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Abstract

In this paper, we propose an alternative technique to dynamic programming for solving
stochastic control problems. We consider a weak formulation that is written as an optimization
(minimization) problem on the space of probabilities. We then propose a regularized version of
this problem obtained by splitting the minimization variables and penalizing the entropy be-
tween the two probabilities to be optimized. We show that the regularized problem provides
a good approximation of the original problem when the weight of the entropy regularization
term is large enough. Moreover, the regularized problem has the advantage of giving rise to
optimization problems that are easy to solve in each of the two optimization variables when
the other is fixed. We take advantage of this property to propose an alternating optimization
algorithm whose convergence to the infimum of the regularized problem is shown. The rele-
vance of this approach is illustrated by solving a high-dimensional stochastic control problem
aimed at controlling consumption in electrical systems.

Key words and phrases: Stochastic control; optimization; Donsker-Varadhan representation; ex-

ponential twist; relative entropy.
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1 Introduction

Stochastic control problems appear in many fields of application such as robotics [34], economics

and finance [37]. Their numerical solution is most often based on the dynamic programming

principle allowing the representation of the value function via nonlinear Hamilton-Jacobi-Bellman
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PDEs or Backward Stochastic Differential Equations (BSDEs). This permits to estimate recursively

the value (Bellman) functions backwardly from the terminal instant to the initial instant. However,

when the state space is large, estimating the Bellman functions becomes challenging due to the

curse of dimensionality. In the last twenty years, mainly motivated by applications in finance,

important progress has been made in this field, especially around the numerical resolution of

BSDEs or PDEs. We can mention in particular variance reduction techniques [4, 19, 20], neural

network based approaches [21, 18], time reversal techniques [23] or Lagrangian decomposition

techniques [11, 31].

The idea of this paper is to propose a radically different approach based on a weak reformu-

lation of the stochastic control problem as an optimization problem on the space of probabilities.

Interest in optimization problems on the space of probabilities has increased strongly during the

recent years with the Monge-Kantorovitch optimal transport problem, which, for two fixed Borel

probabilities on Rd, ν1 and ν2 consists in determining a joint law whose marginals are precisely ν1

and ν2, minimizing an expected given cost. Benamou and Brenier in [3] propose a dynamical for-

mulation of this problem: it consists in an optimal control problem where the aim is to minimize

the integrated kinetic energy of a deterministic dynamical system over a given time horizon, in

order to go from the initial law ν1 to ν2 as terminal law. Mikami and Thieullen in [35] replace the

deterministic dynamical system with a diffusion introducing the so called stochastic mass trans-

portation problem. This consists in controlling the drift of the diffusion to minimize over a given

finite horizon a mean integrated cost depending on the drift and the state of the process, while im-

posing the initial and final distribution of the diffusion. Those authors formulate their problem as

an optimization on a space of probabilities, for which they make use of convex duality techniques.

Tan and Touzi generalize these techniques in [33], controlling the volatility as well. Those authors

also propose a numerical scheme in order to approximate the dual formulation of their stochastic

mass transport problem.

In the same spirit as in [35], in this paper, we formulate a stochastic optimal control problem

as a minimization on the space of probability measures. We propose an entropic regularization

of this optimization problem which suitably approximates the original control problem. Under

mild convexity conditions, we prove the convergence of an alternating optimization algorithm

to the infimum of the regularized problem and the performance of this algorithm is shown to

be competitive in simulation with existing regression-based Monte Carlo approaches relying on

dynamic programming. The proof of the convergence of our algorithm relies on geometric argu-

ments rather than classical convex optimization techniques.

More precisely, on some filtered probability space (Ω,F ,P), we are interested in a problem of

the type

inf
ν
E
[∫ T

0
f(r,Xν

r , νr)dr + g(Xν
T )

]
, (1.1)

where ν is a progressively measurable processes taking values in some fixed convex compact
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domain U ⊂ Rd. X = Xν will be a controlled diffusion process taking values in Rd of the form

Xt = x+

∫ t

0
b(r,Xr)dr +

∫ t

0
νrdr +

∫ t

0
σ(r,Xr)dWr. (1.2)

The above problem corresponds to the strong formulation of a stochastic control problem in the

sense of Problem (II.4.1.SS) in [38], and can be generally associated with a weak formulation in the

sense of Problem (II.4.2.WS) in [38], resulting in an optimization problem on a space of probability

measures of the form

J∗ := inf
P∈PU

J(P), with J(P) := EP
[∫ T

0
f(r,Xr, u

P
r )dr + g(XT )

]
, (1.3)

with PU a set of probability measures defined in Definition 3.2, such that under P ∈ PU the canon-

ical process X is decomposed as

Xt = x+

∫ t

0
b(r,Xr)dr +

∫ t

0
uPrdr +

∫ t

0
σ(r,Xr)dWr, (1.4)

where uP is a progressively measurable process with respect to the canonical filtration FX of X

taking values in U and W is some standard Brownian motion. We refer to [25, 37] for a detailed

account of stochastic optimal control in strong form and to [38, 15] for more details on the weak

formulation of stochastic optimal control. The link between those two formulations is discussed

in Appendix 7.4.

Our essential hypothesis is here that the running cost f is convex in the control variable u.

Besides the question of the existence of a probability P∗ for which J(P∗) = J∗ in (1.3), the problem

of approximation is crucial. One major difficulty is the lack of convexity of the functional J in (1.3)

with respect to P, even though the literature includes some techniques to transform the original

problem into a minimization of a convex functional, see e.g. [3]. For that reason, we cannot rely

on classical convex analysis techniques, see e.g. [14], in order to perform related algorithms, see

e.g. [7]. As announced above, our method consists in replacing Problem (1.3) with the regularized

version

J ∗ε := inf
(P,Q)∈A

Jε(Q,P), with Jε(Q,P) := EQ
[∫ T

0
f(r,Xr, u

P
r )dr + g(XT )

]
+

1

ε
H(Q|P), (1.5)

whereA is a subset of elements (P,Q) ∈ P(Ω)2 defined in Definition 3.7, H is the relative entropy,

see Definition 2.1, and the regularization parameter ε > 0 is intended to vanish to zero in order

to impose Q = P. In Theorem 3.9 one shows that previous infimum is indeed a minimum J ∗ε =

Jε(Q∗ε ,P∗ε ) (attained on some admissible couple of probability measures (P∗ε ,Q∗ε ) ∈ A). Given one

solution (P∗ε ,Q∗ε ) of Problem (1.5), Proposition 3.10 shows that P∗ε is an approximate solution of

Problem (1.3) in the sense that P∗ε ∈ PU and the infimum J∗ can be indeed approached by J(P∗ε )
when ε→ 0 and more precisely J(P∗ε )− J∗ = O(ε).

The interest of the regularized Problem (1.5) with respect to the original Problem (1.3) is that

the minimization of the functional Jε with respect to one variable Q or P (the other variable being
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fixed) can be provided explicitly, see Section 5.1 (for the minimization with respect to P) and

Section 5.2 (for the minimization with respect to Q). Indeed, on the one hand, the resolution

with respect to Q is a well-known problem in the area of large deviations, see [13]. It gives rise

to a variational representation formulas relating log-Laplace transform of the costs and relative

entropy which is linked to a specific case of stochastic optimal control for which it is possible to

linearize the HJB equation by an exponential transform, see [16, 17]. This type of problem is known

as path integral control and has been extensively studied with many applications, see [36, 34, 10].

On the other hand, the minimization with respect to P can be reduced to pointwise minimization.

Indeed uP can be expressed as a function (t, x) 7→ uP(t, x) such that for all (t, x) ∈ [0, T ] × Rd,

uP(t, x) is independently obtained as the minimum of a strictly convex function. Concerning the

convergence of the algorithm we insist again on the fact that Jε is not jointly convex with respect

to (Q,P), so, in Section 4 we rely on geometric arguments developed in [12] to prove that the

iterated values of the algorithm converge to the minimum value J ∗. In Section 6, we show the

relevance of this algorithm compared with classical Monte Carlo based regression techniques by

considering an application dedicated to the control of thermostatic loads in power systems.

2 Notations and definitions

In this section we introduce the basic notions and notations used throughout this document. In

what follows, T ∈ R+ will be a fixed time horizon.

• All vectors x ∈ Rd are column vectors. Given x ∈ Rd, |x|will denote its Euclidean norm.

• Given a matrix A ∈ Rd×d, ‖A‖ :=
√
Tr[AA>] will denote its Frobenius norm.

• Given φ ∈ C1,2([0, T ]×Rd), ∂tφ,∇xφ and∇2
xφ will denote respectively the partial derivative

of φ with respect to (w.r.t.) t ∈ [0, T ], its gradient and its Hessian matrix w.r.t. x ∈ Rd.

• Given any bounded function Φ : U → V , U, V being Banach spaces, we denote by |Φ|∞ its

supremum.

• U will denote the closure of a bounded and convex open subset of Rd (in particular U is a

convex compact subset of Rd). diam(U) will denote its diameter.

• For any topological spacesE andF,B(E) will denote the Borel σ-field ofE;C(E,F ) (B(E,F ))

will denote the linear space of functions from E to F that are continuous (resp. Borel). P(E)

will denote the Borel probability measures on E. Given P ∈ P(E), EP will denote the expec-

tation with respect to (w.r.t.) P.

• Except if differently specified, Ω will denote the space of continuous functions from [0, T ]

to Rd. For any t ∈ [0, T ] we denote by Xt : ω ∈ Ω 7→ ωt the coordinate mapping on Ω. We

introduce the σ-field F := σ(Xr, 0 ≤ r ≤ T ). On the measurable space (Ω,F), we introduce
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the canonical process X : ω ∈ ([0, T ]× Ω,B([0, T ])⊗F) 7→ Xt(ω) = ωt ∈ (Rd,B(Rd)).

We endow (Ω,F) with the right-continuous filtration Ft :=
⋂

t≤r≤T
σ(Xr), t ∈ [0, T ]. The fil-

tered space (Ω,F , (Ft)) will be called the canonical space (for the sake of brevity, we denote

(Ft)t∈[0,T ] by (Ft)).

• Given a continuous (locally) square integrable martingale M , 〈M〉 will denote its quadratic

variation.

• Equality between stochastic processes are in the sense of indistinguishability.

Definition 2.1. (Relative entropy). Let E be a topological space. Let P,Q ∈ P(E). The relative entropy

H(Q|P) between the measures P and Q is defined by

H(Q|P) :=


EQ
[
log

dQ
dP

]
if Q� P

+∞ otherwise.
(2.1)

with the convention log(0/0) = 0.

Remark 2.2. The relative entropy H is non negative and jointly convex, that is for all P1,P2,Q1,Q2 ∈
P(E), for all λ ∈ [0, 1],H(λQ1+(1−λ)Q2|λP1+(1−λ)P2) ≤ λH(Q1|P1)+(1−λ)H(Q2|P2). Moreover,
(P,Q) 7→ H(Q|P) is lower semicontinous with respect to the weak convergence on Polish spaces. We refer
to [13] Lemma 1.4.3 for a proof of these properties.

Definition 2.3. (Minimizing sequence, solution and ε-solution). Let E be a generic set. Let J : E 7→ R be
a function. Let J∗ := inf

x∈E
J(x) (which can be finite or not). A minimizing sequence for J is a sequence

(xn)n≥0 of elements of E such that J(xn) −→
n→+∞

J∗. We will say that x∗ ∈ E is a solution to the
optimization Problem

inf
x∈E

J(x), (2.2)

if J(x∗) = J∗. In this case, J∗ = min
x∈E

J(x). For ε ≥ 0, we will say that xε ∈ E is an ε-solution to the

optimization Problem (2.2) if 0 ≤ J(xε) − J∗ ≤ ε. We also say that xε is ε-optimal for the (optimization)
Problem (2.2).

We remark that a 0-solution is a solution of the optimization Problem (2.2).

3 From the stochastic optimal control problem to a regularized opti-

mization problem

In this section we consider a stochastic control problem that we reformulate in terms of an op-

timization problem on a space of probabilities. Later we propose a regularized version of that

problem whose solutions are ε-optimal for the original problem.
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3.1 The stochastic optimal control problem

We specify the assumptions and the formulation of the stochastic optimal control Problem (1.3)

stated in the introduction. Let us first consider a drift b ∈ B([0, T ]×Rd,Rd) and a diffusion matrix

σ ∈ B([0, T ]× Rd,Rd×d) following the assumptions below.

Hypothesis 3.1. (SDE Diffusion coefficients).

(i) There exists a constant Cb,σ > 0 such that for all (t, x) ∈ [0, T ]× Rd

|b(t, x)|+ ‖σ(t, x)‖ ≤ Cb,σ(1 + |x|).

(ii) There exists c > 0 such that for all (t, x) ∈ [0, T ]× Rd, ξ ∈ Rd.

ξ>σσ>(t, x)ξ ≥ c|ξ|2.

σ is referred in the rest of the paper as elliptic.

(iii) For all x ∈ Rd,
lim
y→x

sup
0≤r≤T

‖σ(r, x)− σ(r, y)‖ = 0.

Let us define the admissible set of probabilities PU for Problem (1.3).

Definition 3.2. Let PU be the set of probability measures on (Ω,F) such that for all P ∈ PU, under P the
canonical process decomposes as

Xt = x+

∫ t

0
b(r,Xr)dr +

∫ t

0
uPrdr +MP

t , (3.1)

with x ∈ Rd, MP is a local martingale such that 〈MP〉t =
∫ t

0 σσ
>(r,Xs)dr, uP is a progressively measur-

able process with values in U. If in addition there exists u ∈ B([0, T ] × Rd,U) such that uPt = u(t,Xt)

dP⊗ dt-a.e, we will denote P ∈ PMarkov
U .

Remark 3.3. If P ∈ PMarkov
U in the sense of Definition 3.2, then the following equivalent properties hold.

1. One has
Xt = x+

∫ t

0
b(r,Xr)dr +

∫ t

0
uP(r,Xr)dr +MP

t , (3.2)

with x ∈ Rd, 〈MP〉t =
∫ t

0 σσ
>(r,Xs)dr.

2. P is solution of the martingale problem (in the sense of Stroock and Varadhan in [32]) associated
with the initial condition (0, x) and the operator Lu defined for all φ ∈ C1,2

b ([0, T ] × Rd), (t, y) ∈
[0, T ]× Rd by

Luφ(t, y) = ∂tφ(t, y) + 〈∇xφ(t, y), b(t, y) + u(t, y)〉+
1

2
Tr[σσ>(t, y)∇2

xφ(t, y)], (3.3)

with u = uP.
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3. P is a solution (in law) of

Xt = x+

∫ t

0
b(r,Xr)dr +

∫ t

0
uP(r,Xr)dr +

∫ t

0
σ(s,Xs)dWs, (3.4)

for some suitable Brownian motion W .

We will often make use of the following proposition.

Proposition 3.4. Assume Hypothesis 3.1 holds. Let u ∈ B([0, T ] × Rd,U). There exists a unique prob-
ability measure Pu ∈ PMarkov

U solution to the martingale problem with initial condition (0, x), and the
operator Lu defined in (3.3) in the sense of Remark 3.3.

Proof. This result follows from Theorem 10.1.3 in [32].

Let then f ∈ B([0, T ]×Rd×U,Rd), g ∈ B(Rd,R), referred to as the running cost and the terminal

cost respectively, and assume that the following holds.

Hypothesis 3.5. (Cost functions).

1. The functions f, g are positive. There existsCf,g > 0, p ≥ 1 such that for all (t, x, u) ∈ [0, T ]×Rd×U

|f(t, x, u)|+ |g(x)| ≤ Cf,g(1 + |x|p).

2. f is continuous in (t, x, u), f(t, x, ·) is convex for all (t, x) ∈ [0, T ]× Rd and g is continuous.

We conclude this section by a moment estimate, see e.g. Corollary 12 in Section 5.2 in [25],

which will be often used in the rest of the paper.

Lemma 3.6. Let (Ω,F , (Ft),P) be a filtered probability space. Let u : [0, T ] × Ω → U be an (Ft)-
progressively measurable process. Let X be an Itô process on (Ω,F ,P) which decomposes as

Xt = x+

∫ t

0
b(r,Xr)dr +

∫ t

0
urdr +MP

t ,

where MP is a martingale such that 〈MP〉t =
∫ t

0 σσ
>(r,Xr)dr. Let q ≥ 1. Under Hypothesis 3.1 there

exists a constant CU(q) > 0, which depends only on T,Cb,σ, diam(U) (and q), such that for all P ∈ PU,

EP

[
sup

0≤t≤T
|Xt|q

]
≤ CU(q).

Under Hypotheses 3.1 and 3.5, by the moment estimate given by Lemma 3.6 one has

EP
[∫ T

0
f(r,Xr, u

P
r )dr + g(XT )

]
< +∞,

for all P ∈ PU. Then under Hypotheses 3.1 and 3.5 the function J introduced in (1.3) is well-

defined on PU.
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3.2 The regularized optimization problem

As mentioned earlier, finding a numerical approximation of the solution of a stochastic optimal

control problem often relies on solving the associated Hamilton-Jacobi-Bellman (HJB) equation.

This is typically done via finite difference schemes when d ≤ 3 and by Monte Carlo methods for

estimating Forward BSDE (i.e. a BSDE whose underlying is a Markov diffusion) when d > 3.

We aim at finding another way to compute an optimal strategy that does not require the approx-

imation of the solution of the HJB equation. To this aim we regularize Problem (1.3) by doubling

the decision variables and adding a relative entropy term in the objective function. We get the

regularized Problem (1.5) where A is the subset of elements (P,Q) ∈ P(Ω)2 defined below.

Definition 3.7. Let A be the set of probability measures (P,Q) ∈ P(Ω)2 such that

(i) P ∈ PU,

(ii) H(Q|P) < +∞.

In the perspective of solving the regularized optimization Problem (1.5) we will introduce

in Sections 5.1 and 5.2 two subproblems. The regularization is justified by the fact that each of

these subproblems inf
Q∈P(Ω)

Jε(Q,P) and inf
P∈PU
Jε(Q,P) can be treated by classical techniques of the

literature and will build the two steps of our alternating minimization algorithm. The one in

Section 5.2 is a minimization on Q, the probability P being fixed and it is related to a variational

representation formula whose solution is expressed as a so called exponential twist, see e.g. [13].

In particular we will make use of the following result.

Proposition 3.8. Let ϕ : Ω → R be a Borel function and P ∈ P(Ω). Assume that ϕ is bounded below.
Then

inf
Q∈P(Ω)

EQ[ϕ(X)] +
1

ε
H(Q|P) = − logEP [exp(−ϕ(X))] . (3.5)

Moreover there exists a unique minimizer Q∗ ∈ P(Ω) given by

dQ∗ =
exp(−εϕ(X))

EP[exp(−εϕ(X))]
dP.

Proof. The random variable ϕ(X) is bounded below, hence satisfies condition (FE) of [5]. The

statement then follows from Proposition 2.5 in [5].

Applying Proposition 3.8 to our framework for P ∈ PU we get that under Hypothesis 3.5 the

subproblem inf
Q∈P(Ω)

Jε(Q,P) admits a unique solution Q∗ given by

dQ∗ =
exp

(
−ε
∫ T

0 f(r,Xr, u
P
r )dr − εg(XT )

)
EP
[
exp

(
−ε
∫ T

0 f(r,Xr, uPr )dr − εg(XT )
)]dP, (3.6)
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and that the optimal value is

Jε(Q∗,P) = −1

ε
logEP

[
exp

(
−ε
∫ T

0
f(r,Xr, u

P
r )dr − εg(XT )

)]
. (3.7)

This subproblem is further analyzed in Section 5.2. In particular Proposition 5.3 allows to identify

Q∗ as the law of a semimartingale with Markovian drift. On the other hand, the subproblem

inf
P∈PU
Jε(Q,P) in Section 5.1 is a minimization on P, the probability Q remaining unchanged. The

solution arises via a pointwise real minimization providing the function uP ∈ B([0, T ] × Rd,U)

associated with the optimal probability P by Proposition 5.2.

The next theorem proves that the regularized Problem (1.5) has as Markovian solution.

Theorem 3.9. Assume Hypotheses 3.1 and 3.5 hold. Then the regularized Problem (1.5) has a solution
(P∗ε ,Q∗ε ) ∈ A, in the sense that J ∗ε = J (Q∗ε ,P∗ε ). Moreover, under P∗ε , the canonical process is a Markov
process and uP∗ε related to P∗ε by Definition 3.2 is such that uP∗ε (r,X) = uP

∗
ε (r,Xr).

In fact by a slight abuse of notation uP
∗
ε denotes a function on [0, T ]×C([0, T ]) and [0, T ]×Rd at the

same time. The proof of this result relies on technical lemmas. For the convenience of the reader

it is postponed to Appendix 7.3. The following proposition justifies the use of the regularized

Problem (1.5) to approximatively solve the initial stochastic optimal control Problem (1.3).

Proposition 3.10. We suppose Hypothesis 3.1 and item 1. of Hypothesis 3.5. Let ε > 0, ε′ ≥ 0 and let Pε′ε
be the first component of an ε′-solution of Problem (1.5) in the sense of Definition 2.3 with E = A. We set
Y ε′
ε :=

∫ T
0 f(r,Xr, u

ε′
ε (r,X))dr + g(XT ), where uε′ε corresponds to the uPε

′
ε appearing in decomposition

(3.1). Then the following holds.

1. There is a constant C∗ depending only on Cb,σ, Cf,g, p, d, T of Hypothesis 3.5 1. and the diameter of
U such that V arPε

′
ε (Y ε′

ε ) ≤ C∗, where V arPε
′
ε (Y ε′

ε ) denotes the variance of Y ε′
ε under Pε′ε .

2. We have
0 ≤ J(Pε

′
ε )− J∗ ≤ ε

2
V arP

ε′
ε (Y ε′

ε ) + ε′,

where we recall that J was defined in (1.3).

Remark 3.11. 1. Let (P∗ε ,Q∗ε ) be a solution of Problem (1.5) given by Theorem 3.9. Applying Proposi-
tion 3.10 with ε′ = 0 implies that P∗ε is an ε

2V ar
P∗ε (Y 0

ε )-solution of the original Problem (1.3).

2. By definition of infimum, for ε′ > 0, the existence of an ε′-solution is always guaranteed without any
convex assumption on the running cost f w.r.t. the control variable.

3. In the sequel, assuming that f is convex w.r.t. the control variable, we will propose an algorithm
providing a sequence of ε′n-solutions of the regularized Problem (1.5), where ε′n → 0 as n → +∞.

This will also provide a sequence of ( ε2V ar
Pε
′
n
ε (Y

ε′n
ε ) + ε′n)-solutions to the original Problem (1.3)

(with a fixed ε > 0).
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Proof (of Proposition 3.10). We first prove item 1. Let (Pε′ε ,Qε′
ε ) be an ε′-solution of Problem (1.5).

By Hypothesis 3.5, for all ε > 0, one has

V arP
ε′
ε [Y ε′

ε ] ≤ EPε′ε
[
(Y ε′
ε )2

]
≤ 8C2

f,g(T ∨ 1)

(
1 + EP∗ε

[
sup

0≤t≤T
|Xt|2p

])
.

Combining this inequality with Lemma 3.6 implies the existence of a constant C∗ depending only

on Cb,σ, Cf,g, p, d, T and the diameter of U such that V arP
ε′
ε [Y ε′

ε ] ≤ C∗. We go on with the proof of

item 2. First a direct application of Lemma 7.17 with η = Y ε′
ε yields

0 ≤ EPε′ε [Y ε′
ε ]−

(
−1

ε
logEPε′ε [exp(−εY ε′

ε )]

)
≤ ε

2
V arP

ε′
ε [Y ε′

ε ].

Let then Q̃ be the solution of inf
Q∈P(Ω)

Jε(Q,Pε
′
ε ) given by (3.6). Then by (3.7)Jε(Q̃,Pε

′
ε ) = −1

ε logEPε′ε [exp(−εY ε′
ε )],

which implies

0 ≤ EPε′ε [Y ε′
ε ]− Jε(Q̃,Pε

′
ε ) ≤ ε

2
V arP

ε′
ε [Y ε′

ε ]. (3.8)

Observe thatJε(Q̃,Pε
′
ε ) ≤ Jε(Qε′

ε ,Pε
′
ε ) ≤ J ∗ε +ε′. Besides, as Problem (1.3) rewrites inf

(P,Q)∈A
Jε(Q,P) s.t. Q =

P, it holds that J ∗ε ≤ J∗. Then

Jε(Q̃,Pε
′
ε )− J∗ ≤ J ∗ε + ε′ − J∗ ≤ ε′. (3.9)

Using (3.8) and (3.9) finally yields

0 ≤ J(Pε
′
ε )− J∗ = EPε′ε [Y ε′

ε ]− Jε(Q̃,Pε
′
ε ) + Jε(Q̃,Pε

′
ε )− J∗ ≤ ε

2
V arP

ε′
ε [Y ε′

ε ] + ε′. (3.10)

This concludes the proof of item 2.

From now on, ε will be implicit in the cost function Jε to alleviate notations.

4 Alternating minimization algorithm

In this section we present an alternating algorithm for solving the regularized Problem (1.5). Let

(P0,Q0) ∈ A. We will define a sequence (Pk,Qk)k≥0 verifying by the alternating minimization

procedure

Qk+1 = arg min
Q∈P(Ω)

J (Q,Pk), Pk+1 ∈ arg min
P∈PU

J (Qk+1,P). (4.1)

4.1 Convergence result

The convergence of alternating minimization algorithms has been extensively studied in particu-

lar in Euclidean spaces. In general the proof of convergence results requires joint convexity and

smoothness properties of the objective function, see [2]. The major difficulty in our case is that the

convexity only holds w.r.t Q (in fact the set PU is not even convex). To prove the convergence we

need to rely on other techniques which exploit the properties of the entropic regularization. Let

us first assume that the initial probability measure P0 ∈ PU is Markovian in the following sense.
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Hypothesis 4.1. P0 ∈ PMarkov
U . In particular, there exists u0 ∈ B([0, T ] × Rd,U) such that P0 = Pu0 ,

i.e. P0 is solution of a martingale problem with operator Lu0 given by (3.3), see Remark 3.3.

For a fixed Borel function β : [0, T ]× Rd → Rd we set

Fβ : (t, x, u) ∈ [0, T ]× Rd × U 7→ f(t, x, u) +
1

2ε
|σ−1(t, x)(β(t, x)− u)|2. (4.2)

Let P0 ∈ PU satisfying Hypothesis 4.1. We set Q0 = P0. We build a sequence (Pk,Qk)k≥0 of

elements of A according to the following procedure. Let k ≥ 1.

• Let

dQk :=
exp

(
−ε
∫ T

0 f(r,Xr, u
k−1(r,Xr))dr − εg(XT )

)
EPk−1

[
exp

(
−ε
∫ T

0 f(r,Xr, uk−1(r,Xr))dr − εg(XT )
)]dPk−1. (4.3)

By Proposition 5.3 there exists a measurable function βk : [0, T ] × Rd → Rd such that under

Qk the canonical process decomposes as

Xt = x+

∫ t

0
b(r,Xr)dr +

∫ t

0
βk(r,Xr)dr +MQk

t , (4.4)

where MQk is a martingale such that 〈MQk〉· =
∫ ·

0 σσ
>(r,Xr)dr.

• Let

Pk := Pu
k
, where (t, x) 7→ uk(t, x) := arg min

ν∈U
Fβk(t, x, ν), (4.5)

and Fβk is given by (4.2). By Proposition 5.2 uk is measurable, Pk is well-defined and under

Pk the canonical process decomposes as

Xt = x+

∫ t

0
b(r,Xr)dr +

∫ t

0
uk(r,Xr)dr +MPk

t , (4.6)

where MPk is a martingale such that 〈MPk〉· =
∫ ·

0 σσ
>(r,Xr)dr.

Lemma 4.2 below states that the sequence (Pk,Qk)k≥0 defined above verifies the alternating min-

imization procedure (4.1).

Lemma 4.2. Let P0 = Q0 ∈ PU satisfying Hypothesis 4.1. Let (Pk,Qk)k≥0 be given by the recursion (4.3)

and (4.5). The following holds for k ≥ 1.

(i) Qk = arg min
Q∈P(Ω)

J (Q,Pk−1), andJ (Qk,Pk−1) = −1
ε logEPk−1

[
exp

(
−ε
∫ T

0 f(r,Xr, u
k−1(r,Xr))dr − εg(XT )

)]
.

Moreover, under Qk the canonical process is a Markov process and βk ∈ Lq(dt ⊗ Qk) for all
1 < q < 2.

(ii) Pk ∈ arg min
P∈PU

J (Qk,P).

The proof is a direct application of Proposition 5.3 for item (i) and Proposition 5.2 for item (ii).

The main result of this section is given below.
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Theorem 4.3. Let P0 = Q0 ∈ PU satisfying Hypothesis 4.1. Assume also that Hypothesis 3.1, 3.5
hold. Let (Pk,Qk)k≥0 be given by the recursion (4.3) and (4.5). Then J (Qk,Pk) ↘

k→+∞
J ∗, where

J ∗ = inf
(P,Q)∈A

J (Q,P).

The proof of the theorem uses the so-called three and four-points properties introduced in [12].

The whole convergence proof makes use of the specific features of the sub-problems inf
P∈PU

J (Q,P),

whose study is the object of Section 5.1, and inf
Q∈P(Ω)

J (Q,P) which is the object of Section 5.2.

Lemma 4.4. (Three points property). For all Q ∈ P(Ω),

1

ε
H(Q|Qk+1) + J (Qk+1,Pk) ≤ J (Q,Pk). (4.7)

Proof. We can suppose that H(Q|Pk) < +∞, otherwise J (Q,Pk) = +∞ and the inequality holds

trivially. Let

ϕ : X 7→
∫ T

0
f(s,Xs, u

k(s,Xs))ds+ g(XT ),

where uk (and Pk) have been defined in (4.5).

By the definition (4.3) we have

dPk =
exp(−εϕ(X))

EPk [exp(−εϕ(X))]
dQk+1.

and we get

1

ε
H(Q|Qk+1) =

1

ε
EQ
[
log

dQ
dPk

+ log
dPk
dQk+1

]
=

1

ε
H(Q|Pk) +

1

ε
logEPk [exp(−εϕ(X))] + EQ[ϕ(X)]

= J (Q,Pk) +
1

ε
logEPk [exp(−εϕ(X))] .

By Lemma 4.2 item (i) J (Qk+1,Pk) = −1
ε logEPk [exp(−εϕ(X))] . Thus

1

ε
H(Q|Qk+1) + J (Qk+1,Pk) = J (Q,Pk).

Remark 4.5. Whenever H(Q|Pk) < +∞, previous proof shows that (4.7) is indeed an equality.

Lemma 4.6. (Four points property). For all (P,Q) ∈ A

J (Q,Pk+1) ≤ 1

ε
H(Q|Qk+1) + J (Q,P). (4.8)

Proof. Let (P,Q) ∈ A. If H(Q|Qk+1) = +∞ or J (Q,P) = +∞, the inequality is trivial. We then

assume until the end of the proof that H(Q|Qk+1) < +∞ and J (Q,P) < +∞.
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By construction (see (4.4)), there exists a measurable function βk+1 : [0, T ]×Rd → Rd such that

under Qk+1 the canonical process has decomposition

Xt = x+

∫ t

0
b(r,Xr)dr +

∫ t

0
βk+1(r,Xr)dr +M

Qk+1

t ,

where MQk+1 is a martingale under Qk+1 and 〈MQk+1〉t =
∫ t

0 σσ
>(r,Xr)dr.

We now characterize the probability measure Q. By Lemma 7.4 1. in the Appendix with P =

Qk+1 and the fact that H(Q|Qk+1) < +∞, there exists a progressively measurable process with

respect to the canonical filtration α = α(·, X) such that under Q the canonical process has the

decomposition

Xt = x+

∫ t

0
b(r,Xr)dr +

∫ t

0
βk+1(r,Xr)dr +

∫ t

0
σσ>(r,Xr)α(r,X)dr +MQ

t , (4.9)

where MQ is a martingale such that 〈MQ〉t =
∫ t

0 σσ
>(r,Xr)dr, and

H(Q|Qk+1) ≥ 1

2
EQ
[∫ T

0
|σ>(r,Xr)α(r,X)|2dr

]
. (4.10)

We set

β(t,X) := βk+1(t,Xt) + σσ>(t,Xt)α(t,X), (4.11)

so that (4.10) can be rewritten

H(Q|Qk+1) ≥ 1

2
EQ
[∫ T

0
|σ−1(r,Xr)(β(r,X)− βk+1(r,Xr))|2dr

]
. (4.12)

We now prove the four-points property (4.8). Let then uk+1 be the function introduced in (4.5)

replacing k with k + 1. Let Fβ be given by (4.2). Since f is convex in the u variable, for all

(r,X) ∈ [0, T ]× Ω one has

Fβ(r,X, uP(r,X))− Fβ(r,X, uk+1(r,Xr)) ≥ 〈∂uf(r,Xr, u
k+1(r,Xr)), u

P(r,Xr)− uk+1(r,Xr)〉

+
1

2ε
|σ−1(r,Xr)(β(r,X)− uP(r,X))|2

− 1

2ε
|σ−1(r,Xr)(β(r,X)− uk+1(r,Xr))|2,

(4.13)

where ∂uf(r,Xr, ν) denotes a subgradient of f in ν ∈ U. We focus on the last two terms in the

previous inequality. Applying the algebraic equality |a|2 − |b|2 = |a− b|2 + 2〈a− b, b〉, with

a = σ−1(β − uP), b = σ−1(β − uk+1),

where we have omitted the dependencies in (r,X) of all the quantities at hand for conciseness, we

have

1

2ε
|σ−1(β − uP)|2 − 1

2ε
|σ−1(β − uk+1)|2 =

1

2ε
|σ−1(uP − uk+1)|2 +

1

ε
〈σ−1(uP − uk+1), σ−1(uk+1 − β)〉.
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On the other hand

1

ε
〈σ−1(uP − uk+1), σ−1(uk+1 − β)〉 =

1

ε
〈σ−1(uP − uk+1), σ−1(uk+1 − βk+1)〉

+
1

ε
〈σ−1(uP − uk+1), σ−1(βk+1 − β)〉.

Combining what precedes yields

1

2ε
|σ−1(β − uP)|2 − 1

2ε
|σ−1(β − uk+1)|2 =

1

2ε
|σ−1(uP − uk+1)|2 +

1

ε
〈uP − uk+1, (σ−1)>σ−1(uk+1 − βk+1)〉

+
1

ε
〈σ−1(uP − uk+1), σ−1(βk+1 − β)〉.

From the inequality (4.13) we then get

Fβ(r,X, uP(r,X))− Fβ(r,X, uk+1(r,Xr)) ≥
1

2ε
|σ−1(r,Xr)(u

P(r,X)− uk+1(r,Xr))|2

+
1

ε
〈σ−1(r,Xr)(β

k+1(r,X)− β(r,X)), σ−1(r,Xr)(u
P(r,Xr)− uk+1(r,Xr))〉

+ 〈∂uf(r,Xr, u
k+1(r,Xr)) +

1

ε
(σ−1)>σ−1(r,Xr)(u

k+1(r,Xr)− βk+1(r,Xr)), u
P(r,X)− uk+1(r,Xr)〉.

(4.14)

By definition (4.5) uk+1(t, x) is the minimum of Fβk+1(t, x, .) for all (t, x) ∈ [0, T ] × Rd, where the

application Fβk+1 is the one defined in (4.2). We recall that Fβk+1 is (strictly) convex in u with

subgradient ∂uf + 1
ε (σ
−1)>σ−1(u− βk+1). Consequently, for the generic probability P we get that

the term on third line of inequality (4.14) is non-negative by the first order optimality condition

for subdifferentiable functions at uk+1. Next by the classical inequality |ab| ≤ a2/2 + b2/2 for all

(a, b) ∈ R2, term on the second line of (4.14) gives

1

ε
〈σ−1(r,Xr)(β

k+1(r,Xr)− β(r,X)), σ−1(r,Xr)(u
P(r,X)− uk+1(r,Xr))〉

≥ − 1

2ε
|σ−1(r,Xr)(u

P(r,X)− uk+1(r,Xr))|2

− 1

2ε
|σ−1(r,Xr)(β(r,X)− βk+1(r,Xr))|2.

From inequality (4.14) we get

Fβ(r,X, uP(r,X)) +
1

2ε
|σ−1(r,Xr)(β(r,X)− βk+1(r,Xr))|2 ≥ Fβ(r,X, uk+1(r,Xr)),

and integrating the previous inequality with respect to r ∈ [0, T ] yields∫ T

0
Fβ(r,X, uP(r,X))dr+

1

2ε

∫ T

0
|σ−1(r,Xr)(β(r,X)−βk+1(r,Xr))|2dr ≥

∫ T

0
Fβ(r,X, uk+1(r,Xr))dr.

(4.15)

By (4.9) and (4.11), under Q, the canonical process decomposes as

Xt = x+

∫ t

0
b(r,Xr)dr +

∫ t

0
β(r,X)dr +MQ

t , (4.16)
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where MQ is a martingale verifying 〈MQ〉· =
∫ ·

0 σσ
>(r,Xr)dr. We recall the decomposition (3.1).

As H(Q|P) < +∞ by assumption, Lemma 7.4 item 1. applied to P with δ = b + uP states the

existence of a predictable process α̃ such that

Xt = x+

∫ t

0
(b+ uP)(r,X)dr +

∫ t

0
σσ>(r,Xr)α̃(r,X)dr + M̃Q

t , (4.17)

where M̃Q is a local martingale (with respect to the canonical filtration). Identifying the bounded

variation component between (4.17) and decomposition (4.16) under Q, yields uP(r,Xr)−β(r,X) =

σσ>(r,Xr)α̃(r,X) and (7.16) in Lemma 7.4 item 1. implies that

H(Q|P) ≥ 1

2
EP
[∫ T

0
|σ−1(r,Xr)(u

P(r,Xr)− β(r,X))|2dr
]
. (4.18)

Then recalling the definition of J in (1.5), by (4.18)

J (Q,P) ≥ EQ
[∫ T

0
Fβ(r,X, uP(r,X))dr

]
. (4.19)

From (4.19) and (4.12) it holds

J (Q,P)+
1

ε
H(Q|Qk+1) ≥ EQ

[∫ T

0
Fβ(r,X, uP(r,X))dr

]
+

1

2ε
EQ
[∫ T

0
|σ−1(r,Xr)(β(r,X)− βk+1(r,Xr))|2dr

]
,

and by (4.15)

J (Q,P) +
1

ε
H(Q|Qk+1) ≥ EQ

[∫ T

0
Fβ(r,X, uk+1(r,X))dr

]
.

In particular, EQ
[∫ T

0 Fβ(r,X, uk+1(r,X))dr
]
< +∞, hence EQ

[∫ T
0 |σ

−1(r,Xr)(u
k+1(r,Xr)− β(r,X))|2dr

]
<

+∞. Then by Lemma 7.4 item 2. applied to P = Pk+1 with δ = b+ uk+1 and γ = b+ β, we have

H(Q|Pk+1) =
1

2
EQ
[∫ T

0
|σ−1(r,Xr)(u

k+1(r,Xr)− β(r,X))|2dr
]
, (4.20)

and by (4.20)

J (Q,Pk+1) = EQ
[∫ T

0
Fβ(r,X, uk+1(r,X))dr

]
. (4.21)

Finally applying (4.21) in the previous inequality we get

J (Q,P) +
1

ε
H(Q|Qk+1) ≥ J (Q,Pk+1).

This concludes the proof.

Remark 4.7. The three points property holds even if the set U is not compact, but our proof of the four
points property crucially relies on the uniqueness in law of Pk+1 which is in particular guaranteed when U
is compact. Otherwise it is unclear how to adapt the proof.
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Proof (of Theorem 4.3). Lemmas 4.4 and 4.6 state that the objective function has the three and

four points property. It follows from Theorem 2 in [12] that (J (Qk,Pk))k≥0 converges and

lim
k→+∞

J (Qk,Pk) = J ∗.

We conclude the section by stating a lemma which is a reformulation in our setting of Proposition

3.9 in [5]. This allows us to estimate the drift βk in the algorithm via a conditional derivative.

Lemma 4.8. Assume Hypothesis 3.1. For almost all 0 ≤ t < T , it holds that

lim
h↓0

EQk
[
Xt+h −Xt

h

∣∣∣ Xt

]
= b(t,Xt) + βk(t,Xt) in L1(Qk). (4.22)

Proof. We fix some 1 < p < 2. By decomposition (4.4), in order to apply Lemma 7.18, we are going

to prove that ‖b‖Lp(dt⊗Qk) + ‖βk‖Lp(dt⊗Qk) < +∞. On the one hand, as f, g ≥ 0, by (4.3) one has

C∞ := ‖dQk/dPk−1‖∞ < +∞. By Lemma 3.6 and having b linear growth we get

‖b‖Lp(dt⊗Qk) = EQk
[∫ T

0
|b(r,Xr)|pdr

]
≤ C∞EPk−1

[∫ T

0
|b(r,Xr)|pdr

]
< +∞.

On the other hand, ‖βk‖Lp(dt⊗dQk) < +∞ by Lemma 4.2 item (i). Consequently Lemma 7.18 and

Remark 7.19 yield the result.

4.2 Entropy penalized Monte Carlo algorithm

The previous alternating minimization procedure suggests a Monte Carlo algorithm to approx-

imate a solution to Problem (1.3). In the following, 0 = t0 ≤ t1 < ... < tM = T is a regular

subdivision of the time interval [0, T ] with step ∆t, N ≥ 0 the number of particles and K the num-

ber of descent steps of the algorithm. Pr will denote the set of Rd valued polynomials defined on

Rd of degree ≤ r. Recall that for all û ∈ B([0, T ] × Rd,U), Pû is the probability measure given by

Proposition 3.4.

The estimation of the drift β̂k in Step 2 of the algorithm below is performed via regression. It

is inspired by (4.22) in Lemma 4.8, which is a reformulation in our setting of Proposition 3.9 in [5].

The term in the argmin is a weighted Monte Carlo approximation of the expectation of X
n
m+1−Xn

m

∆t

under the exponential twist probability of Pûk−1
.
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Algorithm 1 Entropy penalized Monte Carlo algorithm

Parameters initialization: M,N,K ∈ N∗, r ∈ N, ∆t := T
M , x ∈ Rd, û0 ∈ B([0, T ]× Rd,U).

Simulate: (Xn)1≤n≤N , N iid Monte Carlo path simulations under P̂0 = Pû0
on the time-grid

(tm)0≤m≤M with Xn = (Xn
m)0≤m≤M and Xn

0 = x for all 1 ≤ n ≤ N .

for 1 ≤ k ≤ K do

Step 1. Compute the weights (Dn)1≤n≤N by

Dn = exp

(
−ε

M−1∑
m=0

f(tm, X
n
m, û

k−1(tm, X
n
m))∆t− εg(Xn

M )

)
.

Step 2. Compute β̂k = (β̂km)0≤m≤M−1 in (4.4) by the weighted Monte Carlo approximation

of (4.22)

β̂km = arg min
ϕ∈Pr

1∑N
`=1D`

N∑
n=1

Dn

∣∣∣∣ϕ(Xn
m)−

(
Xn
m+1 −Xn

m

∆t
− b(tm, Xn

m)

)∣∣∣∣2 .
Step 3. Simulate new iid Monte Carlo paths (Xn)1≤n≤N under Pûk where for 0 ≤ m ≤M−1

ûk(t, x) = arg min
ν∈U

f(tm, x, ν) +
1

2ε
|σ−1(tm, x)(β̂km(x)− ν)|2, t ∈ [tm, tm+1[.

end for

return ûK

An interest of the entropy penalized Monte Carlo algorithm is that in Lemma 4.8, (4.22) can

be independently estimated by regression techniques at each time step tm, 1 ≤ m ≤ M , while

in dynamic programming approaches, conditional expectations are recursively computed in time,

implying an error accumulation from time tM = T to tm. Moreover one can expect that the

trajectories simulated under Pûk localize around the optimally controlled trajectories when the

number of iterations k of the algorithm increases to +∞. Hence the computation effort to estimate

the optimal control focuses on this specific region of the state space, whereas standard regression

based Monte Carlo approaches are blindly exploring the state space with forward Monte Carlo

simulations of the process.

5 Solving the subproblems

In this short section we aim at describing the two subproblems inf
P∈PU
J (Q,P) and inf

Q∈PΩ

J (Q,P)

appearing in the alternating minimization algorithm proposed in Section 4.

17



5.1 Pointwise minimization subproblem

Let us first describe the minimization inf
P∈PU
J (Q,P) where the probability Q ∈ P(Ω) is fixed and

is such that, under Q, the canonical process is a fixed Itô process. In this section we assume

that Hypotheses 3.1 and 3.5 are fulfilled. We introduce the following assumption for a given

probability Q on the canonical space.

Hypothesis 5.1. There is a Borel function β : [0, T ] × Rd → R for which the canonical process X
decomposes as

Xt = x+

∫ t

0
b(r,Xr)dr +

∫ t

0
β(r,Xr)dr +MQ

t , (5.1)

where 〈MQ〉· =
∫ ·

0 σσ
T (r,Xr)dr.

For the proposition below we recall that if u : [0, T ]×Rd → R is a bounded measurable function

then Pu ∈ PMarkov
U denotes the associated probability measure given by Proposition 3.4.

Proposition 5.2. Assume that Hypotheses 3.1, 3.5 are fulfilled. Suppose also that Q fulfills Hypothesis
5.1. Then, the function (t, x) 7→ u(t, x) where

u(t, x) := arg min
ν∈U

Fβ(t, x, ν), (5.2)

and Fβ is given by (4.2), is well-defined and measurable. Moreover J (Q,Pu) = inf
P∈PU
J (Q,P).

Proof. As Fβ(t, x, .) is continuous and strongly convex on the convex compact set U, it admits

a unique minimum on U, denoted u(t, x). The measurability of the application (t, x) 7→ u(t, x)

follows e.g. from Theorem 18.19 in [1].

Let then P ∈ PU. We want to show that

J (Q,P) ≥ J (Q,Pu). (5.3)

Recall that, by Definition 3.2, there exists a progressively measurable process uP taking values in

U such that under P the canonical process has decomposition

Xt = x+

∫ t

0
b(r,Xr)dr +

∫ t

0
uPrdr +MP

t , (5.4)

where MP is a martingale and 〈MP〉t =
∫ t

0 σσ
>(r,Xr)dr. If J (Q,P) = ∞ then inequality (5.3) is

trivially fulfilled. We consider now P ∈ PU such that J (Q,P) < +∞.

Then H(Q|P) < +∞ and by Lemma 7.4 item 1. there exists a process α of the form α = α(·, X)

such that, under Q, X decomposes as

Xt = x+

∫ t

0
(b(r,Xr) + uPr )dr +

∫ t

0
σσ>(r,Xr)α(r,X)dr + M̃Q

t , (5.5)

and

H(Q|P) ≥ 1

2
EQ
[∫ T

0
|σ>(r,Xr)α(r,X)|2dr

]
.
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Identifying the bounded variation and the martingale components in decompositions (5.1) and

(5.5) under Q we get σ>(t,Xt)α(t,X) = σ−1(t,Xr)(β(t,Xt) − uPt ), dt ⊗ dQ-a.e. and M̃Q = MQ.

Hence

H(Q|P) ≥ 1

2ε
EQ
[∫ T

0
|σ−1(r,Xr)(β(r,Xr)− uPr )|2dr

]
.

Previous inequality yields

J (Q,P) = EQ
[∫ T

0
f(r,Xr, u

P
r )dr

]
+

1

ε
H(Q|P)

≥ EQ
[∫ T

0
f(r,Xr, u

P
r )dr +

1

2ε

∫ T

0
|σ−1(r,Xr)(β(r,Xr)− uPr )|2dr

]
.

(5.6)

Proposition 5.1 in [9] and the tower property of the conditional expectation gives the existence of

v ∈ B([0, T ] × Rd,U) such that v(t,Xt) = EQ[uPt |Xt] dt ⊗ dQ-a.e. Fubini’s theorem and Jensen’s

inequality for the conditional expectation applied to (5.6) then yields

J (Q,P) ≥ EQ
[∫ T

0
f(r,Xr, v(r,Xr))dr +

1

2ε

∫ T

0
|σ−1(r,Xr)(β(r,Xr)− v(r,Xr))|2dr

]
= EQ

[∫ T

0
Fβ(r,Xr, v(r,Xr))dr

]
.

(5.7)

By the definition (5.2) of u, it holds that

EQ
[∫ T

0
Fβ(r,Xr, v(r,Xr))dr

]
≥ EQ

[∫ T

0
Fβ(r,Xr, u(r,Xr))dr

]
. (5.8)

In particular

EQ
[∫ T

0
|σ−1(r,Xr)(β(r,Xr)− u(r,Xr))|2dr

]
< +∞.

By item 2. of Lemma 7.4 with δ(t,X) = u(t,Xt) + b(t,Xt) and γ(t,X) = β(t,Xt) + b(t,Xt), we

have that H(Q|Pu) = 1
2E

Q
[∫ T

0 |σ
−1(r,Xr)(β(r,Xr)− u(r,Xr))|2dr

]
. Hence

J (Q,P) ≥ EQ
[∫ T

0
Fβ(r,Xr, v(r,Xr))dr

]
≥ EQ

[∫ T

0
Fβ(r,Xr, u(r,Xr))dr

]
= J (Q,Pu).

This concludes the proof of inequality (5.3).

5.2 Exponential twist subproblem

In this section we focus on the minimization inf
Q∈P(Ω)

J (Q,P), P ∈ PMarkov
U being the reference

probability. We recall that Q∗ is the solution of inf
Q∈P(Ω)

J (Q,P) given by Proposition 3.8.

Proposition 5.3. Assume that, under P, the canonical process decomposes as

Xt = x+

∫ t

0
b(r,Xr)dr +

∫ t

0
u(r,Xr)dr +MP

t ,
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where MP is a martingale such that 〈MP〉· =
∫ ·

0 σσ
>(r,Xr)dr and u ∈ B([0, T ] × Rd,U). Then there

exists β ∈ B([0, T ]× Rd,Rd) such that under Q∗ the canonical process decomposes as

Xt = x+

∫ t

0
b(r,Xr)dr +

∫ t

0
β(r,Xr)dr +MQ∗

t ,

where MQ∗ is a martingale such that 〈MQ∗〉· =
∫ ·

0 σσ
>(r,Xr)dr. Moreover, X is a Markov process under

Q∗ and β ∈ Lq(dt⊗ dQ∗) for all 1 < q < 2.

Proof. Recall that by Remark 3.3, P is a solution in law of the SDE

dXt = b(t,Xt)dt+ u(t,Xt)dt+ σ(t,Xt)dWt, X0 = x.

The result is stated in Section 5 of [8].

6 Application to the control of thermostatic loads in power systems

We consider in this section the problem of controlling a large, heterogeneous population of N air-

conditioners in order that their overall consumption tracks a given target profile r = (rt)0≤t≤T on

a given time horizon [0, T ]. This problem was introduced in [23]. Air-conditioners are aggregated

in d clusters indexed by 1 ≤ i ≤ d depending on their characteristics. We denote by Ni the

number of air-conditioners in the cluster i. Individually, the temperature Xi,j in the room with

air-conditioner j in cluster i is assumed to evolve according to the following dynamics

dXi,j
t = −θi(Xi,j

t − xiout)dt− κiP imaxu
i,j
t dt+ σi,jdW i,j

t , Xi,j
0 = xi,j0 , 1 ≤ i ≤ d, 1 ≤ j ≤ Ni, (6.1)

where : xiout is the outdoor temperature; θi is a positive thermal constant; κi is the heat exchange

constant; P imax is the maximal power consumption of an air-conditioner in cluster i. W i,j are

independent Brownian motion that represent random temperature fluctuations inside the rooms,

such as a window or a door opening. For each cluster, a local controller decides at each time step

to turn ON or OFF some conditioners in the cluster i by setting ui,j = 1 or 0 in order to satisfy a

prescribed proportion of active air-conditioners. We are interested in the global planner problem

which consists in computing the prescribed proportion ui = 1
Ni

∑Ni
j=1 u

i,j of air conditioners ON

in each cluster in order to track the given target consumption profile r = (rt)0≤t≤T . For each

1 ≤ i ≤ d the average temperature Xi = 1
N

∑Ni
j=1X

i,j in the cluster i follows the aggregated

dynamics

dXi
t = −θi(Xi

t − xiout)dt− κiP imaxuitdt+ σidW i
t , X

i
0 = xi0, (6.2)

with

W i
t =

1

Ni

Ni∑
j=1

W i,j
t , σi =

1

Ni

Ni∑
j=1

σi,j and xi0 =
1

Ni

Ni∑
j=1

xi,j0 .
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We consider the stochastic control Problem (1.3) on the time horizon [0, T ] with U = [0, 1]d and

T = 2h. The running cost f is defined for any (t, x, u) ∈ [0, T ]× Rd × U such that

f(t, x, u) := µ

(
d∑
i=1

ρiui − rt

)2

+
1

d

d∑
i=1

(
γi(ρiui)

2 + ηi(xi − ximax)2
+ + ηi(x

i
min − xi)2

+

)
, (6.3)

where ρi = NiP
i
max/(

∑d
j=1NjP

j
max), the first term in the above cost function penalizes the devia-

tion of the the overall consumption
∑

i ρiu
i
t with respect to the target consumption rt, γi quantifies

the penalization for irregular controls in cluster i while ηi penalizes the exits of the mean tem-

peratures in the cluster i from a comfort band [ximin, x
i
max]. Finally the terminal cost is given

by g(x) = 1
d

∑d
i=1 |xi − xitarget|2 where xitarget is a target temperature for cluster i. Clearly the

cost functions f and g satisfy Hypothesis 3.5. To estimate an optimal policy u∗ for this prob-

lem we use Algorithm 1 with a time step tm+1 − tm = 60s for m = 0, · · ·M . The parameters

of the problem are the same as in [23]. We perform Ngrid = 100 independent runs of the algo-

rithm, providing (ûi)1≤i≤Ngrid estimations of an optimal control on the whole period t0, t1, · · · tM .

For each estimation ûi, we simulate Nsimu = 1000 iid trajectories of the process controlled by

ûi and compute the associated costs (J`(ûi))1≤`≤Nsimu . The average cost is finally estimated by

J = 1
NgridNsimu

∑Ngrid
i=1

∑Nsimu
`=1 J`(ûi).

To evaluate the performances of our approach, we compare it with the classical regression-

based Monte Carlo technique relying on a BSDE representation of the problem implemented in

[23]. We underline that we only aim to obtain lower costs compared to the BSDE technique

in [23], there are no benchmark costs. The results are reported in Table 1 for dimensions d =

1, 2, 5, 10, 15, 20. For both methods, N = 103, 104, 5× 104, 105 particles are used to estimate an

optimal policy for each dimension d. For the entropy penalized Monte Carlo algorithm, we use a

regularization parameter ε = 70 and K = 20 iterations for dimensions d = 1, 2, 5, 10 and ε = 20

and K = 60 iterations for dimensions d = 15, 20; concerning the approximation in Step 1 of the

Algorithm 1 we limit ourselves to the set P0 of polynomials of degree 0 as the problem is very

localized in space. On Table 1 we can observe very good performances that seem to be weakly

sensitive to the dimensions of the problem. On Figure 1, we have reported the cost J (Qk,Pk)
and J (Pk,Pk) = EPk

[∫ T
0 f(r,Xr, u

k(r,Xr))dr + g(XT )
]

as a function of the iteration number k

obtained on one run of the algorithm with d = 20 and N = 50000. Theses costs are compared

to a reference cost obtained with a run of our algorithm with N = 100000 particles. As expected

J (Qk,Pk) is decreasing and converging to a limiting value. It is interesting to notice that J (Pk,Pk)
is also decreasing and very close to J (Qk,Pk). Hence, it seems that the parameter ε does not need

to be so small to obtain a good approximation of the original control Problem (1.3).
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N = 103 N = 104 N = 5× 104 N = 105

Method Entropy BSDE Entropy BSDE Entropy BSDE Entropy BSDE

d = 1 7.60(1e−6) 7.61(6e−4) 7.59(1e−6) 7.60(3e−4) 7.59(1e−6) 7.60(3e−4) 7.59(1e−6) 7.60(3e−4)

d = 2 7.82(2e−6) 8.24(7e−2) 7.79(5e−7) 7.77(1e−3) 7.78(5e−7) 7.79(2e−4) 7.78(5e−7) 7.78(1e−4)

d = 5 7.34(2e−6) 14.83(0.64) 7.30(5e−7) 7.69(6e−2) 7.30(3e−7) 7.28(2e−3) 7.30(3e−7) 7.27(8e−4)

d = 10 5.96(2e−6) 28.14(0.64) 5.88(8e−7) 16.06(0.38) 5.87(5e−7) 7.96(0.25) 5.87(4e−7) 6.12(0.08)

d = 15 9.15(7e−5) 37.91(0.60) 8.32(2e−5) 32.20(0.63) 8.11(5e−6) 26.69(0.65) 8.08(3e−6) 22.54(0.56)

d = 20 8.80(4e−5) 34.83(0.45) 7.91(1e−5) 30.66(0.59) 7.71(3e−6) 26.21(0.69) 7.68(2e−6) 23.26(0.59)

Table 1: Simulated costs (within parenthesis, standard deviation) for the relative entropy penalization scheme and a classical BSDE
scheme.

Figure 1: Costs associated with the iterates generated by the entropy penalized Monte Carlo algo-

rithm in dimension d = 20 with N = 50000.

7 Appendices

7.1 Decomposition of a semimartingale in its own filtration

We give here a proposition discussing the decomposition of a semimartingale in its own filtration.

Even though it is a natural result, we have decided to carefully write its proof, as it raises sev-

eral measurability issues. Recall that given a process X defined on a probability space (Ω,F ,P),

(FXt )t∈[0,T ] denotes the natural filtration of X .

Proposition 7.1. Let (Ω,F , (Ft),P) be a filtered probability space. Let u be a progressively measurable pro-
cess such that EP

[∫ T
0 |ur|dr

]
< +∞. Then there exists a measurable function φ : [0, T ]×C([0, T ],Rd)→

Rd such that the following properties hold.
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(i) The map (t,X) 7→ φ(t,X) is progressively measurable with respect to (FXt )

EP[ut | FXt ] = φ(t,X), dPa.s.∀t ∈ [0, T ], (7.1)

so that φ(t,X) is a version of the conditional expectation.

(ii) Let X be a continuous (Ft)-semimartingale. with decomposition

Xt = x+

∫ t

0
urdr +MP

t ,

where MP is an (Ft)-martingale. Then X has the decomposition

Xt = x+

∫ t

0
φ(r,X)dr +MX

t ,

where MX is an ((FXt ),P)-martingale with 〈MX〉 = 〈M〉.

Proof. We follow closely the proof of Theorem 7.17 in [28]. As t 7→ EP[ut | FXt ] has a B([0, T ])⊗FXT -

measurable (adapted) version (t, ω) 7→ ξt(ω) (see e.g. [22]), it follows from Chapter IV Theorem

T46 in [29], see also Theorem 0.1 in [30], that ξ has a a progressively measurable modification w.r.t

(FXt ) that we denote precisely φ(t,X), which proves (i). Let then MX := X − x −
∫ ·

0 φ(s,X)ds.

Let 0 ≤ s ≤ t ≤ T. Then

EP[MX
t −MX

s | FXs ] = EP
[∫ t

s
(ur − φ(r,X))dr +MP

t −MP
s

∣∣∣ FXs ]
=

∫ t

s
EP[ur − φ(r,X) | FXs ]dr + EP

[
EP[MP

t −MP
s | Fs] | FXs

]
=

∫ t

s
EP
[
EP[ur − φ(r,X) | FXr ] | FXs

]
dr

= 0,

where we used Fubini’s theorem for conditional expectation as well as the tower property. The

process MX is an ((FXt ),P)-martingale. Furthermore, 〈MX〉 = 〈M〉 since they are both equal to

[X]. So (ii) is also proved.

7.2 Relative entropy related results

The theorem below is a Girsanov’s type theorem based on finite relative entropy assumptions. It is

an adaptation of Theorem 2.1 in [27] on a general probability space instead of the canonical space.

Theorem 7.2. Let (Ω,F , (Ft)t∈[0,T ],P) be a filtered probability space. Let δ = (δt)t∈[0,T ] (resp. a =

(at)t∈[0,T ]) be a progressively measurable process with values in Rd (resp. in the set of square d × d non-
negative defined symmetric matrices S+

d ). Let X be a continuous process which decomposes as

Xt = x+

∫ t

0
δrdr +MP

t , 0 ≤ t ≤ T, (7.2)
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where MP is a continuous ((Ft),P)-local martingale such that 〈MP〉· =
∫ ·

0 ardr. Let Q be a probability
measure on (Ω,F). Assume that H(Q|P) < +∞.

Then there exists an Rd-valued progressively measurable process α such that

EQ
[∫ T

0
α>r arαrdr

]
< +∞, (7.3)

and such that, under Q, the process X is still a continuous semimartingale with decomposition

Xt = x+

∫ t

0
δrdr +

∫ t

0
arαrdr +MQ

t , 0 ≤ t ≤ T, (7.4)

where MQ is a continuous Q-local martingale and 〈MQ〉· =
∫ ·

0 ardr. Furthermore,

1

2
EQ
[∫ T

0
α>r arαrdr

]
≤ H(Q|P). (7.5)

Proof. The existence of the process α is given by Theorem 2.1 in [27], noticing that the proof of this

result relies on a variational formulation of the relative entropy, which does not depend on the

probability space, see Proposition 3.1 in [27]. For the proof of (7.5) we closely follows the proof of

Theorem 2.3 in [27].

1. Assume first that Q ∼ P. Let τk := inf{t ≥ 0 :
∫ t

0 α
>
r arαrdr ≥ k} (with the convention that

the inf is +∞ if {} is empty). Setting Mk :=
∫ .∧τk

0 α>r dM
P
r and Zk the Doléans exponential

E(Mk), we define dQk := ZkTdP. By Novikov’s criterion, Zk is a martingale, therefore Qk is

a probability measure on (Ω,F) equivalent to Q since ZkT is strictly positive and Q ∼ P. It

follows that

H(Q|P) = EQ
[
log

dQ
dP

]
= EQ

[
log

dQ
dQk

]
+ EQ

[
log

dQk

dP

]
= H(Q|Qk) + EQ[logZkT ]

≥ EQ
[∫ T∧τk

0
α>r dM

P
r −

1

2

∫ T∧τk

0
α>r arαrdr

]
= EQ

[∫ T∧τk

0
α>r dM

Q
r +

1

2

∫ T∧τk

0
α>r arαrdr

]
.

By definition of τk the process
∫ t∧τk

0 α>r dM
Q
r is a genuine martingale under Q. Hence

H(Q|P) ≥ 1

2
EQ
[∫ T∧τk

0
α>arαrdr

]
.

Letting τk → T increasingly as k → +∞, a direct application of the monotone convergence

theorem then yields

H(Q|P) ≥ 1

2
EQ
[∫ T

0
α>r arαrdr

]
. (7.6)

2. We consider now the general case. Since H(Q|P) < ∞ we know that Q � P and set Qn :=(
1− 1

n

)
Q + 1

nP. Then Qn ∼ P and by convexity of the relative entropy, see Remark 2.2,
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H(Qn|P) ≤
(
1− 1

n

)
H(Q|P) < +∞. By item 1., and the first part of the statement, using (7.6)

with Qn instead of Q, there exists a progressively measurable process αn such that(
1− 1

n

)
H(Q|P) ≥ H(Qn|P) ≥ 1

2
EQn

[∫ T

0
(αnr )>arα

n
r

]
=

1

2

(
1− 1

n

)
EQ
[∫ T

0
(αnr )>arα

n
r dr

]
+

1

2n
EP
[∫ T

0
(αnr )>arα

n
r dr

]
≥ 1

2

(
1− 1

n

)
EQ
[∫ T

0
(αnr )>arα

n
r dr

]
.

(7.7)

Using the crucial estimate (33) in [27], whose proof once again can be carried out on any

probability space, one has

lim
n→+∞

EQ
[∫ T

0
(αnr − αr)>ar(αnr − αr)dr

]
= 0,

which implies that

lim
n→+∞

EQ
[∫ T

0
(αnr )>arα

n
r dr

]
= EQ

[∫ T

0
(αr)

>arαrdr

]
.

Letting n→ +∞ in (7.7) yields the desired result.

For the following lemma we keep the notations and assumptions of Theorem 7.2. Let in par-

ticular X be a process fulfilling (7.2) with at = σσ>(t,Xt). Then by Theorem 7.2 there is a progres-

sively measurable process α such that (7.4) holds. For that we have the following estimates.

Lemma 7.3. We suppose the existence of 1 < p < 2 such that

Cp := EP
[∫ T

0
‖σ(r,Xr)‖2p/(2−p)dr

]
< +∞.

1. If C∞ := ‖dQ/dP‖∞ < +∞, there exists a constant L > 0 which depends only on Cp and C∞ such
that

EQ
[∫ T

0
|σσ>(r,Xr)αr|pdr

]
≤ L(1 +H(Q|P)).

2. Suppose moreover H(P|Q) < +∞. Then it holds that

1

2
EP
[∫ T

0
|σ>(r,Xr)αr|2dr

]
≤ H(P|Q),

and L can be chosen such that

EP
[∫ T

0
|σσ>(r,Xr)αr|pdr

]
≤ L(1 +H(P|Q)). (7.8)
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Proof. 1. We recall that H(Q,P) < ∞. By Hölder’s inequality applied on the measure space

([0, T ]× Ω,B([0, T ])⊗F , dt⊗ dQ), it holds that

EQ
[∫ T

0
|σσ>(r,Xr)αr|pdr

]
≤ EQ

[∫ T

0
‖σ(r,Xr)‖p|σ>(r,Xr)αr|pdr

]
≤
(
EQ
[∫ T

0
‖σ(r,Xr)‖2p/(2−p)

])1−p/2(
EQ
[∫ T

0
|σ>(r,Xr)αr|2dr

])p/2
.

(7.9)

On the one hand,

EQ
[∫ T

0
‖σ(r,Xr)‖2p/(p−2)dr

]
= EP

[
dQ
dP

∫ T

0
‖σ(r,Xr)‖2p/(p−2)dr

]
≤ C∞Cp. (7.10)

On the other hand, by (7.5)

EQ
[∫ T

0
|σ>(r,Xr)αr|2dr

]
≤ 2H(Q|P). (7.11)

Combining (7.10) and (7.11) with (7.9), we get

EQ
[∫ T

0
|σσ>(r,Xr)αr|pdr

]
≤ 2p/2(C∞Cp)

1−p/2H(Q|P)p/2,

and as p < 2, using the inequality

|a|q ≤ (1 + |a|), if q ∈]0, 1], (7.12)

we have

EQ
[∫ T

0
|σσ>(r,Xr)αr|pdr

]
≤ 2C∞Cp(1 +H(Q|P)).

Setting L := 2Cp max(C∞, 1) one concludes the proof.

2. Just before the statement of the present lemma we have mentioned the decomposition (7.4)

holds, where the martingale MQ verifies 〈MQ〉· =
∫ ·

0 σσ
>(r,Xr)dr.

As H(P|Q) < +∞, again Theorem 7.2, interchanging P and Q, yields the existence of a

progressively measurable process α̃ such that under P the process X decomposes as

Xt = x+

∫ t

0
δrdr +

∫ t

0
σσ>(r,Xr)αrdr +

∫ t

0
σσ>(r,Xr)α̃rdr + M̃t,

where M̃ is a martingale and

1

2
EP
[∫ T

0
|σ>(r,Xr)α̃r|2dr

]
≤ H(P|Q).

Identifying the bounded variation and the martingale components ofX under P, we get that

M̃ = MP and σσ>(r,Xr)α̃r = −σσ>(r,Xr)αr dP⊗ dr-a.e. In particular,

1

2
EP
[∫ T

0
|σ>(r,Xr)αr|2dr

]
≤ H(P|Q). (7.13)
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Then, as in the proof of item 1., Hölder’s inequality, (7.9) with Q replaced by P, and (7.13)

yield

EP
[∫ T

0
|σσ>(r,Xr)αr|pdr

]
≤
(
EP
[∫ T

0
‖σ(r,Xr)‖2p/(2−p)

])1−p/2(
EP
[∫ T

0
|σ>(r,Xr)αr|2dr

])p/2
≤ 2p/2C1−p/2

p H(P|Q)p/2 ≤ 2Cp(1 +H(P|Q)),

where, for the last inequality we have used (7.12) p < 2. This finally also implies the result

(7.8).

The results of Theorem 7.2 can be specified if one considers probability measures on the canon-

ical space Ω = C([0, T ],Rd). In the following, δ, γ : [0, T ] × C([0, T ],Rd) 7→ Rd are progressively

measurable functions w.r.t. their corresponding Borel σ-fields. Let us reformulate Theorem 7.2 in

our setting.

Lemma 7.4. Let P ∈ P(Ω) such that, under P the canonical process can be decomposed as

Xt = x+

∫ t

0
δ(r,X)dr +MP

t , (7.14)

where MP is a martingale with 〈MP〉 =
∫ ·

0 σσ
>(r,Xr)dr, where σ verifies item (ii) of Hypothesis 3.1. Let

Q ∈ P(Ω).

1. Assume that H(Q|P) < +∞. Then we have the following.

(a) There exists a progressively measurable process α, with respect with natural filtration of X (in
particular of the form α = α(·, X)) such that, under Q, X decomposes as

Xt = x+

∫ t

0
δ(r,X)dr +

∫ t

0
σσ>(r,Xr)α(r,X)dr +MQ

t , (7.15)

where MQ is a martingale with 〈MQ〉t =
∫ t

0 σσ
>(r,Xr)dr and

H(Q|P) ≥ 1

2
EQ
[∫ T

0
|σ>(r,Xr)α(r,X)|2dr

]
. (7.16)

(b) If moreover uniqueness in law holds for (7.14), equality holds in (7.16).

2. Assume that under Q the canonical process writes

Xt = x+

∫ t

0
γ(r,X)dr +MQ

t , (7.17)

where MQ is a martingale with 〈MQ〉 =
∫ ·

0 σσ
>(r,Xr)dr and that uniqueness in law holds for

(7.14).
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If

EQ
[∫ T

0
|σ−1(r,Xr)(δ(r,X)− γ(r,X))|2dr

]
< +∞,

then H(Q|P) < +∞ and

H(Q|P) =
1

2
EQ
[∫ T

0
|σ−1(r,Xr)(δ(r,X)− γ(r,X))|2dr

]
. (7.18)

Proof. Part (a) of item 1. of Lemma 7.14 is constituted by Theorem 7.2 applied to the canonical

space equipped with the natural filtration of the canonical process. Item 2. is the object of Lemma

4.4 (iii) in [26].

As far as item 1.(b) is concerned, we apply item 2. with γ(r,X) = δ(r,X) + σσ>(r,Xr)α(r,X)

in (7.17) so that (γ − δ)(r,X) = σσ>(r,Xr)α(r,X). So σ−1(r,Xr)(δ − γ)(r,X) and the equality in

(7.16) holds because of (7.18).

Remark 7.5. By Hypothesis 3.1 on the diffusion coefficient σ, uniqueness in law for the SDE (7.14) holds
e.g. if δ is bounded, or if δ(r,X) = b(r,Xr) + u(r,X) where b has linear growth and u is bounded. If
u = 0, this follows from Theorem 10.1.3 of [32] and the general case holds by Girsanov theorem.

7.3 Proof of Theorem 3.9

To simplify the formalism of the proof we will assume that b = 0, as well as ε = 1. Recall that

in what follows, the filtration (Ft)t∈[0,T ] is the canonical filtration on the canonical space Ω =

C([0, T ],Rd), see the notations in Section 2. Following Section 3.2 in [33] we will make use of an

enlarged probability space Ω̄ as well as an analogous form of the set A on this enlarged space,

denoted Ā. This is stated in the definitions below.

Definition 7.6. Let Ω̄ := C([0, T ],Rd × Rd) and we denote (X,U) its canonical process and (F̄t)0≤t≤T

the associated canonical filtration. We also denotes (F̄Xt )t∈[0,T ] the natural filtration generated by the first
component X of the canonical process.

Definition 7.7. Let Ā be the subset of P(Ω̄)2 such that (P̄, Q̄) ∈ Ā if the following holds.

(i) H(Q̄|P̄) < +∞.

(ii) Under P̄, X decomposes as
Xt = x+ Ut +M P̄

t , (7.19)

such that M P̄ is an (F̄t)-local martingale, with 〈M P̄〉t =
∫ t

0 σσ
>(r,Xr)dr.

(iii) The processes U is absolutely continuous w.r.t. the Lebesgue measure P̄-a.s. and

Ut =

∫ t

0
urdr, dP̄⊗ dt−a.e. (7.20)

(iv) ur ∈ U, dP̄⊗ dr-a.e.
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Remark 7.8. 1. The property H(Q̄|P̄) < +∞ in Definition 7.7 implies in particular that Q̄ � P̄.
Hence any property which is verified almost surely w.r.t. P̄ in the above definition also holds Q̄-a.s.

2. Clearly we have
ut := lim sup

n→+∞
n(Ut − Ut−1/n), dP̄⊗ dt a.e.,

where we recall that previous lim sup is defined for all t and all ω.

For (P̄, Q̄) ∈ Āwe introduce the functional J̄ defined by

J̄ (Q̄, P̄) := EQ̄
[∫ T

0
f(r,Xr, ur)dr + g(XT )

]
+H(Q̄|P̄). (7.21)

The proof of Theorem 3.9 requires several lemmas. We first need to establish a correspondence

between the functional J defined on A and the functional J̄ defined on Ā.

Let (P,Q) ∈ A. By Definitions 3.7 and 3.2, under P, the canonical process decomposes as

Xt = x+

∫ t

0
uPrdr +MP

t ,

where MP is an (Ft)-martingale such that 〈MP〉 =
∫ ·

0 σσ
>(r,Xr)dr and uP is a progressively mea-

surable process with respect to the canonical filtration (Ft) with values in U. We rely on this

decomposition in the following lemma for the association of the functional J̄ to J .

Lemma 7.9. Let (P,Q) ∈ A introduced above. Let P̄ (resp. Q̄) be the law of
(
X,
∫ ·

0 u
P
rdr
)

under P (resp.
Q). Then (P̄, Q̄) ∈ Ā, Q̄ is absolutely continuous with respect to P̄ with dQ̄/dP̄ = dQ/dP ◦ πX where πX
is the projection on the first component of the space Ω̄, H(Q|P) = H(Q̄|P̄) and J (Q,P) = J̄ (Q̄, P̄).

Proof. Letting P̄ (resp. Q̄) be the law of
(
X,
∫ ·

0 u
P
rdr
)

induced by P (resp. Q) on Ω̄ we get

EQ̄
[∫ T

0
f(r,Xr, ur)dr

]
= EQ

[∫ T

0
f(r,Xr, u

P
r )dr

]
.

Furthermore, recalling that πX is the first coordinate projection on Ω̄, one has dQ̄/dP̄ = dQ/dP◦πX
and this yields

H(Q̄|P̄) = EQ̄
[
log

dQ̄
dP̄

]
= EQ̄

[
log

dQ
dP
◦ πX

]
= EQ

[
log

dQ
dP

(X)

]
= H(Q|P).

It follows that J (Q,P) = J̄ (Q̄, P̄).

We establish a partial converse of the connection between J and J̄ in Lemma 7.10 below,

whose proof crucially relies on the convexity of the functions f(t, x, ·) and Jensen’s inequality.

Lemma 7.10. Let (P̄, Q̄) ∈ Ā. Assume that ‖dQ̄/dP̄‖∞ < +∞. There exists (P,Q) ∈ A such that
J̄ (Q̄, P̄) ≥ J (Q,P) and P ∈ PMarkov

U .
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Proof. The proof of this result consists in two steps. In the first step we provide a lower bound of

the cost J̄ (Q̄, P̄) in term of an expectation under the marginal law Q̃ of the first componentX of the

vector (X,U). In the second step, we introduce a probability P such that J̄ (Q̄, P̄) ≥ J (Q,P) where

Q is the law of a diffusion process mimicking the marginals of Q̃ at each fixed time t ∈ [0, T ].

We keep in mind the characterization of P̄ given by (7.19) and (7.20). In particular, under P̄ X

decomposes as

Xt = x+

∫ t

0
ur +M P̄

t .

1. Consequently, since H(Q̄|P̄) < +∞, see item (i) of Definition 7.7, by Theorem 7.2, on the

space Ω̄ equipped with the probabilities P̄ and Q̄ with δr = ur, ar = σσ>(r,Xr), there exists

a progressively measurable process ᾱ w.r.t. (F̄t)t∈[0,T ] on Ω̄ such that under Q̄ the process X

writes as

Xt = x+

∫ t

0
urdr +

∫ t

0
σσ>(r,Xr)ᾱrdr +M Q̄

t , (7.22)

where M Q̄ is (again under Q̄) an (F̄t)-local martingale with 〈M Q̄〉· =
∫ ·

0 σσ
>(r,Xr)dr and

H(Q̄|P̄) ≥ 1

2
EQ̄
[∫ T

0
|σ>(r,Xr)ᾱr|2dr

]
. (7.23)

Moreover, under Q̄, the process X has some integrability properties. Indeed, by Lemma 3.6

we have that for all q ≥ 1, EP̄

[
sup

0≤r≤T
|Xr|q

]
< +∞. In particular, by linear growth of σ it

holds that

EP̄
[∫ T

0
‖σ(r,Xr)‖qdr

]
< +∞ (7.24)

for all q ≥ 1. Then we can apply Lemma 7.3 item 1. which implies that for any 1 < p < 2

EQ̄
[∫ T

0
|σσ>(r,Xr)ᾱr|pdr

]
< +∞. (7.25)

Let us now decompose the semimartingale X under Q̄ in its own filtration. To this aim, we

denote by (βt) the process βt = ut+σσ
>(t,Xt)ᾱt. In particular, as u is Q̄-essentially bounded,

we get from (7.25) that EQ̄
[∫ T

0 |βr|dr
]
< +∞. Then by Proposition 7.1 item (i), there exist

progressively measurable functions β̃, ũ : [0, T ] × Ω → Rd with respect to (F̄Xt )t∈[0,T ], such

that

β̃(t,X) = EQ̄[βt | F̄Xt ], ũ(t,X) = EQ̄[ut|F̄Xt ]), Q̄ a.s. ∀t ∈ [0, T ]. (7.26)

Consequently, under Q̄, by (7.22), the process X is also an (F̄Xt )t∈[0,T ]-semimartingale with

decomposition

Xt = x+

∫ t

0
β̃(r,X)dr + M̃t, (7.27)
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where M̃ is an (F̄Xt )t∈[0,T ]-martingale and 〈M̃〉· =
∫ ·

0 σσ
>(r,Xr)dr. By Fubini’s theorem and

Jensen’s inequality for the conditional expectation

EQ̄
[∫ T

0
f(r,Xr, ur)dr + g(XT )

]
≥ EQ̄

[∫ T

0
f(r,Xr,EQ̄[ur|F̄Xr ])dr + g(XT )

]
= EQ̄

[∫ T

0
f(r,Xr, ũ(r,X))dr + g(XT )

]
= EQ̃

[∫ T

0
f(r,Xr, ũ(r,X))dr + g(XT )

]
,

(7.28)

where Q̃ is the first marginal of Q̄, i.e. the law of the first component X of the vector (X,U)

under Q̄. Moreover, the entropy inequality (7.23) rewrites

H(Q̄|P̄) ≥ 1

2
EQ̄
[∫ T

0
|σ−1(r,Xr)(βr − ur)|2dr

]
, (7.29)

and again Fubini’s theorem and Jensen’s inequality for the conditional expectation gives

H(Q̄|P̄) ≥ 1

2
EQ̃
[∫ T

0
|σ−1(r,Xr)(β̃(r,X)− ũ(r,X))|2dr

]
. (7.30)

2. Next by Fubini’s theorem and Jensen’s inequality for the conditional expectation and taking

into account (7.26), it holds that

EQ̃
[∫ T

0
|β̃(r,X)|dr

]
= EQ̄

[∫ T

0
|β̃(r,X)|dr

]
≤ EQ̄

[∫ T

0
|βr|dr

]
< +∞. (7.31)

First, observe that as ‖dQ̄/dP̄‖∞ < +∞, (7.24) is also true replacing P̄ by Q̄. Hence from

(7.31) and (7.24) with q = 2 we deduce that EQ̃
[∫ T

0 (|β̃(r,X)|+ ‖σσ>(r,Xr)‖)dr
]
< +∞, and

by Corollary 3.7 in [9] there exist a measurable function β̂ : [0, T ]×Rd 7→ Rd and a probability

measure Q on (Ω,F) such that the following holds.

• For all 0 ≤ t ≤ T , β̂(t,Xt) = EQ̃[β̃(t,X) | Xt] dQ̃⊗ dt-a.e.

• Under Q the canonical process can be expressed as Xt = x+
∫ t

0 β̂(r,Xr)dr+MQ
t , where

MQ is a (Ft)-local martingale with 〈MQ〉· =
∫ ·

0 σσ
>(r,Xr)dr.

• LQ(Xt) = LQ̃(Xt), ∀t ∈ [0, T ].

Finally Proposition 5.1 in [9] provides a measurable function û such that

û(t,Xt) = EQ̃[ũ(t,X) | Xt], dQ̃⊗ dt a.e. (7.32)

We modify û on the Borel set N = {(t, x) ∈ [0, T ] × Rd : û(t, x) /∈ U} so that û(t, x) ∈ Ū for

all (t, x) ∈ [0, T ] × Rd. Then once again by Fubini’s theorem and Jensen’s inequality for the
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conditional expectation, we get that

EQ̃
[∫ T

0
f(r,Xr, ũ(r,X))dr + g(XT )

]
≥ EQ̃

[∫ T

0
f(r,Xr,EQ̃[ũ(r,X) | Xr])dr + g(XT )

]
= EQ̃

[∫ T

0
f(r,Xr, û(r,Xr))dr + g(XT )

]
= EQ

[∫ T

0
f(r,Xr, û(r,Xr))dr + g(XT )

]
(7.33)

and also

1

2
EQ̃
[∫ T

0
|σ−1(r,Xr)(β̃(r,X)− ũ(r,X))|2dr

]
≥ 1

2
EQ̃
[∫ T

0
|σ−1(r,Xr)(β̂(r,Xr)− û(r,Xr))|2dr

]
=

1

2
EQ
[∫ T

0
|σ−1(r,Xr)(β̂(r,Xr)− û(r,Xr))|2dr

]
.

(7.34)

As û is bounded and b, chosen here for simplicity equal to zero, has also linear growth,

Theorem 10.1.3 in [32] proves existence and uniqueness of a solution P ∈ PMarkov
U to the

martingale problem with initial condition (0, x), and the operator Lû defined in (3.3) so, by

Remark 3.3

Xt = x+

∫ t

0
û(r,Xr)dr +MP

t , t ∈ [0, T ],

where MP is a local martingale vanishing at zero such that 〈MP〉t =
∫ t

0 σσ
>(r,Xr)dr. By

Lemma 7.4 item 2., the right-hand side of (7.34) is equal to H(Q|P). Combining alltogether

the expressions (7.28), (7.30), (7.33) and (7.34) we get J̄ (Q̄, P̄) ≥ J (Q,P). This concludes the

proof.

We emphasize that, even though the condition ‖dQ̄/dP̄‖∞ < +∞ in Lemma 7.10 is very re-

strictive, we will see at the end of this section that it will be enough to prove Theorem 3.9. The

connection between J and J̄ is thus established. To prove the theorem we also need tightness

results on our enlarged space. This is stated in the following lemma and proposition.

Lemma 7.11. Let (Pn,Qn)n≥1 be a sequence of elements of A. Then (Pn)n≥1 is tight.

Proof. In this proof,C denotes a generic non-negative constant. By definition, under Pn, the canon-

ical process has decomposition

Xt = x+

∫ t

0
uPnr dr +MPn

t ,

where uP
n

takes values in U, MPn is a martingale and 〈MPn〉· =
∫ ·

0 σσ
>(r,Xr)dr. Let p > 1. For
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0 ≤ s ≤ t we have

EPn [|Xt −Xs|2p] ≤ C

(
EPn

[∣∣∣∣∫ t

s
uPnr dr

∣∣∣∣2p
]

+ EPn
[
|MPn

t −MPn
s |2p

])

≤ C
(

(t− s)2p + EPn
[(∫ t

s
‖σ(r,Xr)‖2dr

)p])
(BDG inequality)

≤ C
(

(t− s)2p + (t− s)p + EPn
[(∫ t

s
|Xr|2dr

)p])
(Hypothesis 3.1)

≤ C

(
(t− s)2p + (t− s)p + (t− s)pEPn

[∫ t

s
|Xr|2p/(p−1)dr

]p−1
)

(Hölder inequality)

≤ C(t− s)p. (Lemma 3.6),

so (Pn)n≥1 is a tight sequence by Kolmogorov criteria, see e.g. Problem 4.11 of [24].

We will need in the following a simple technical observation.

Lemma 7.12. Let (Pn)n≥1 be a sequence of Borel probability measures on a Polish space Y that weakly
converges towards a probability measure P∞. Let φ : Y → R be a continuous function. Assume that there
exists α,C > 0 such that

sup
n≥1

∫
Y
|φ(y)|1+α(y)Pn(dy) ≤ C. (7.35)

Then ∫
Y
φ(y)Pn(dy) −→

n→+∞

∫
Y
φ(y)P∞(dy).

Proof. By Skorokhod’s representation theorem, there exists a probability space (Ω,F ,Q), a se-

quence of random variable (Xn)n≥1 on Ω and a random variable X such that LQ(Xn) = Pn and

Xn → X Q-a.s. Condition (7.35) implies that the sequence (φ(Xn))n≥1 is uniformly integrable.

Furthermore, by continuity of φ, φ(Xn) −→
n→+∞

φ(X) Q-a.s. Thus

EQ[φ(Xn)] −→
n→+∞

EQ[φ(X)]

or equivalently ∫
Y
φ(y)Pn(dy) −→

n→+∞

∫
Y
φ(y)P∞(dy).

Remark 7.13. Let (Pn,Qn)n≥1 be a sequence of couples of probability measures on a measurable space,
where both the sequences (Pn)n≥1 and (Qn)n≥1 are tight. Then there is a couple of probability measures
(P,Q) and a subsequence (Pnk ,Qnk) such that (Pnk) (resp. (Qnk)) converges weakly to P (resp. (Q)).
Such a couple (P,Q) will be called limit point of the sequence (Pn,Qn)n≥1.

Proposition 7.14. Let (Pn,Qn)n≥1 be a sequence of elements ofA such that supn≥1 ‖dQn/dPn‖∞ < +∞
and supn≥1H(Qn|Pn) < +∞. Let (P̄n, Q̄n)n≥1 be the corresponding sequence of probability measures on
(Ω̄, F̄) given by Lemma 7.9. Then the following properties hold.
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1. The sequences (P̄n)n≥1 and (Q̄n)n≥1 are tight and under any corresponding limit point P̄ of (P̄n)n≥1,
the process U has absolutely continuous paths.

2. Any limit point (P̄, Q̄) of (P̄n, Q̄n)n≥1 belongs to Ā.

Proof. 1. Let 1 < p. By Definitions 3.7 and 3.2 there is a progressively measurable process uPn

with values in U such that

Xt = x+

∫ t

0
uPnr dr +MPn

t , 0 ≤ t ≤ T, (7.36)

for some local martingale MP
n . As U is bounded, we have

sup
n≥1

EPn
[∫ T

0
|uPnr |pdr

]
< +∞. (7.37)

We set Un· :=
∫ ·

0 u
Pn
r dr. As (7.37) holds, Lemma 2 in [40] yields tightness of the laws (µn :=

LPn(Un))n≥1 and under any limit point µ̄, the second component U of the canonical process

(X,U) on Ω̄, has absolutely continuous path w.r.t. the Lebesgue measure. Moreover by

Lemma 7.11 the sequence Pn)n≥1 is tight. It follows from what precedes that each marginal

of
(
X,
∫ ·

0 u
Pn
r dr

)
under (Pn)n≥1 is tight, hence tightness of the laws (P̄n)n≥1 of previous vector

on the product space Ω̄, and under any limit point P̄ the paths ofU are absolutely continuous.

Finally Lemma 7.9 states that dQ̄n/dP̄n = dQn/dPn ◦ πX , where πX denotes the projection

on the first component of the space Ω̄. This implies that supn≥1 ‖dQ̄n/dP̄n‖∞ < +∞, and

tightness of the sequence (Q̄n)n≥1 then follows from the tightness of (P̄n)n≥1.

2. Let (P̄, Q̄) be any limit point of the sequence (P̄n, Q̄n)n≥1, see Remark 7.13. One can assume

that both sequences (P̄n)n≥1 and (Q̄n)n≥1 converges weakly towards P̄ and Q̄ respectively.

We are going to prove that (P̄, Q̄) ∈ Ā. By item 1. item (iii) of Definition 7.7 of Ā holds. Let us

verify item (i) of the same definition. Indeed by Lemma 7.9 we haveH(Q̄n|P̄n) = H(Qn|Pn).

We recall that (Q,P) 7→ H(Q|P) is lower semicontinous with respect to the weak convergence

on Polish spaces, see Remark 2.2, Ω̄ being the Polish space. Consequently

H(Q̄|P̄) ≤ lim inf
n→+∞

H(Q̄n|P̄n) = lim inf
n→+∞

H(Qn|Pn) ≤ sup
n≥1

H(Qn|Pn) < +∞.

Let us now check item (ii). Let 0 ≤ u < t ≤ T . Let h belonging to the space C∞c (Rd) of

smooth functions with compact support on Rd. By (3.1), under P̄n we have X = x+M + U

where U is an absolutely continuous process. By Itô’s formula applied to (3.1) under P̄n, the

process

N [h]· := h(X· − U·)− h(x)− 1

2

∫ ·
0
Tr[σσ>(r,Xr)∇2

xh(Xr − Ur)]dr

is a martingale under Pn. We want to prove that N(h) is a martingale under P̄.

Let ψ : C([0, u];Rd × Rd)→ R be a bounded continuous function. Then

EP̄n [ψ ((Xr, Ur)r∈[0,u]

)
N [h]t

]
= EP̄n [ψ ((Xr, Ur)r∈[0,u]

)
N [h]u

]
. (7.38)
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On the one hand, the function

(X,U) 7→ ψ
(
(Xr, Ur)r∈[0,u]

)
(h(Xt − Ut)− h(x))

is bounded and continuous. Hence

EP̄n [ψ ((Xr, Ur)r∈[0,u]

)
(h(Xt − Ut)− h(x))

]
−→

n→+∞
EP̄ [ψ ((Xr, Ur)r∈[0,u]

)
(h(Xt − Ut)− h(x))

]
.

(7.39)

On the other hand, there exists a constant C which only depends on d such that for all

r ∈ [0, T ],∣∣∣Tr[σσ>(r,Xr)∇2
xh(Xr − Ur)]

∣∣∣ ≤ C‖∇2
xh‖∞‖σ(r,Xr)‖ ≤ CCb,σ‖∇2

xh‖∞(1 + |Xr|).

Combining the previous inequality with Lemma 3.6 we get that for some α > 0,

sup
n∈N

sup
r∈[0,T ]

EP̄n
[∣∣∣Tr[σσ>(r,Xr)∇2

xh(Xr − Ur)]
∣∣∣1+α

]
< +∞. (7.40)

Hence it holds

sup
n∈N

EP̄n

[∣∣∣∣ψ ((Xr, Ur)r∈[0,u]

) ∫ t

0
Tr[σσ>(r,Xr)∇2

xh(Xr − Ur)]dr
∣∣∣∣1+α

]
< +∞,

and by Lemma 7.12 with Y = C([0, t]), taking into account Hypothesis 3.1 (ii), we get

EP̄n
[
ψ
(
(Xr, Ur)r∈[0,u]

) ∫ t

0
Tr[σσ>(r,Xr)∇2

xh(Xr − Ur)]dr
]

−→
n→+∞

EP̄
[
ψ
(
(Xr, Ur)r∈[0,u]

) ∫ t

0
Tr[σσ>(r,Xr)∇2

xh(Xr − Ur)]dr
]
.

(7.41)

Combining (7.39) and (7.41) and letting n 7→ +∞ in (7.38) yields

EP̄ [ψ ((Xr, Ur)r∈[0,u]

)
N [h]t

]
.

Hence the process N [h] is an ((F̄t), P̄)-martingale for all h ∈ C∞c (Rd).

By standard usual stochastic calculus arguments, this implies that under P̄ the process writes

Xt = x+ Ut +M P̄
t ,

where M P̄ is a (F̄t)-local martingale with

〈M P̄〉t =

∫ t

0
σσ>(r,Xr)dr dP̄⊗ dt-a.e.,

hence item (ii). Finally, it remains to prove (iv). Let t ∈]0, T [, k ∈ N∗ large enough. As

U is convex and closed, one has P̄n(k(Ut+1/k − Ut) ∈ U) = 1 for all n ≥ 1. Moreover, as

U is closed, the set
{
U ∈ C([0, T ],Rd) : k(Ut+1/k − Ut) ∈ U

}
is closed under the uniform
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convergence. By Portmanteau Theorem, see Theorem 2.1 in [6], 1 = sup
n≥1

P̄n(k(Ut+1/k −Ut) ∈

U) ≤ P̄(k(Ut+1/k −Ut) ∈ U). Hence P̄-a.s., k(Ut+1/k −Ut) ∈ U. As U is continuous, P̄-a.s., for

all t ∈ [0, T ] and k ∈ N∗, k(Ut+1/k − Ut) ∈ U. U being closed, letting k → +∞ yields

lim sup
k→+∞

k(Ut+1/k − Ut) ∈ U, P̄-a.s.,

and we conclude that dP̄⊗ dt-a.e.

ut = lim
k→+∞

k(Ut+1/k − Ut) = lim sup
k→+∞

k(Ut+1/k − Ut) ∈ U.

To apply Proposition 7.14 we will need the lemma below.

Lemma 7.15. There exists a minimizing sequence (Pn,Qn)n≥1 for J such that the following holds.

(i) sup
n≥1
‖dQn/dPn‖∞ < +∞ and sup

n≥1
H(Qn|Pn) < +∞.

(ii) sup
n∈N

EQn

[
sup

0≤t≤T
|Xt|q

]
< +∞ for all q ≥ 1.

Proof. Let (Pn, Q̃n)n≥1 be a minimizing sequence for J . Let

dQn :=
exp

(
−
∫ T

0 f(r,Xr, u
Pn
r )dr − g(XT )

)
EPn

[
exp

(
−
∫ T

0 f(r,Xr, u
Pn
r )dr − g(XT )

)]dPn. (7.42)

Then from Proposition 3.8 applied to P = Pn, we get thatJ (Qn,Pn) ≤ J (Q̃n,Pn), thus (Pn,Qn)n≥1

is also a minimizing sequence for J . It follows from Hypothesis 3.5 that

exp

(
−
∫ T

0
f(r,Xr, u

Pn
r )dr − g(XT )

)
≤ 1. (7.43)

Hypothesis 3.5 and Lemma 3.6 imply the existence of C > 0 independent of n such that

0 ≤ EPn
[∫ T

0
f(r,Xr, u

Pn
r )dr + g(XT )

]
≤ C. (7.44)

By Jensen’s inequality, we get for all n ≥ 1

EPn
(

exp

(
−
∫ T

0
f(r,Xr, u

Pn
r )dr − g(XT )

))
≥ exp

(
EPn

(
−
∫ T

0
f(r,Xr, u

Pn
r )dr − g(XT )

))
≥ exp(−C).

Consequently
dQn

dPn
≤ eC ,

hence

sup
n≥1

∥∥∥∥dQn

dPn

∥∥∥∥
∞
≤ eC < +∞ (7.45)
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and

sup
n≥1

H(Qn|Pn) ≤ C < +∞.

This establishes item (i).

Furthermore for all q ≥ 1, by (7.45) we have

EQn

[
sup

0≤t≤T
|Xt|q

]
= EPn

[(
sup

0≤t≤T
|Xt|q

)
dQn

dPn

]
≤ eCEPn

[
sup

0≤t≤T
|Xt|q

]

and the estimate (ii) follows from Lemma 3.6.

We are finally ready to prove Theorem 3.9.

Proof (of Theorem 3.9). Let (Pn,Qn)n≥1 be a minimizing sequence as provided by Lemma 7.15.

Let (P̄n, Q̄n)n≥1 be the corresponding sequence of probability measures induced by (Pn,Qn)n≥1 on

Ω̄ given by Lemma 7.9. By Proposition 7.14 (i) the sequences (P̄n)n≥1 and (Q̄n)n≥1 are tight. Let

then (P̄, Q̄) be a limit point of (P̄n, Q̄n)n≥1), see Remark 7.13. By Proposition 7.14 (ii), (P,Q) ∈ Ā.

By Hypothesis 3.5 and Lemma 7.15 (ii) for any given α > 0 we have

sup
n≥1

sup
r∈[0,T ]

EQ̄n [|f(r,Xr, ur)|1+α
]
< +∞. (7.46)

Since Q̄n converges weakly to Q̄, by Lemma 7.12, for all r ∈ [0, T ] we have

EQ̄n [f(r,Xr, ur)] −→
n→+∞

EQ̄[f(r,Xr, ur)], EQ̄n [g(XT ))] −→
n→+∞

EQ̄[g(XT ))].

By (7.46), Fubini’s and dominated convergence theorems

EQ̄n
[∫ T

0
f(r,Xr, ur)dr + g(XT )

]
=

∫ T

0
EQ̄n [f(r,Xr, ur)]dr+EQ̄n [g(XT )] −→

n→+∞
EQ̄
[∫ T

0
f(r,Xr, ur)dr + g(XT )

]
.

We recall now that the relative entropy H is lower semicontinuous with respect to the two vari-

ables for the topology of weak convergence on Polish spaces, see Remark 2.2. Hence, keeping in

mind (7.21)

lim inf
n→+∞

J̄ (Q̄n, P̄n) ≥ J̄ (Q̄, P̄). (7.47)

Since (Pn,Qn) is a minimizing sequence,

J ∗ = lim
n→+∞

J (Qn,Pn) = lim inf
n→+∞

J (Qn,Pn) = lim inf
n→+∞

J̄ (Q̄n, P̄n) ≥ J̄ (Q̄, P̄), (7.48)

where for the third equality we have used Lemma 7.9. We set ϕ : (X,U) 7→
∫ T

0 f(r,Xr, ur)dr +

g(XT ), where u corresponds to the one in item (iii) in Definition 7.7 and we define the probability

measure ¯̄Q such that

d ¯̄Q =
exp (−ϕ(X,U))

EP̄ [exp (−ϕ(X,U))]
dP̄. (7.49)
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By Proposition 3.8 with P = P̄ we obtain J̄ ( ¯̄Q, P̄) ≤ J̄ (Q̄, P̄). As ϕ ≥ 0, the nominator of the

Radon-Nykodim density of (7.49) is smaller or equal to 1 and the denominator is strictly positive

number so that ‖d ¯̄Q/dP̄‖∞ < +∞. Hence by Lemma 7.10 there exists (P∗,Q∗) ∈ A such that

J̄ ( ¯̄Q, P̄) ≥ J (Q∗,P∗) and P∗ ∈ PMarkov
U . Finally combining what precedes with (7.48) yields

J ∗ ≥ J̄ (Q̄, P̄) ≥ J̄ ( ¯̄Q, P̄) ≥ J (Q∗,P∗) and this implies that (P∗,Q∗) is a solution to Problem

(1.5).

Remark 7.16. Taking b 6= 0 amounts to add another dimension to our enlarged space, to notice in the proof
of Proposition 7.14 that by linear growth of b and classical estimates given by Lemma 3.6 one has

sup
n≥1

EPn
[∫ T

0
|b(r,Xr)|pdr

]
< +∞

for all p ≥ 1 and to apply Lemma 4 in [40] to get that any limit point (P̄, Q̄) is in Ā.

7.4 Strong and weak controls

We give here some details on the equivalence between a strong formulation of our stochastic opti-

mal control (1.1) and our optimization problem (1.3). We assume in this section that the coefficients

of the diffusion b and σ are Lipschitz continuous which ensures in particular well-posedness for

the SDEs for each strong control. Given some filtered probability space (Ω̃, F̃ , (F̃t)t∈[0,T ], P̃) en-

dowed with a Brownian motion W , let V be the set of (F̃t)-progressively measurable processes

ν on (Ω̃, F̃ , P̃) taking values in U. By Theorem 3.1 in [37], there exists a unique process Xν on

(Ω̃, F̃ , P̃) such that

Xν
t = x+

∫ t

0
b(r,Xν

r )dr +

∫ t

0
νrdr +

∫ t

0
σ(r,Xν

r )dWr.

An application of Proposition 7.1 (ii) yields the existence of an (F̃Xν

t )-progressively measurable

function u : [0, T ] × C([0, T ],Rd) → Rd such that EP̃[νt|F̃X
ν

t ] = u(t,Xν) dP̃ ⊗ dt-a.e. and, under P
Xν , it has decomposition

Xν
t = x+

∫ t

0
b(r,Xν

r )dr +

∫ t

0
u(r,Xν)dr +Mν

t ,

where 〈Mν〉 =
∫ ·

0 σσ
>(r,Xν

r )dr. Setting Pν := LP̃(Xν) it is then clear that Pν ∈ PU. Hence

J∗strong := inf
ν∈V

EP
[∫ T

0
f(r,Xν

r , νr)dr + g(XT )

]
≥ inf

P∈PU
EP
[∫ T

0
f(r,Xr, u

P
r )dr + g(XT )

]
.

Assume now that the previous inequality is strict. Then there exists a probability measure P ∈ PU
such that J(P) < J∗strong. Then again, by Corollary 3.7 in [9] there exist a measurable function

û : [0, T ]× Rd → Rd and a probability measure P̂ on (Ω,F) such that the following holds.

• For all 0 ≤ t ≤ T , û(t,Xt) = EP[uPt |Xt].
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• Under P̂ the canonical process decomposes as

Xt = x+

∫ t

0
b(r,Xr)dr +

∫ t

0
û(r,Xr)dr +M P̂

t ,

where M P̂ is an (Ft)-local martingale such that 〈M P̂〉· =
∫ ·

0 σσ(r,Xr)dr.

• LP(Xt) = LP̂(Xt).

We modify û on the Borel set N = {(t, x) ∈ [0, T ] × Rd : u(t, x) /∈ U} so that û(t, x) ∈ U for

all (t, x) ∈ [0, T ] × Rd. On the one hand, Fubini’s theorem and Jensen’s inequality for conditional

expectation yields

EP
[∫ T

0
f(r,Xr, u

P
r )dr + g(XT )

]
≥ EP̂

[∫ T

0
f(r,Xr, û(r,Xr))dr + g(XT )

]
.

On the other hand, Theorem 1.1 in [39] ensures the existence of a unique (strong) solution X û (on

the space (Ω̃, F̃ , (F̃t)t∈[0,T ], P̃) to the SDE dXt = b(t,Xt)dt + û(t,Xt)dt + σ(t,Xt)dWt, X0 = x. In

particular the process ν̂ := û(., X û
. ) ∈ V , and we have

J∗strong > J(P) ≥ J(P̂) = EP̃
[∫ T

0
f(r,X û

r , û(r,X û
r ))dr + g(X û

T )

]
,

hence a contradiction and we conclude that J∗strong = J∗.

7.5 Miscellaneous

We gather in this section two useful technical results. In the following, all the random variables

are defined on a filtered probability space (Ω,F , (Ft)t∈[0,T ],P).

Lemma 7.17. Let η be a squared-integrable, non negative random variable. Then for all ε > 0,

0 ≤ E[η]−
(
−1

ε
logE [exp(−εη)]

)
≤ ε

2
V ar[η].

Proof. For all a, b ∈ R, it holds by Taylor’s formula with integral remainder that

e−b = e−a− (b−a)e−a+
(b− a)2

2
e−a− 1

2

∫
R
1{a≤t≤b}(b− t)2e−tdt ≤ e−a− (b−a)e−a+

(b− a)2

2
e−a.

Let ω ∈ Ω. A direct application of this formula with a = 0, b = ε(η(ω)− E[η]) yields

e−ε(η(ω)−E[η]) ≤ 1− ε(η(ω)− E[η]) +
ε2

2
(η(ω)− E[η])2.

Taking the expectation in the previous inequality we get

E
[
e−ε(η−E[η])

]
≤ 1 +

ε2

2
V ar[η],
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and as log(1 + x) ≤ x for all x > −1, we have

1

ε
logE

[
e−ε(η−E[η])

]
≤ ε

2
V ar[η].

Notice that E[η] is a constant, hence 1
ε logE

[
e−ε(η−E[η])

]
= E[η]−

(
−1
ε logE [e−εη]

)
. We then have

0 ≤ E[η]−
(
−1

ε
logE

[
e−εη

])
≤ ε

2
V ar[η],

where the first inequality follows from Jensen’s inequality.

Lemma 7.18. Let (Xt)t∈[0,T ] be an (Ft)-adapted process of the form

Xt = x+

∫ t

0
brdr +Mt,

where E
[∫ T

0 |br|
pdr
]
< +∞ for some p > 1 and where M is a martingale. For Lebesgue almost all

0 ≤ t < T

lim
h↓0

E
[
Xt+h −Xt

h

∣∣∣ Ft] = bt in L1(P).

Proof. In this proof we extend the process X by continuity after T and bt by zero for t > T . Let

0 < h ≤ 1. Notice first that

E
[∫ T

0

∣∣∣∣E [Xt+h −Xt

h

∣∣∣ Ft]− bt∣∣∣∣ dt] ≤ E
[∫ T

0

∣∣∣∣1h
∫ t+h

t
brdr − bt

∣∣∣∣ dt] ,
and that for all ω ∈ Ω, for almost all 0 ≤ t < T , by Lebesgue differentiation theorem,

1

h

∫ t+h

t
br(ω)dr −→

n→+∞
bt. (7.50)

To conclude by a uniform integrability argument w.r.t. dP⊗ dt we need to prove that

sup
0<h≤1

E

[∫ T

0

∣∣∣∣1h
∫ t+h

t
brdr

∣∣∣∣p dt
]
< +∞.

Previous expectation, by Hölder inequality, is bounded above by

E
[∫ T

0

1

h

∫ t+h

t
|br|pdrdt

]
= E

[∫ T

0
|br|p

1

h

∫ r

(r−h)+

dtdr

]
≤ E

[∫ T

0
|br|pdr

]
< +∞,

where interchanging the integral inside the expectation is justified by Fubini’s theorem. The family(
1
h

∫ t+h
t brdr

)
0<h≤1

is uniformly integrable with respect to dP ⊗ dt and we conclude using the

Lebesgue’s dominated convergence theorem.

Remark 7.19. If bt is a.e. σ(Xt)-measurable then the statement of Lemma 7.18 still holds replacing the
σ-field Ft with σ(Xt). This is an obvious property of the tower property of the conditional expectation.
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