplands as references may bias the SOCref estimations to higher values due to fre-

quent irrigation (section 3.6.2). On the contrary, the estimates from the "carbon land-

scape zones" approach are kept in Denmark and the north of Germany (Figure 6E), 

where the estimates from the other methods diverge (Figure 5). 

3.8 Application to long-term experiment sites 

Despite the impossibility of validating the SOCref estimations at large scale, experi-
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mental data from long-term experiments are useful to provide insights on whether esti-

mated SOCref values are reachable under specific but well-characterized conditions. To 

this goal, we have applied the ensemble modelling approach to the estimation of target 

SOCref values for two long-term experiment sites: the Ultuna site in Sweden (Kätterer 

et al., 2011) and the Broadbalk site in the United Kingdom (Rothamsted Research, 

2021). Then, we calculated the ratio between the SOC content measured in the experi-

mental plots under different treatments and the reference value SOCref (SOC data from 

2009 for Ultuna (Kätterer et al., 2011) and from 2015 for Broadbalk (Rothamsted Re-

search, 2021). 

We found that the estimated SOCref is reached in Ultuna under peat amendment with 

and without nitrogen fertilization (ratio > 1) and is approached under sewage sludge 

amendment, farmyard manure amendment, and sawdust amendment with nitrogen ferti-

lization (ratio = 0.85, 0.71 and 0.70, respectively). Similarly, the estimated SOCref value 

is approached in Broadbalk under continued farmyard manure (ratio = 0.95 when ap-

plied since 1843 and ratio = 0.85 when applied since 1885 with nitrogen fertilization). 

The results for all treatments for both sites are reported in Supplementary Table 2. 

These results suggest that the estimated SOCref values may not be reachable unless 

high organic matter input is provided over several decades, at least in the pedoclimatic 

contexts to which the Ultuna and Bradbalk sites belong (pedoclimatic clusters 1-2 and 

10-2, respectively). Nevertheless, these preliminary results should be confirmed through 

the analysis of a dataset of long-term experiments data from different pedoclimatic con-

text and it would also be important to evaluate the method outside LTEs, which are not 

necessarily representative of real farm conditions. If these results are confirmed, it will 
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probably be necessary to propose target SOC values that are lower than the SOCref 

values calculated here. 

3.9 A first rough estimate of soil organic carbon storage potential es-

timation in European croplands using our novel framework 

Across all EU27 countries and the United Kingdom, we obtain a rough estimate of 3.5 

Gt C of SOC storage potential in the cropland topsoils using the ensemble modelling 

framework. 

In our work, we used the sample medians of the LUCAS sites per country as estimates 

of the subpopulation medians assuming a random sampling design. However, LUCAS 

points location were not selected using a probability sampling design (de Gruijter et al., 

2006) which do not allow valid estimation using designed-based estimates. Further work 

will need to implement model-dependent inference using for instance a spatial model 

(kriging) (Teuling et al., 2021). Nevertheless, to our knowledge, no unbiased estimate of 

total SOC stocks at the EU scale and its associate uncertainty has been produced yet. 

This absence is mainly attributable to the heterogeneity of sampling designs between 

countries and to the lack of a EU-wide probability samples. However, Some European 

countries having implemented a probability sampling design (for example, a systematic 

random sampling like a grid, e.g. France (Chen et al., 2018), Germany (Grüneberg et 

al., 2014; Poeplau et al., 2020), Denmark (Adhikari et al., 2014), England and Wales 

(Bellamy et al., 2005), or stratified simple random sampling, e.g. the Netherlands (Knot-

ters et al, 2022)), are able to produce a national designed-based estimates of the popu-

lation mean value or a population total stock together with a reliable and valid estimate 

of their uncertainty. 
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According to current estimations of SOC storage rates, e.g. 41-95 Mt C yr-1 in the Euro-

pean Union (Bellassen et al., 2022) or 16-19 Mt C yr-1 for EU15 countries only (Freibau-

er et al., 2004), the SOC storage potential of 3.5 Gt C issued from our ensemble model-

ling approach could be reached in 37 to 85 years if practices including land-use change 

(agroforestry, cover crops, substituting fodder crops with grass) were fully adopted in 

the European Union and the United Kingdom. However, much longer times would be 

needed to reach the potential if less ambitious practices are adopted. For instance, this 

potential could be reached in almost 300 years with only the introduction of cover crops 

(Bellassen et al., 2022), under the condition that the storage rate is maintained. These 

numbers represent bio-physical estimates only and do not take into consideration any 

social, political, and economic constraints associated with the adoption of appropriate 

agricultural practices and land-use (Amundson and Biardeau, 2018). 

Thus, the 3.5 Gt C potential for SOC storage in European croplands can only be con-

sidered as a long-term aspirational target that would be reachable only under extreme 

changes in agricultural practices, including land-cover or land-use change. This is not 

surprising, as the ensemble modelling approach includes the "data Driven reciprocal 

modelling" method that was developed to predict changes in SOC upon conversion to 

grassland, and the "natural references per pedoclimate" that uses grasslands and 

woodlands as references. However, the "carbon landscape zones" method, that uses 

croplands as references, predicts higher SOC reference values in southern Europe, 

showing that the modelling choices impact on the estimations is context-dependent. 

This is consistent with each method being kept for around a third of the croplands in the 

ensemble modelling (Figure 6E). 
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Nevertheless, attention should be paid to the estimates expressed as SOC stocks, that 

are of more practical significance than SOC contents, yet are highly uncertain when 

bulk density measurements are not available. Indeed, we needed to perform several 

approximations when converting SOC contents to stocks: the use of a pedotransfer 

function to estimate the bulk density, the use of a constant coarse fraction density for 

the conversion of coarse mass fractions to coarse volume fractions, and not accounting 

for the presence of stones, whose fraction is not available in the LUCAS Topsoil 2009 

and 2015 datasets. Additionally, when SOC storage potentials ΔSOC are estimated rel-

ative to SOC measurements in best-performing sites, observing non-null ΔSOC stocks 

may be due to actual differences in SOC content but also to differences in bulk density 

and/or coarse fragments content. 

Because of the discussed limitations, the 3.5 Gt C estimate is an indicator of the order 

of magnitude of SOC storage potential in Europe, however its exact value should be 

handled with care. 

3.10 Future developments 

In the future, our results should be challenged against long-term experiments and real 

farm data belonging to different pedoclimates and associated to detailed land-

management practices. Moreover, the estimation of the associated uncertainty should 

be included and the robustness of the estimations could be further improved by adding 

to the pool other methods that are based on different hypotheses and other scientific 

knowledge. It would also be possible to include local models that could participate in the 

ensemble modelling only in their region of applicability. National inventories, e.g. the 

RMQS in France (Jolivet et al., 2006) or the German Agricultural Soil Inventory 

(Poeplau et al., 2020), have the advantage of generally including bulk density meas-
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urements as well as both topsoil and subsoil SOC contents and could provide more ac-

curate estimations of SOC stocks potentials. Moreover, local models may be necessary 

for peculiar types of soils (e.g. the black sands soils in Denmark and the north of Ger-

many), to compensate for artifacts introduced by human activity (e.g. irrigation in arid 

regions such as central Spain) and to take into account the fact that the rate of SOC 

storage (or loss) upon changes in management practices depends on the pedoclimatic 

context (Lugato, Bampa, Panagos et al., 2014; Chenu et al., 2019). 

Finally, the same approach could be applied to estimate SOC storage potentials at 

deeper soil depth, in cases where SOC content and/or stocks are measured along the 

soil profile. This is the case for example for the German Agricultural Soil Inventory 

(Poeplau et al., 2020). 

4. Conclusion 

In summary, we found that different approaches based on different hypotheses,  provid-

ed generally comparable estimates of SOCref values but with local discrepancies. The 

proposed ensemble modelling framework allows combining estimates from different ap-

proaches. It discards extreme estimations from single methods, which are likely errone-

ous. Using the ensemble modelling output and approximate bulk density values, we ob-

tained a first rough estimate of 3.5 Gt C of SOC storage potential in the European 

cropland topsoils.  Nevertheless, this is probably an overestimation that should be inter-

preted as a long-term aspirational target. The use of additional methods and datasets in 

the ensemble modelling approach and more valid statistical spatial estimates may fur-

ther refine our approach. 
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Table captions 

Table 1: Interpretation of the pedoclimatic clusters. Geographical regions to which 

the LUCAS sites of each climatic cluster belong and description of the soil clusters. 

Climate 
cluster 
number 

Geographical regions 

0 North Spain; South France; Central and South Italy; Greece. 

1 South Sweden; Estonia; Latvia; Lithuania; East Poland; Czech Republic; 
border between the Czech Republic and Germany, Austria and Poland; 
Slovakia; North and Central Romania; few sites in Bulgaria and Greece. 

2 Atlantic coast of Spain and Portugal; Brittany; Ireland; Scotland; Wales; 
North and West England. 

3 Central and East France; South Belgium; south-west Germany; North Ita-
ly; few sites in continental Greece. 

4 Germany; Denmark; South Sweden; Poland; few sites in Latvia and Lith-
uania. 

5 Sweden; Finland; few sites in Estonia, Latvia and Lithuania. 

6 South Portugal; South Spain; Corse; Sardinia; Sicily; Crete. 

7 Central Spain. 

8 North Italy; Slovenia; North Greece; West Bulgaria; few sites in France, 
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Sweden, Austria, Czech Republic, Slovakia, Poland and Romania.  

9 Hungary; Romania; Bulgaria; few sites in Slovakia and Greece. 

10 France; England; Belgium; Netherlands; West Germany; few sites in Italy. 

Soil cluster 
number 

Description 

0 Calcareous soils. 

1 Sandy soils. 

2 Soils with average pedological features. 

3 Clay soils. 

Table 2: Carbonates content of LUCAS sites depending on the soil cluster. Std: 

standard deviation; Q1: first quartile; Q3: third quartile. Values are expressed in 

[gCaCO3/kg] and rounded to the nearest integer. 

Soil cluster Number of sites Mean Std Min Q1 Median Q3 Max 

0 1845 345 159 67 228 315 438 976 

1 6284 4 17 0 0 0 1 241 

2 6072 16 34 0 0 1 9 206 

3 1050 27 54 0 0 1 17 259 
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Figure captions 

 

Figure 1: Pedoclimatic clusters and carbon landscape zones of the LUCAS da-

taset. A: Pedoclimatic clusters of the LUCAS dataset (natural references per pe-

doclimate approach). Each point represents a LUCAS site. 1: The sites are colored 

according to the climate cluster label. 2: The sites are colored according to the soil clus-

ter label. B: Carbon landscape zones of the LUCAS croplands dataset (carbon 

landscape zones approach). Each point represents a LUCAS cropland site. Refer to 

the electronic version for colors. 
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Figure 2: Texture triangles of the soil clusters (natural references per pedoclimate 

approach). Each point represents the topsoil value of a LUCAS site. Refer to the elec-

tronic version for colors. 
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Figure 3: SOC reference values for LUCAS croplands extracted using the different 

methods. Data are shown for croplands of dataset n. 3bis to allow comparison across 

all methods. A: "natural references per pedoclimate" approach. Top: reference val-

ues expressed as SOC content. Bottom: reference values expressed as SOC stock. B: 

"data-driven reciprocal modelling" approach. Top: reference values expressed as 

SOC content. Bottom: reference values expressed as SOC stock. C: "carbon land-

scape zones" approach. Top: reference values expressed as SOC content. Bottom: 

reference values expressed as SOC stock. Refer to the electronic version for colors. 
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Figure 4: SOC storage potentials for LUCAS croplands estimated using the differ-

ent methods. Data are shown for croplands of dataset n. 3bis to allow comparison 

across all methods. The SOC storage potential is defined as the difference between the 

reference SOC and the actual SOC. A: "natural references per pedoclimate" ap-

proach. Top: SOC storage potential expressed as SOC content. Bottom: SOC storage 

potential expressed as SOC stock. B: "data-driven reciprocal modelling" approach. 

Top: SOC storage potential expressed as SOC content. Bottom: SOC storage potential 

expressed as SOC stock. C: "carbon landscape zones" approach. Top: SOC storage 

potential expressed as SOC content. Bottom: SOC storage potential expressed as SOC 

stock. Refer to the electronic version for colors. 
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Figure 5: Differences in SOC reference values for LUCAS cropland sites extracted 

using the different methods. Values are expressed as SOC contents. A: "natural ref-

erences per pedoclimate" minus "data-driven reciprocal modelling". B: "natural refer-

ences per pedoclimate" minus "carbon landscape zones". C: "data-driven reciprocal 

modelling" minus "carbon landscape zones". Refer to the electronic version for colors. 

 

Figure 6: Ensemble modelling : median SOC reference values and median SOC 
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storage potentials for LUCAS croplands. Data are shown for croplands of dataset n. 

3bis to allow comparison across all methods. The median is evaluated across the meth-

ods "natural references per pedoclimate", "data-driven reciprocal modelling" and "car-

bon landscape zones". A: median SOC reference values expressed as SOC con-

tent. B: median SOC reference values expressed as SOC stock. C: median SOC 

storage potential expressed as SOC content. D: median SOC storage potential 

expressed as SOC stock. E: method kept when taking the median SOCref. NRP: 

"natural references per pedoclimate", DDRM: data-driven reciprocal modelling, CLZ: 

"carbon landscape zones". Refer to the electronic version for colors. 
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Graphical abstract 
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Highlights 

- Targets for soil organic carbon are estimated with different approaches. 

- Targets are expressed as SOC content (g/kg) or stock (Mg/ha). 

- Targets for 0-20cm topsoils of EU28 croplands are estimated using LUCAS data. 

- The obtained estimations are overall consistent but with local discrepancies. 

- More robust estimations are obtained using ensemble modeling (median estimation). 
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