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Abstract

Our study is devoted to a four-compartment epidemic model of a constant population of independent
random walkers. Each walker is in one of four compartments (S-susceptible, C-infected but not infectious
(period of incubation), I-infected and infectious, R-recovered and immune) characterizing the states of
health. The walkers navigate independently on a periodic 2D lattice. Infections occur by collisions of sus-
ceptible and infectious walkers. Once infected, a walker undergoes the delayed cyclic transition pathway
S → C → I → R → S. The random delay times between the transitions (sojourn times in the compart-
ments) are drawn from independent probability density functions (PDFs). We analyze the existence of
the endemic equilibrium and stability of the globally healthy state and derive a condition for the spread
of the epidemics which we connect with the basic reproduction number R0 > 1. We give quantitative
numerical evidence that a simple approach based on random walkers offers an appropriate microscopic
picture of the dynamics for this class of epidemics.

1 Introduction

The first modern approach of epidemic modelling goes back to the seminal work of Kermack and Mc
Kendrick [1] who introduced the first ‘SIR - compartment type model’ (S-I-R standing for the states
susceptible, infected and recovered (immune), respectively. In the meantime, epidemic modelling has
become a huge field [2,3,4,5] (and many others).

Our study is devoted to an epidemic model for a constant population by taking into account four
compartments of individuals characterizing their states of health. Each individual is in one of the com-
partments susceptible (S); incubated – infected yet not infectious (C), infected and infectious (I), and
recovered – immune (R). An infection is visible only when an individual is in state I. Upon infection, an
individual performs the transition pathway S → C → I → R → S remaining in each compartments C, I,
and R for certain random waiting time tC , tI , tR, respectively. The waiting times (sojourn times) in each
compartment are independent and drawn from specific probability density functions (PDFs) introducing
memory effects into the model [6,7] generalizing our previous model [8].

Based on these assumptions, we introduce first the macroscopic SCIRS model and derive memory
equations for the epidemic evolution involving convolutions (time derivatives of general fractional type
in the Kochubei sense [9]). The classical (memoryless) version of the model is recovered for exponen-
tially distributed compartment waiting times. For long waiting times drawn from fat-tailed (power-law)
distributions, the SCIRS evolution equations take the form of time-fractional ODEs [6].

We obtain formulae for the endemic equilibrium and a condition of its existence for cases where the
waiting time PDFs have existing means. We analyze the stability of healthy and endemic equilibria and
derive conditions of its existence.

We implemented a multiple random walker’s model into a PYTHON code (which is freely available [7])
where Z independent walkers navigate independently on a N ×N periodic (ergodic) square lattice. The
initial positions of the walkers on the lattice are random. In each time increment, the walkers perform
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simultaneously independent jumps to one of their four neighbor lattice sites with equal probability 1
4

(simple unbiased walk). Each walker is in one of the compartments S,C,I,R (Fig. 1). Infections occur with
a certain probability only when infectious I walkers meet susceptible S walkers on the same lattice sites.
Once a walker is infected in this way, he undergoes the above explained cyclic SCIRS transition pathway
with random sojourn times tC,I,R in compartments C I R. We compare the endemic states predicted
analytically by the macroscopic model with the numerical results of the random walk simulations (long
time asymptotics of the compartmental populations) and find accordance with high accuracy.
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Fig. 1. Multiple random walkers model: Colors indicate the health states (compartments) of the walkers: S (blue),
C (yellow), I (red), R (green). Left plot: Typical initial condition with one infected walker. Right plot: State of
epidemic spreading for t > 0 with Gamma-distributed tC,I,R with parameters given subsequently.

2 SCIRS model

Let s(t) = ZS(t)
Z

, c(t) = ZCt)
Z

, j(t) = ZI (t)
Z

, r(t) = ZR(t)
Z

be the fractions of the population in the compart-
ments S C I R, corresponding to ZS,C,I,R(t) random walkers in these compartments. We neglect birth
and death processes and consider the total number of walkers to be constant Z = ZS(t)+ZC(t)+ZI(t)+
ZR(t) ≫ 1. We denote with tC , tI , tR > 0 the random sojourn times (waiting times) a walker spends in
compartments C, I, R, respectively and with A(t) the infection rate at time t. The infection rate actually
contains microscopic (random walk) information on the collisions of I and S walkers and transmission
probability of the disease. We introduce a kind of predator-prey model where the I walkers are predators
and S walkers the prey, with a simple nonlinear law A(t) = A(j(t), s(t)) = βj(t)s(t) where β > 0 denotes
a time independent positive constant depending on the probability of infection in a collision of I and S
walkers among other random walk characteristics. We propose the following evolution equations

d

dt
s(t) = −A(t) + 〈A(t − tC − tI − tR)〉

d

dt
c(t) = A(t) − 〈A(t− tC)〉

d

dt
j(t) = 〈A(t − tC)〉 − 〈A(t− tC − tI)〉

d

dt
r(t) = 〈A(t − tC − tI)〉 − 〈A(t− tC − tI − tR)〉

(1)
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where we assume as initial condition the globally healthy state s(0) = 1−, j(0) = 0+ c(0) = r(0) = 0
where (almost) all walkers are in compartment S. 〈. . .〉 indicates averaging over the contained random
variables tC , tI , tR. Since the total population is constant, one of the four equations is redundant, however
we write them here all for clarity. To perform this average, we assume the compartment sojourn times to
be mutually independent and drawn from causal1 probability density functions (PDFs) KC,I,R(τ) such
that

Prob(tC,I,R ∈ [τ, τ + dτ ]) = KC,I,R(τ)dτ, tC,I,R > 0

indicating the probabilities that tC,I,R ∈ [τ, τ + dτ ]. Then the following averaging rule applies

〈f(tC,I,R)〉 =

∫

∞

0

f(τ)KC,I,R(τ)dτ (2)

for suitable functions f(τ) to perform in (1) the average over the independent random variables tC,I,R.
This operation together with causality of the involved functions takes us to the explicit convolutional
representation of the SCIRS evolution equations [6]

d

dt
s(t) = −A(t) + (A ⋆ KC ⋆ KI ⋆ KR)(t)

d

dt
c(t) = A(t)− (A ⋆ KC)(t)

d

dt
j(t) = (A ⋆ KC)(t)− (A ⋆ KC ⋆ KI)(t)

d

dt
r(t) = (A ⋆ KC ⋆ KI)(t)− (A ⋆ KC ⋆ KI ⋆ KR)(t)

(3)

where (a ⋆ b)(t) =
∫ t

0 a(τ)b(t− τ)dτ stands for convolution of the causal functions a(t), b(t). The interpre-
tation of Eqs. (1), (3) is as follows. The transition rate A(t) out of compartments S into C is the rate of
new infections at time t (see first and second lines in (1)). Then the randomly delayed transitions out of
C into I (individuals who fall sick) have the rate 〈A(t− tC)〉 coming from infections at t− tC . Further, the
term 〈A(t−tC−tI)〉 captures transitions out of I into R (healed individuals). Finally, 〈A(t−tC−tI−tR)〉
is the rate of transitions out of R into S (individuals loosing their immunity at time t) closing the cyclic
infection pathway. Be aware that A(τ) is causal, i.e. vanishing for negative arguments τ .

The randomly delayed transitions generally introduce memory effects, where exponentially distributed
waiting times correspond to kernels K(τ) = ξe−ξτ representing the memoryless (Markovian) case. In

our study, we mainly focus on Gamma-distributed sojourn times with PDFs Kα,ξ(τ) = ξα τα−1

Γ (α) e
−ξτ

(α, ξ > 0 indicating shape and rate parameters, respectively) with sufficient flexibility to capture a wide
range of behaviors, including the memoryless case with exponential PDF for α = 1 and the limit of
sharp waiting times δ-distributed tC,I,R for ξ → ∞ while the mean waiting time α

ξ
is kept constant.

Laplace transforming the SCIRS equations leads to the following endemic states (large time asymptotic

1 i.e. KC,I,R(τ ) = 0 for τ < 0 reflecting strict positivity of tC,I,R.
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compartmental fractions) [6]

Se =
1

R0

Ce =
R0 − 1

R0

〈tC〉

〈T 〉

Je =
R0 − 1

R0

〈tI〉

〈T 〉

Re =
R0 − 1

R0

〈tR〉

〈T 〉

〈T 〉 = 〈tC + tI + tR〉, R0 = β〈tI〉 (4)

for existing mean sojourn times 〈tC,I,R〉 =
∫

∞

0
τKC,I,R(τ)dτ < ∞. The endemic equilibrium exists solely

for R0 = β〈tI〉 > 1 where we interpret R0 as basic reproduction number (average number of infected
walkers produced by one single initially infected walker during his average time of infection 〈tI〉). The
endemic equilibrium only depends on R0 and the means 〈tC,I,R〉.

This interpretation of β〈tI〉 as basic reproduction number becomes more clear when we consider in
the second equation of (3) the number of new infections per time unit at t = 0 caused by a single I walker
ZI(0) = 1, namely

dZc(t)

dt

∣

∣

t=0
= Zβs(t)j(t)

∣

∣

t=0
=

β

Z
ZS(t)ZI(t)

∣

∣

t=0
= β

Z − 1

Z
→ β, Z ≫ 1 (5)

where 〈A(t − tC)〉
∣

∣

t=0
= 0 because of causality. Taking into account that the first infected walker can

infect other walkers during the average time of infection 〈tI〉, he can indeed infect (in a first order

approximation) in the average 〈tI〉
dZc(t)

dt

∣

∣

t=0
= β〈tI〉 = R0 susceptible walkers.

3 Discussion and results

We consider in the following the role of jump length (short- and long-range navigation) in the lattice on
the epidemic spreading.

In Fig. 2(a) is drawn the SCIRS evolution where all walkers perform short-range steps to neighbor
lattice sites. In each time step, we count the compartmental population where we average 5 equiv-
alent random walk runs with the same parameters but different random numbers (PYTHON seeds).
The compartmental waiting times tC,I,R in the random walk simulations are determined as random
numbers drawn from Gamma-distributions (specified in Fig 2(b)). The dashed lines indicate the nu-
merically determined endemic values (by counting the compartmental populations ZS,C,I,R(t)) and are
obtained as Se ≈ 0.08, Ce ≈ 0.06, Je ≈ 0.58 Re ≈ 0.27 (with Se + Ce + Je + Re = 1) and basic
reproduction number R0 = 1/Se ≈ 12.75. Inspection of these numerical values shows that the ratios
(Ce : Je : Re) = (〈tC〉 : 〈tI〉 : 〈tR〉) ≈ (1 : 10 : 5) are in excellent agreement with the ratios predicted from
the analytically derived Eqs. (4) for the endemic equilibrium. Increasing the observation time improves
the agreement. This shows that a simple random walk approach offers an appropriate microscopic picture
of the macroscopic SCIRS dynamics (evolution Eqs. (1), (3)).

We refer to [6] for extensive discussions and case studies which further confirm the validity of (4)
where animated simulations (videos) can be consulted in the supplementary materials [7].

In the simulation runs of Fig. 3 we choose all parameters identically as in Fig. 2, however we allow a
certain fraction of walkers which we refer to as “superspreaders” to perform at any time-increment long-
range jumps to any lattice site of the lattice with equal probability. The remaining walkers jump with
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Fig. 2. (a) Random walk simulation where all walkers perform short-range steps to neighbor nodes for Gamma-
distributed compartment sojourn times with 〈tC〉 = 10, 〈tI〉 = 100, 〈tR〉 = 50 and ξC = 0.1, ξI = 0.1, ξR = 0.05.
Dashed lines indicate endemic equilibrium values. (b) Gamma waiting-time PDFs of incubation tC (yellow),
infection tI (red), and immunity tR (green) times. The remaining parameters are Z = 150 walkers, with N ×N

lattice (N = 21), and infection probability in a collision is 0.8. The initial condition is one infected and Z − 1
susceptible walkers.

short steps to neighbor sites. One can see that the basic reproduction number monotonously increases as
the fraction of superspreaders increase (from Figs. 3(a) to (b)). The walks of superspreaders correspond
to navigation on a fully connected (graph) architecture. In Fig. 3(a) with 40% superspreaders the basic
reproduction number is R0 ≈ 18.25 and is considerably increased compared to the value 12.75 of Fig.
2(a) (0% superspreaders) thus the endemic value Je ≈ 0.6 is in Figs. 3(a,b) slightly higher than without
superspreaders.When we increase the fraction of superspreaders to 90% (Fig. 3(b)), the basic reproduction
number further increases to R0 ≈ 21.48. One can see in Figs. 3(a,b) that the endemic values only slightly
change, however the first infection wave becomes much more pronounced, reaching very high maximum
values jmax ≈ 0.97. On the other hand, the evolutions with 40% and 90% differ only by their oscillatory
behaviors. Higher fractions of superspreaders seem to have the effect that fluctuations around the endemic
values have smaller amplitudes. A conclusion from these observations is the recommendation to decision
makers to avoid long-range navigation of individuals in epidemic contexts in order to mitigate the first
infection wave. On the other hand, such a measure seems to have only very little impact on the endemic
equilibrium.

4 Conclusions

In the present letter, we investigated epidemic spreading on a two-dimensional periodic lattice with
a cyclic SCIRS infection pathway where the transitions occur with random delay. We focused here on
Gamma-distributed delay times. In a follow-up project, it would be desirable to have a microscopic theory
connecting the phenomenological infection rate A(t) with random walk characteristics such as collision
rate, transmission probability when walkers meet, and the topology of the network if it is more complex
than a simple two-dimensional lattice. In this context an interesting direction is the epidemic spreading
in complex small or large world networks where the complexity of the network architecture may have
a crucial impact on the epidemic spreading [11]. For future research, it would be interesting to explore
whether Eqs. (1) or similar systems with simple non-linear infection rates may exhibit chaotic attractors
[10] as endemic states for certain sets of parameters and waiting time distributions.
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Fig. 3. Time evolution for (a) 40% (b) 90% superspreaders. All other parameters and waiting time distributions
are the same as in Fig. 2.
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