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A continuous forcing immersed boundary method (IBM) and a volume penalization method are investigated to simulate compressible viscous flows past an isothermal or adiabatic solid obstacle using a body non-conformal Cartesian grid. The present methods are validated on a large range of flow configurations such as incompressible and compressible flows (steady or unsteady) past isothermal or adiabatic solid obstacles. An adiabatic condition with implicit treatment of the source term is derived for the penalization method, taking advantage of the framework of the ghost-cell methods. Accuracy and computational cost of the methods are discussed. Three-dimensional supersonic flow configurations are carried out with the penalization method. The coupling between the porosity parameter and the different boundary conditions of the present penalization method is investigated in order to properly reproduce the wave reflection on a solid wall. Finally, a new penalization model is designed to improve the shock wave reflection on a solid surface while significantly reducing the computational cost compared to the previous porosity model.

Introduction

Despite significant gains resulting from increasing the computational power of supercomputers and a major effort to adapt Computational Fluid Dynamics (CFD) tools to new supercomputer architectures over the last few decades, a crucial point in the production chain of a numerical simulation remains the mesh generation. Accurate simulations of flow around complex geometries are a major issue for many engineering applications. The body-fitted approach, which consists in building a mesh that fits the geometric shape of the obstacle, is commonly adopted to simulate such problems. The boundary conditions are directly imposed on the first layer of cells/nodes along the obstacle surface. Unfortunately the representation of fine geometric elements can be difficult and therefore may impact the mesh quality leading to alter the numerical results. An alternative strategy, called Immersed Boundary Methods (IBM), is to use a non-conformal Cartesian mesh and to modify the solution locally or to add a source term in equations to mimic the presence of the obstacle. Due to its simplicity in mesh processing, the immersed boundary methods have become very attractive.

Various immersed boundary techniques have been proposed in the literature. The original method has been developed by Peskin [START_REF] Peskin | Flow patterns around heart valves: A numerical method[END_REF] to simulate blood flow in heart valves considering cardiac mechanics. A stability analysis of this method has been recently carried out [START_REF] Hua | An analysis of the numerical stability of the immersed boundary method[END_REF]. This category of numerical methods can be separated into two parts: the discrete forcing and the continuous forcing methods (see [START_REF] Mittal | Immersed boundary methods[END_REF] for a general review of these methods). The first one includes ghost-cell [START_REF] Fedkiw | A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method)[END_REF][START_REF] Lundquist | An immersed boundary method for the weather research and forecasting model[END_REF] and cut-cell methods [START_REF] Leveque | High resolution finite volume methods on arbitrary grids via wave propagation[END_REF]. The second one is made of the Lagrangian forcing method introduced by Peskin [START_REF] Peskin | Flow patterns around heart valves: A numerical method[END_REF] and has been adapted in several ways, in particular by the interpolation technique and the derivation of the forcing term. Beyer and Leveque [START_REF] Beyer | Analysis of a one-dimensional model for the immersed boundary method[END_REF] and Lai and Peskin [START_REF] Lai | An immersed boundary method with formal second-order accuracy and reduced numerical viscosity[END_REF] improved the original δ function interpolation technique. Goldstein et al. [START_REF] Goldstein | Modeling a no-slip flow boundary with an external force field[END_REF] added a damping coefficient in the feedback forcing term. As an example, it has been applied to atmospheric urban flows [START_REF] Smolarkiewicz | Building resolving large-eddy simulations and comparison with wind tunnel experiments[END_REF]. Saiki and Biringen [START_REF] Saiki | Numerical simulation of a cylinder in uniform flow: Application of a virtual boundary method[END_REF] replaced the original δ function interpolation technique by a bilinear interpolation. Firstly designed for incompressible flows, the continuous forcing approach has been extended to compressible flows by Qiu et al. [START_REF] Qiu | A boundary condition-enforced immersed boundary method for compressible viscous flows[END_REF] who adapted the implicit velocity correction-based immersed boundary method previously developed by Wu and Shu [START_REF] Wu | Implicit velocity correction-based immersed boundary-lattice Boltzmann method and its applications[END_REF]. Recent work has focused on the development of Neumann-type boundary conditions for compressible flows using a continuous forcing approach [START_REF] Yu | An immersed boundary method with implicit body force for compressible viscous flow[END_REF]. Sharp-interface and/or high-order methods have been developed to enhance the spacial accuracy around the immersed boundary [START_REF] Ghias | A sharp interface immersed boundary method for compressible viscous flows[END_REF]. Wang et al. [START_REF] Wang | An immersed boundary method for fluid-structure interaction with compressible multiphase flows[END_REF] applied a continuous forcing method to fluid-structure interaction in compressible multiphase flows.

In contrast to this approach, the Brinkman penalization method was firstly proposed by Arquis and Caltagirone [START_REF] Arquis | Sur les conditions hydrodynamiques au voisinage d'une interface milieu fluide-milieu poreux: Application à la convection naturelle[END_REF] to study incompressible flows by considering the solid obstacle as a porous medium whose permeability tends to zero. The volume penalization method, although based on a volume forcing term, is commonly categorized as an immersed boundary method since it is very frequently used with an embedded Cartesian grid and the boundary conditions are imposed implicitly by a local source term. Angot et al. [START_REF] Angot | A penalization method to take into account obstacles in incompressible viscous flows[END_REF] proposed the first rigorous studies of convergence and error estimation. This mathematical work has been pursued in [START_REF] Carbou | Boundary layer for a penalization method for viscous incompressible flow[END_REF] where it is shown that the solution of the penalized system converges towards the solution of the Navier-Stokes equations associated with a Dirichlet condition as the penalization parameter tends to zero. Due to the stiffness of the system of equations when the permeability parameter is very small, a preconditioning strategy has been recently developed to solve the incompressible and low-Mach Navier-Stokes equations [START_REF] Thirumalaisamy | An effective preconditioning strategy for volume penalized incompressible/low Mach multiphase flow solvers[END_REF]. Subsequently, several works were interested in the extension to Neumann and Robin boundary conditions in the context of incompressible flows [START_REF] Kadoch | A volume penalization method for incompressible flows and scalar advection-diffusion with moving obstacles[END_REF][START_REF] Thirumalaisamy | Handling Neumann and Robin boundary conditions in a fictitious domain volume penalization framework[END_REF] and to high order flux reconstruction [START_REF] Kou | Immersed boundary method for high-order flux reconstruction based on volume penalization[END_REF][START_REF] Kou | Eigensolution analysis of immersed boundary method based on volume penalization: Applications to high-order schemes[END_REF][START_REF] Kou | A combined volume penalization / selective frequency damping approach for immersed boundary methods applied to high-order schemes[END_REF]. To our knowledge, Liu and Vasilyev [START_REF] Liu | A Brinkman penalization method for compressible flows in complex geometries[END_REF] were the first to extend the penalization method to compressible flows with isothermal boundary condition. Boiron et al. [START_REF] Boiron | A high-resolution penalization method for large Mach number flows in the presence of obstacles[END_REF] showed the ability of the method to simulate large Mach number flows while Abgrall et al. [START_REF] Abgrall | An immersed boundary method using unstructured anisotropic mesh adaptation combined with level-sets and penalization techniques[END_REF] coupled the method with an unstructured anisotropic mesh adaptation method and a level-set function to compute supersonic flows. Another formulation, the characteristic based volume penalization method (CBVP), was proposed by Brown-Dymkoski et al. [START_REF] Brown-Dymkoski | A characteristic based volume penalization method for general evolution problems applied to compressible viscous flows[END_REF] to simulate compressible viscous flows past fixed obstacles with generalized Neumann and Robin-type boundary conditions. More recently Kasimov et al. [START_REF] Kasimov | Galilean-invariant characteristic-based volume penalization method for supersonic flows with moving boundaries[END_REF] adapted the method to moving boundaries by ensuring Galilean invariance.

One can notice that IBM applications are mostly used to simulate incompressible flows where only a Dirichlet boundary condition on velocity is modelled, except in some cases where a thermal passive scalar is solved [START_REF] Kadoch | A volume penalization method for incompressible flows and scalar advection-diffusion with moving obstacles[END_REF][START_REF] Narvaez | Simulation of turbulent flow subjected to conjugate heat transfer via a dual immersed boundary method[END_REF]. For compressible flows, the energy equation is coupled to the system and it is necessary to treat the boundary condition for temperature. The prevalence of strong density or/and temperature variations or/and shock waves in compressible flows does not allow a trivial use of immersed boundary methods and some adaptations must be adopted. In the following, a comparison of two approaches is presented by covering a large variety of flows from incompressible to supersonic regime and by applying various boundary conditions on the temperature, as well as a special treatment for the density. The first one is the continuous Lagrangian forcing (also called Peskin's Immersed Boundary Method) and the second one is the volume penalization method, which has been found to be a competitive method in the comparative study proposed by Piquet et al. [START_REF] Piquet | A comparative study of Brinkman penalization and direct-forcing immersed boundary methods for compressible viscous flows[END_REF]. Various tests are performed involving shock waves and stiff shock-obstacle interactions (supersonic flow past a wedge, shock-cylinder interaction, shock reflection on a wall). Both Dirichlet and Neumann thermal boundary conditions are investigated. An adiabatic boundary condition with implicit discretization of the source term is derived for the penalization method, using the ghost-cell framework [START_REF] Chi | An improved ghost-cell immersed boundary method for compressible flow simulations[END_REF]. A focus is proposed on the computational cost of the two methods. A new penalization model is designed to improve the prediction of strong shock waves impact on a solid surface. Furthermore, an extension to three-dimensional supersonic cases is proposed with the penalization method. Throughout this paper, a deep investigation of the influence of the penalization porosity parameter [START_REF] Liu | A Brinkman penalization method for compressible flows in complex geometries[END_REF] is carried out in regards to accuracy, numerical stability and computational cost.

The paper is organized as follows. Firstly, the governing equations, the considered immersed boundary methods (i.e. continuous forcing IBM and volume penalization method) and the present fluid solver are presented in section 2. Secondly, results are shown and discussed in terms of accuracy and computational cost in section 3. Finally, conclusion and perspectives are addressed in section 4.

Numerical methods

Governing equations

Let consider a physical domain Ω containing a solid obstacle Ω s . The governing equations describing a viscous compressible flow with a volume force are expressed in the whole domain Ω as

∂ρ ∂t + ∇.(ρu) = f ρ , ∂ρu ∂t + ∇.(ρu ⊗ u) + ∇p + ∇.τ = f u , (1) 
∂ρE ∂t + ∇. ((ρE + p)u) + ∇.(τ .u) + ∇.q = f E ,
where ρ is the density, u is the velocity, p is the pressure, E is the total energy and f = (f ρ , f u , f E ) T is the vector of volume forces. The viscous stress tensor τ is expressed as

τ = -µ ∇u + ∇u T - 2 3 (∇.u)I d , (2) 
where I d is the identity matrix and µ is the dynamic viscosity. The heat flux q is defined by the Fourier law as q = -k∇T,

where k is the thermal conductivity and T is the temperature. The dynamic viscosity depends on temperature and follows the Sutherland's law if the fluid is a gas, or an exponential law if the fluid is a liquid

µ(T ) = µ ref T T ref 3/2 T ref + S T + S , for a gas, (4) 
µ(T ) = A exp B T , for a liquid, (5) 
where µ ref = 1.715.10 -5 Pa.s, T ref = 273.15 K and S = 110.4 K are respectively a reference viscosity, a reference temperature and the Sutherland temperature for air. A = 1.214.10 -6 Pa.s and B = 1968 K are the coefficients of the exponential law for liquid water. Pressure and temperature are computed from the stiffened gas equation of state [START_REF] Metayer | Elaborating equations of state of a liquid and its vapor for two-phase flow models[END_REF] 

p = (γ -1)ρe -γP ∞ , T = h c p . ( 6 
)
where e is the internal energy , γ = c p /c v is the heat capacity ratio, c p and c v are thermal capacities, h is the enthalpy and P ∞ is a constant reference pressure. The latter is equal to zero for a gas, and equation ( 6) then becomes the perfect gas equation of state. The speed of sound, c, is given by c 2 = γ(p + P ∞ )/ρ. 
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Continuous forcing IBM

The present continuous forcing IBM consists in calculating a forcing term at the fluid-solid interface, that is then spreaded at the vicinity of the interface and introduced in equation ( 1) as a source term. In addition to the Cartesian grid, it is necessary to discretize the Lagrangian surface representing the interface, as depicted in Figure 1.

The Lagrangian points X of the Γ interface are spaced by a Lagrangian discretization step ∆s and the x points refer to the center of the Cartesian grid cells. The Lagrangian step is calculated as a function of the Eulerian step and is set to ∆s = 2∆x in the present work. Indeed, spurious oscillations appear when the Lagrangian step is lower than the Eulerian step, and it should not be too high in order to avoid fluid leakage through the interface. The passage of quantities between the Eulerian and Lagrangian domains is performed by convolution with regularized Dirac distributions, called δ functions. The functions introduced by Beyer and Leveque [START_REF] Beyer | Analysis of a one-dimensional model for the immersed boundary method[END_REF], Roma et al [START_REF] Roma | An adaptive version of the immersed boundary method[END_REF] and Lai and Peskin [START_REF] Lai | An immersed boundary method with formal second-order accuracy and reduced numerical viscosity[END_REF] have been investigated and the one introduced by Lai and Peskin [START_REF] Lai | An immersed boundary method with formal second-order accuracy and reduced numerical viscosity[END_REF] has been selected in this work due to its great regularization properties. The latter is defined as

δ(r) =    1 8 (3 -2|r| + 1 + 4|r| -4|r| 2 ), |r| ≤ 1, 1 8 (5 -2|r| --7 + 12|r| -4|r| 2 ), 1 < |r| ≤ 2, 0, otherwise. (7) 
It can be noted that, in this approach, no forcing term is applied on the continuity equation so f ρ = 0 in equation (1).

Momentum equation forcing term

The different steps of the method are first presented for the momentum equation. We consider a Dirichlet boundary condition for velocity at fluid-solid interface such as u| Γ = u w . From the fluid velocity u(x, t) defined on the Eulerian domain, the velocity at each point X of the interface is interpolated as

u(X, t) = Ω u(x, t)δ h (X -x)dx, (8) 
where δ h (Xx) is the δ function from equation ( 7) that has been extended to two dimensions and applied to the lagrangian point X of coordinates (X, Y ). The 2D extension is straightforward and is achieved as

δ h (X -x) = 1 ∆x∆y δ X -x ∆x δ Y -y ∆y , (9) 
In order to save computation time, equation ( 8) is not computed on the whole domain Ω, but only on the support of the δ h function. The forcing term is then computed at each Lagrangian point using the interpolated velocity from equation ( 8)

F u (X, t) = α t 0 (u w -u(X, t ′ ))dt ′ + β(u w -u(X, t)), (10) 
where u w is the velocity imposed at the interface and (α, β) are arbitrary parameters. The components of the source term on the momentum equation that appears in equation ( 1) are then computed by spreading equation [START_REF] Smolarkiewicz | Building resolving large-eddy simulations and comparison with wind tunnel experiments[END_REF] on the Eulerian domain

f u (x, t) = ρ(x, t) Γ F u (X, t)δ h (x -X)dX, (11) 
One can notice that according to the expression of the forcing term from equation [START_REF] Smolarkiewicz | Building resolving large-eddy simulations and comparison with wind tunnel experiments[END_REF], the interpolated velocity u(X, t) tends to the imposed velocity, u w as a harmonic oscillator with damping of angular frequency ω 0 = √ α and damping coefficient ξ = β/(2 √ α) [START_REF] Goldstein | Modeling a no-slip flow boundary with an external force field[END_REF]. The arbitrary parameters α and β must be chosen in order to have a high damping coefficient in such a way that velocity converges quickly to the imposed one. The magnitude of α also has to be large enough so that the feedback forcing can be adapted with a frequency which is higher than any frequency in the fluid flow. When α and β are sufficiently high, the flow remains independent of their value but the system becomes stiff and the time integration requires a small time step.

Energy equation forcing term

In this part, we aim to model either a Dirichlet condition, a homogeneous Neumann condition or a temperature-neutral condition at the interface between fluid and solid. In all cases, it is achieved by computing a forcing term f E and by introducing it in the energy equation, as presented in equation [START_REF] Peskin | Flow patterns around heart valves: A numerical method[END_REF]. Let consider a wall temperature T w (X, t) that satisfies either a Dirichlet or Neumann condition, and a wall velocity u w that satisfies a Dirichlet condition. For all Lagrangian points X, the corresponding total energy can be obtained from the stiffened gas equation of state

E w (X, t) = 1 2 u 2 w + c v T w (X, t) + P ∞ ρ(X, t) , (12) 
The interpolated density ρ(X, t) is computed in the same manner as the interpolated velocity [START_REF] Lai | An immersed boundary method with formal second-order accuracy and reduced numerical viscosity[END_REF]. Once that the imposed energy is known, the forcing term is derived in the same way as for the momentum equation

E(X, t) = Ω E(x, t)δ h (X -x)dx, (13) 
F E (X, t) = α t 0 (E w (X, t ′ ) -E(X, t ′ ))dt ′ + β(E w (X, t) -E(X, t)), (14) 
f E (x, t) = ρ(x, t) Γ F E (X, t)δ h (x -X)dX, (15) 
For a Dirichlet condition on temperature, T w (X, t) is constant for all Lagrangian points. However, this is not the case for a homogeneous Neumann condition, which states that ∂T ∂n Γ = 0. For each Lagrangian point X, a corresponding sampling point X c is created at a distance d along the interface normal vector (see Figure 1). Therefore, the temperature gradient across the interface can be discretized with a first order finite difference scheme to determine the temperature T w (X, t) which satisfies the homogeneous Neumann condition for all X. Thus, the latter can be expressed as

T w (X, t) = T w (X c , t) = Ω T (x, t)δ h (X c -x)dx, (16) 
A Lagrangian point and its sampling point must not be located in the same cell to avoid large overlap between δ h (X) and δ h (X c ). The distance between these points is set to d = √ 2∆x to guarantee the validity of this property, even in the worst situation when the wall normal vector follows the diagonal of a cell of the Cartesian grid.

Finally, the temperature-neutral condition (called T -neutral in the present work) consists in letting the temperature to evolve freely across the interface between fluid and solid. Thus, the forcing term for the energy equation only takes into account the kinetic energy imposed by the momentum forcing. It is expressed as follows

f E (x, t) = u(x, t).f u (x, t). (17) 

Volume penalization method

Contrary to the previous approach, the interface is not discretized in the penalization method [START_REF] Arquis | Sur les conditions hydrodynamiques au voisinage d'une interface milieu fluide-milieu poreux: Application à la convection naturelle[END_REF]. The penalization term is directly computed on the Eulerian domain and is applied to the whole solid, located with the mask function χ, that is equal to 1 in the solid and 0 elsewhere

χ(x) = 1 if x ∈ Ω s , 0 otherwise. ( 18 
)
Similarly to section 2.2, we consider a Dirichlet boundary condition for the solid velocity such that it satisfies u| Ωs = u w , and either a Dirichlet, Neumann or neutral condition for the temperature. The fundamental idea of the method is to model the solid by a porous medium with permeability tending to zero. In fact, the penalization term comes from the theory of compressible flows in porous media and is expressed as follows

f =   -( 1 ϕ -1)χ∇.(ρu) χ η (ρu w -ρu) f E   , (19) 
where ϕ is the porosity parameter and η is the permeability parameter. The term that is applied to the continuity equation has been introduced by Liu and Vasilyev [START_REF] Liu | A Brinkman penalization method for compressible flows in complex geometries[END_REF] in order to properly simulate the wave propagation in the context of an isothermal wall. The expression of f E depends on the condition imposed on the temperature. For a Dirichlet condition on temperature, the corresponding imposed energy E w is calculated by including the imposed temperature T w in the equation of state. The energy penalization term is thus expressed as

f E = χ η (ρE w -ρE), (20) 
For a homogeneous Neumann condition, the temperature T w must satisfy the zero-gradient temperature condition at the interface. A ghost-cell method [START_REF] Chi | An improved ghost-cell immersed boundary method for compressible flow simulations[END_REF] is adopted to determine the temperature to be imposed in each cell at the interface. This approach is well adapted to the penalization method because the solid is marked by a mask function and not by a Lagrangian contour. Each cell belonging to the solid of which at least one neighboring cell is fluid, is called a ghost-cell and its center G is denoted as a ghost point (see Figure 2).

The center of a non-ghost-cell where χ = 1 is denoted as a solid interior point. A set of Lagrangian points X is required to compute the normal vectors and the position of the image points IP1 and IP2. In Figure 2, the two closest Lagrangian points to G are denoted as X A and X B . The intercept point I corresponds to the projection of G on the segment [X A X B ]. The normal vector n AB is computed as the outward orthogonal vector to [X A X B ]. The first and second image points, IP1 and IP2, are the extension of G along the normal vector n AB , and are placed at a distance d and d + r from I, respectively. Note that r is the distance between G and I. The zero-gradient temperature condition has to be satisfied for all points I. Once discretized at second order, this condition allows to determine the imposed temperature at G that satisfies the Neumann condition. It is expressed as follows Temperature values at IP1 and IP2 are obtained by bilinear interpolation from the known values at the four nearest Eulerian points. The distance d has to be the shortest as possible and is set to

T G = T IP1 - d -r d (T IP2 -T IP1 ), (21) 
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d = √ 2∆x in 2D (and d = √ 3∆x in 3D
), in order to ensure that no solid interior points are included in the bilinear interpolation procedure. Indeed, we use a Cartesian grid with cell diagonal lengths equal to √ 2∆x in 2D (and √ 3∆x in 3D). This value of d has been widely used for similar applications in previous studies using ghost-cell methods [START_REF] Chi | An improved ghost-cell immersed boundary method for compressible flow simulations[END_REF][START_REF] Pan | A general boundary condition treatment in immersed boundary methods for incompressible Navier-Stokes equations with heat transfer[END_REF]. The domains Ω g and Ω si contain respectively the ghost-cells and the solid interior cells and the initial mask function χ is divided into two distinct mask functions χ g and χ si :

χ g (x) = 1 if x ∈ Ω g 0 otherwise , χ si (x) = 1 if x ∈ Ω si 0 otherwise , (22) 
The distinction of these two mask functions allows to apply different conditions on ghost-cells and solid interior cells. The temperature satisfying the zero gradient along the normal to the interface is imposed in each ghost-cell as for an isothermal condition. However, the temperature cannot be imposed on the solid interior cells and it must remain free. Therefore, only the kinetic energy constrained by the momentum penalization term is imposed. The Neumann condition is then modelled with the following source term

f E = χ g η ρ(c v T G + u 2 w 2 ) + P ∞ -ρE + χ si η u.(ρu w -ρu), (23) 
Similarly to IBM, a third condition denoted as temperature-neutral condition (T -neutral) is defined in the whole solid by calculating an energy penalization term only based on the kinetic energy

f E = χ η u.(ρu w -ρu). (24) 
One can note that, no matter which condition is adopted, the source term is null in the fluid because χ = 0 so the flow is not affected. On the one hand, the permeability parameter must tend to 0 in order to correctly model the imposed boundary conditions. In this work, the permeability parameter is set to η = 10 -10 since the terms involving this parameter are easily treated implicitly. On the other hand, to properly model the wave reflection at the fluid-solid interface, Liu and Vasilyev [START_REF] Liu | A Brinkman penalization method for compressible flows in complex geometries[END_REF] stated that the porosity parameter ϕ must be as small as possible. However, this leads to stability issues since the density penalization term is treated explicitly because of the use of a HLLC scheme for convective terms [START_REF] Goncalves | Numerical study of pressure loads generated by a shock-induced bubble collapse[END_REF][START_REF] Dubois | High performance computing of stiff bubble collapse on CPU-GPU heterogeneous platform[END_REF]. Liu & Vasilyev [26] conducted a stability analysis for subsonic flows assuming that u = O(η) within the penalized area. In the following, this study is extended to general supersonic flows without any assumption for u, since spurious velocity may persist on the edges of the penalized area, when considering supersonic flows with shock waves. The eigenvalues of the hyperbolic system are modified by the introduction of the porosity parameter ϕ. The modified Jacobian matrix of the hyperbolic system (perfect gas and 1D for simplicity) can be expressed as

A =   0 1/ϕ 0 γ-3 2 u 2 (3 -γ)u γ -1 -γuE + (γ -1)u 3 γE -3 2 (γ -1)u 2 γu   , (25) 
The eigenvalues λ of the Jacobian matrix ( 25) can be found by solving the characteristic equation, which leads to the depressed cubic equation

(λ -u) 3 + p(λ -u) + q = 0, ( 26 
) with p = -c 2 -u 2 2 ( 1 ϕ -1)(γ -3), q = c 2 u( 1 ϕ -1) -u 3 2 ( 1 ϕ -1)(γ -1), (27) 
Equation ( 26) can be solved by the Cardano's method to obtain the eigenvalues of the Jacobian matrix

λ 1 = u + 3 √ R + 3 √ R, λ 2 = u + ω 3 √ R + ω 3 √ R, λ 3 = u + ω 3 √ R + ω 3 √ R, (28) 
with

R = -q 2 + q 2 4 + p 3 27 and ω = -1+i √ 3 2
. R and ω denote the conjugates of R and ω. The previous steps allow to determine the Courant-Friedrichs-Lewy (CFL) stability condition, which is modified by the value of ϕ and is defined as

CFL = ρ(A)∆t ∆x . (29) 
with ρ(A) = max{|λ 1 |, |λ 2 |, |λ 3 |} the spectral radius of matrix A. One can note that for ϕ = 1, the three eigenvalues are u, uc and u + c and the CFL number remains CFL = |u+c|∆t ∆x . For ϕ < 1, the spectral radius of the Jacobian matrix is increased and the time step ∆t must be decreased according to the stability condition. Figure 3 shows the evolution of the spectral radius depending on the porosity parameter ϕ for two different Mach numbers. It also illustrates that the value of ϕ is even more restrictive on the time step for high Mach numbers.

Space and time discretization

Equation ( 1) is solved with a finite volume method. The convective flux is computed with a HLLC scheme and the second-order in space is reached using a MUSCL reconstruction. The viscous flux is computed with a second-order centered scheme. More details about the present solver are given in [START_REF] Goncalves | Numerical study of pressure loads generated by a shock-induced bubble collapse[END_REF][START_REF] Dubois | High performance computing of stiff bubble collapse on CPU-GPU heterogeneous platform[END_REF]. The solution at time t n is first updated to an intermediate solution with the convective and viscous fluxes at first order in time. This intermediate solution is then updated to the solution at time t n+1 including the source term with a first-order explicit Euler scheme for IBM and with a first-order semi-implicit Euler scheme for penalization due to the stiffness of the penalization term (1/η ≫ 1). The Cartesian grid is refined around the area of interest where the space step ∆x min is uniform, then it is stretched with a hyperbolic progression to the edges of the domain (see Figure 4).

When considering subsonic flows, inlet velocity and outlet pressure are imposed. For supersonic flows, all the conservative variables are imposed at the inlet boundary and homogeneous Neumann conditions are applied to the conservative variables at the outlet boundary, since all the characteristics are outgoing. In the case of a normal incident shock wave, non-reflecting conditions are imposed at the inlet and outlet of the domain. In both cases, non-reflecting boundary conditions are applied at the top and bottom edges of the domain. At the interface between fluid and solid, boundary conditions are imposed with IBM or penalization. In the present work, no-slip and isothermal, adiabatic or T -neutral conditions are imposed at the solid boundary. 

10 -4 10 -3 10 -2 10 -1 φ 10 0 10 1 10 2 ρ(A)/(u + c) M ∞ = 0.1 M ∞ = 2

Refined grid

Stretched grid

Inlet conditions 

M ∞ < 1 : u in = u ∞ M ∞ ≥ 1 : ρ in = ρ ∞ (ρu) in = (ρu) ∞ (ρE) in = (ρE) ∞ Outlet conditions M ∞ < 1 : p out = p ∞ M ∞ ≥ 1 :

Results and discussion

Different test cases are carefully selected in order to fully evaluate the behaviour of the two present methods for a wide range of flow conditions. For all cases, the obstacle geometry, the flow conditions and the thermal boundary conditions imposed to the solid are summarized in Table 1. Cases 1 and 2 are standard benchmark problems for incompressible flows. In the present paper, they are used to assess both the adiabatic and isothermal boundary conditions of IBM and penalization. They represent an essential foundation for the following of the study. Case 3 demonstrates the ability of the methods to handle compressible flows past an adiabatic/heated obstacle involving a bow shock. Sharp geometries represent a challenge for IBM and penalization. This aspect is investigated in case 4 with the supersonic flow past a wedge, which also involves attached oblique and tail shocks. Case 5 is an example of stiff interactions between an incident normal shock wave and a solid obstacle surface, which is represented by IBM or penalization. Strong shock reflection on a solid wall in liquid water is investigated in case 6. We focus on the obstacle acoustic impedance and on the assessment of the new penalization model to accurately simulate a strong shock reflection on a wall. Case 7 demonstrates that the penalization method is suitable for 3D flow configurations, considering both a heated or an unheated solid obstacle.

Case Geometry Mach Reynolds

Thermal B.C. 

Incompressible flows

A first validation step has been carried out to assess the accuracy of IBM and penalization method for incompressible airflows (P ∞ = 0) past a circular cylinder. The velocity satisfies the no-slip condition at the fluid-solid interface, and both Dirichlet and Neumann conditions are validated by considering isothermal or adiabatic wall. The cylinder of diameter D is centered at coordinates (0, 0) in a rectangular domain of dimensions [-12.5D, 37.5D] × [-15D, 15D]. The Mach number is set to M ∞ = 0.1 to neglect the fluid compressibility. The latter is defined as

M ∞ = u ∞ /c ∞ ,
where u ∞ is the free-stream velocity and c ∞ is the free-stream sound speed. The free-stream pressure and temperature are set to p ∞ = 1 bar and T ∞ = 292.42 K, respectively.

Case 1: steady flow past a circular cylinder

We first consider a steady flow past an adiabatic circular cylinder. The Reynolds number is fixed to Re ∞ = 40 and is calculated from the free-stream quantities and the cylinder diameter. A stretched cartesian mesh is adopted, with a uniform refined mesh in the area of interest surrounding the cylinder. The minimum mesh size is set to ∆x min = ∆y min = D/80 in this example. Since the flow is incompressible, the porosity parameter is set to ϕ = 1 for the penalization method. The flow is composed of two steady symmetric vortices attached to the cylinder, also known as the laminar steady recirculation region. The characteristic lengths of the flow are shown in Figure 5. Many reference results exist in the literature concerning the recirculation length L, the position of the vortices center (a, b), the separation angle θ s and the drag coefficient C d . Aerodynamic coefficients are computed from the momentum source term f u for both IBM and penalization [START_REF] Boiron | A high-resolution penalization method for large Mach number flows in the presence of obstacles[END_REF]. The characteristic lengths L, a and 2b are normalized by the cylinder diameter D. The present results are presented and compared in Table 2 and show a very well agreement with the reference results. The pressure coefficient is computed as

C p = 2(p -p ∞ )/ρ ∞ u 2
∞ , with p being the reconstructed wall pressure. The interpolation procedure is the same for IBM and penalization. From a set of Lagrangian points X describing the discrete interface, two sets of sample points X 1 and X 2 are placed along the normal direction to the surface. The pressure is first interpolated at these points with a bilinear interpolation. The wall pressure is then computed from these values using Lagrange polynomials. The pressure coefficient is represented in Figure 7 along the interface for different angles θ, starting from the leading edge. It shows an excellent agreement with the results of Al-Marouf and Samtaney [START_REF] Al-Marouf | A versatile embedded boundary adaptive mesh method for compressible flow in complex geometry[END_REF] and Riahi et al. [START_REF] Riahi | A pressure-corrected immersed boundary method for the numerical simulation of compressible flows[END_REF]. In the literature, mainly global quantities are compared as shown in Table 2, such as the drag coefficient C d or the recirculation length L. It may be noticed that relative discrepancies between the different authors can reach more than 10%. A convergence study has been performed with respect to an accurate reference solution of the flow over a circular cylinder at Re ∞ = 40 provided by Gautier et al. [START_REF] Gautier | A reference solution of the flow over a circular cylinder at Re=40[END_REF] using a fully pseudo-spectral code. We compute the velocity norm error by comparing the deviation between our solution and the reference one as |||u| -|u ref ||| L 2 . The convergence results are presented in Figure 6 and show that the coupling between IBM or penalization with our compressible solver is of first order in space for velocity and pressure, as observed by other authors [START_REF] Peskin | Flow patterns around heart valves: A numerical method[END_REF][START_REF] Shallcross | An explicit characteristic-based immersed boundary method for compressible flows[END_REF]. In fact, IBM is limited to first order since the forcing is spreaded using δ functions. The same conclusion applies to the penalization method in which the boundary condition is imposed at the approximate interface. Since Gautier et al. [START_REF] Gautier | A reference solution of the flow over a circular cylinder at Re=40[END_REF] used an incompressible solver, no reference solution is available for the temperature field. To evaluate the temperature error, we therefore consider the penalization solution computed on a very fine mesh (∆x min = D/160) as a reference solution. Figure 6 shows that the temperature converges to the reference temperature at first order in space. We now consider a steady flow past a heated circular cylinder by imposing an isothermal condition T * w = 1.5, with T * w = T w /T ∞ . T w refers to the cylinder temperature and T ∞ to the free-stream temperature. Since the fluid viscosity depends on the temperature, the dynamic viscosity is therefore higher in the vicinity of a heated cylinder than an adiabatic cylinder. The definition of the Reynolds number then becomes ambiguous. For a heated cylinder, we consider a film Reynolds number [START_REF] Wang | On the relationship of effective Reynolds number and Strouhal number for the laminar vortex shedding of a heated circular cylinder[END_REF] defined as Re f = u ∞ D/ν(T f ), where ν(T f ) is the kinematic viscosity calculated from the film temperature T f = (T w + T ∞ )/2. In this example, the film Reynolds number is set to Re f = 20, which corresponds to a free-stream Reynolds number Re ∞ = 29.6. In order to characterize the heat transfer at the cylinder interface, the local Nusselt number is defined as

C d L θ s a 2b
N u = h c D k = D T w -T ∞ ∂T ∂n Γ . ( 30 
)
with h c the heat transfer coefficient and k the thermal conductivity. The computation of the local Nusselt number at the cylinder wall requires the use of a high spatial resolution for IBM and penalization. Thus, the minimum space step is fixed to ∆x min = ∆y min = D/160. The pressure coefficient and the local Nusselt number are shown in Figure 8 and they are compared with the results of Shi et al. [START_REF] Shi | Heating effect on steady and unsteady horizontal laminar flow of air past a circular cylinder[END_REF]. It can be observed that the flow features are correctly represented for both methods. However, the Nusselt number obtained with IBM shows differences from the penalization method and the results of Shi et al. [START_REF] Shi | Heating effect on steady and unsteady horizontal laminar flow of air past a circular cylinder[END_REF]. In fact, heat flux at the interface is not very well reproduced with IBM because the isothermal condition itself is less accurately imposed. There are two reasons for this. Firstly, the accuracy of the boundary conditions at the Lagrangian points depends on the values of the parameters α and β, that also have a huge impact on the time step. Secondly, the accuracy of the solution is decreased in the vicinity of the Lagrangian points, due to the diffuse description of the interface with the δ-functions. Furthermore, as the gradients involved in a low Mach regime with a heated body are lower for pressure than for temperature, the above-mentioned differences are only observed for the Nusselt number and not for the pressure coefficient.

Case 2: unsteady flow past a circular cylinder

This case concerns an unsteady flow past a circular cylinder. Similarly to the previous section, we first consider an adiabatic wall, before studying a heated cylinder.

The Reynolds number is first set to Re ∞ = 100 and vortex shedding appears in the cylinder wake. The Strouhal number represents a dimensionless vortex shedding frequency and is expressed as where u ∞ is the free-stream velocity and f is the vortex shedding frequency. The latter also corresponds to the lift coefficient frequency. The drag coefficient C d , the lift coefficient C l and the Strouhal number St are given in Table 3. They show a good agreement with the reference results [START_REF] Liu | Preconditioned multigrid methods for unsteady incompressible flows[END_REF][START_REF] Ding | Simulation of incompressible viscous flows past a circular cylinder by hybrid FD scheme and meshless least square-based finite difference method[END_REF][START_REF] Ren | An efficient immersed boundary method for thermal flow problems with heat flux boundary conditions[END_REF].

St = f D u ∞ . (31) 
C d C l St Liu et al. [45]
1.350 ± 0.012 ± 0.339 0.164 Ding et al. [START_REF] Ding | Simulation of incompressible viscous flows past a circular cylinder by hybrid FD scheme and meshless least square-based finite difference method[END_REF] 1.325 ± 0.008 ± 0.28 0.164 Ren et al. [START_REF] Ren | An efficient immersed boundary method for thermal flow problems with heat flux boundary conditions[END_REF] 1.335 ± 0.011 ± 0.351 0.160 IBM (present)

1.362 ± 0.012 ± 0.297 0.161 Penalization (present) 1.353 ± 0.011 ± 0.314 0.161 Let now consider an unsteady flow past a heated cylinder at T * w = 1.5. The film Reynolds number is set to Re f = 100, which corresponds to a free-stream Reynolds number of Re ∞ = 148. The mean drag coefficient C d and the Strouhal number St are computed for both methods and are presented in Table 4. Shi et al. [START_REF] Shi | Heating effect on steady and unsteady horizontal laminar flow of air past a circular cylinder[END_REF] showed that for a given free-stream Reynolds number, the cylinder heating has no influence on the average drag coefficient and that the latter remains almost constant for free-stream Reynolds numbers between 100 and 200. Hence, the results of Homsi et al. [START_REF] Homsi | Flow dynamics over a heated cylinder subjected to high temperature ratios[END_REF], obtained for a flow past a cylinder heated at T * w = 1.66 at Re ∞ = 150, as well as the results of Lima E Silva et al. [START_REF] Lima E Silva | Numerical simulation of two-dimensional flows over a circular cylinder using the immersed boundary method[END_REF] for an unheated cylinder at Re ∞ = 150, can be considered here for C d comparisons. Table 4 shows a well agreement between the present drag coefficients and the results of the mentioned above authors [START_REF] Homsi | Flow dynamics over a heated cylinder subjected to high temperature ratios[END_REF][START_REF] Lima E Silva | Numerical simulation of two-dimensional flows over a circular cylinder using the immersed boundary method[END_REF]. The Strouhal number obtained for both methods shows an excellent agreement with the results of Shi et al. [START_REF] Shi | Heating effect on steady and unsteady horizontal laminar flow of air past a circular cylinder[END_REF]. To study the temperature influence on the vortex shedding frequency, it is common to define an effective Reynolds number [START_REF] Lecordier | The control of vortex shedding behind heated circular cylinders at low Reynolds numbers[END_REF] Re eff = u ∞ D/ν(T eff ) with T eff = T ∞ + 0.28(T w -T ∞ ) being the effective temperature. It has been introduced based on the similarity that the critical effective Reynolds number is the same for an air flow past a heated or unheated circular cylinder. From experimental results, Wang et al. [START_REF] Wang | On the relationship of effective Reynolds number and Strouhal number for the laminar vortex shedding of a heated circular cylinder[END_REF] found the following correlation between the Strouhal number and the effective Reynolds number

St = 0.2660 - 1.0160 √ Re eff . (32) 
In the present flow configuration, equation [START_REF] Piquet | A comparative study of Brinkman penalization and direct-forcing immersed boundary methods for compressible viscous flows[END_REF] gives St = 0.172, which is in excellent agreement with the present results from Table 4. Furthermore, Wang et al. [START_REF] Wang | On the relationship of effective Reynolds number and Strouhal number for the laminar vortex shedding of a heated circular cylinder[END_REF] showed that the vortex shedding frequency decreased with heating but increased with free-stream Reynolds number. In the present case, we both increased the heating and the free-stream Reynolds number. However, the experimental results of Wang et al. [START_REF] Wang | On the relationship of effective Reynolds number and Strouhal number for the laminar vortex shedding of a heated circular cylinder[END_REF] show that the vortex shedding frequency should be slightly increased in the present flow configuration, compared to the adiabatic cylinder. This thermodynamic aspect is well reproduced by the present methods by comparing the results from Tables 3 and4. The pressure coefficient and the local Nusselt number are presented in Figure 9. The flow being unsteady, these quantities are calculated at a time corresponding to a null lift coefficient, in order to be consistent with the results of Shi et al. [START_REF] Shi | Heating effect on steady and unsteady horizontal laminar flow of air past a circular cylinder[END_REF]. A good agreement is observed for the pressure coefficient. Concerning the Nusselt number, a discrepancy appears at the leading edge (θ = 0 and θ = 2π) between the present results and the results from Shi et al. [START_REF] Shi | Heating effect on steady and unsteady horizontal laminar flow of air past a circular cylinder[END_REF]. Since the problem is observed for both IBM and penalization, it is possible that the differences at the leading edge are related to the interpolation procedure of the post-processing. In order to compute the heat flux at the interface with the present methods, the temperature is first interpolated at sample points in the fluid, which do not necessarily coincide with the points of the Cartesian mesh. The temperature gradient at the interface is then discretized with a second order finite difference scheme using the values at the sample points. The discretization step between these sample points is an important parameter in obtaining an accurate Nusselt number. This parameter may be too large at the stagnation point to properly interpolate the temperature gradient, where the heat flux is maximum. However, a lower discretization step between the sample points leads to important spurious oscillations in the Nusselt number. As previously depicted in Figure 8 in section 3.1.1, the Nusselt number obtained with IBM is overall underestimated, excepted at the leading edge where it is overestimated. The time average Nusselt numbers, computed from both fluid properties at wall temperature (N u w ) and fluid properties at film temperature (N u f ) are compared with the results of Shi et al. [START_REF] Shi | Heating effect on steady and unsteady horizontal laminar flow of air past a circular cylinder[END_REF], Wang and Travnicek [START_REF] Wang | On the linear heat transfer correlation of a heated circular cylinder in laminar crossflow using a new representative temperature concept[END_REF] and Sabanca and Durst [START_REF] Sabanca | Flows past a tiny circular cylinder at high temperature ratios and slight compressible effects on the vortex shedding[END_REF] in Table 5. The two present methods show a good agreement with the reference results. The Nusselt numbers that are computed considering the film temperature are higher than those computed with the wall temperature because T w > T f (i.e. k(T w ) > k(T f )) and therefore N u w < N u f . Sabanca and Durst [START_REF] Sabanca | Flows past a tiny circular cylinder at high temperature ratios and slight compressible effects on the vortex shedding[END_REF] showed that the influence of the Mach number on the Nusselt number can be neglected for the heated cylinder at T * w = 1.5, considering Mach numbers lower than 0.2, and a free-stream Reynolds number between 100 and 150. It confirms the validity of a compressible solver taking M ∞ = 0.1 for this case. 

Re

Compressible flows 3.2.1. Case 3: supersonic flow past a circular cylinder

Let now consider a compressible supersonic flow past a circular cylinder. The Mach number and the Reynolds number are set to M ∞ = 2 and Re ∞ = 300, respectively. The free-stream pressure and temperature are set to p ∞ = 1 bar and T ∞ = 162.8 K so that the stagnation temperature is equal to T i = 293 K. The domain is the same as in the previous sections, and the minimum mesh size is set to ∆x min = ∆y min = D/80. The porosity parameter is set to ϕ = 0.1 for the penalization method. Concerning the flow topology, a detached bow shock is formed upstream of the cylinder and the wake is steady. The distance between the shock front and the left extremity of the cylinder along the stagnation line (see Figure 10), also called shock stand-off distance, is denoted as ∆ s . Let first consider a cylinder with an adiabatic wall. The drag coefficient C d and the shock stand-off distance ∆ s (normalized by D) are presented and compared in Table 6. A body-fitted simulation has also been carried out with a validated in-house code [START_REF] Bakulu | Jet resonance in truncated ideally contoured nozzle[END_REF]. IBM and penalization results show a well agreement with the results of Takahashi et al. [START_REF] Takahashi | A numerical scheme based on an immersed boundary method for compressible turbulent flows with shocks: Application to two-dimensional flows around cylinders[END_REF], Kumar et al. [START_REF] Kumar | Central upwind scheme based immersed boundary method for compressible flows around complex geometries[END_REF] and Riahi et al. [START_REF] Riahi | A pressure-corrected immersed boundary method for the numerical simulation of compressible flows[END_REF]. They show an excellent agreement with the body-fitted results, which demonstrates a good accuracy of the investigated methods. The pressure coefficient C p along the cylinder wall computed for both methods is presented and compared in Figure 11. It shows that the results achieved from IBM are closer than those of Riahi et al. [START_REF] Riahi | A pressure-corrected immersed boundary method for the numerical simulation of compressible flows[END_REF], as well as the pressure coefficient obtained from penalization fits with the results of Takahashi et al. [START_REF] Takahashi | A numerical scheme based on an immersed boundary method for compressible turbulent flows with shocks: Application to two-dimensional flows around cylinders[END_REF]. These correlations were expected because Riahi et al. used an IBM with Lagrangian points and Takahashi et al. adopted a ghost-cell method, which only considers Eulerian discretization like penalization. The pressure profile along the stagnation line is also represented in Figure 11. Present results are compared with the body-fitted solution and with the pressure jumps, predicted by the normal shock wave theory. The pressure right after the shock and the stagnation pressure are denoted as p 2 and p i2 , respectively. One can notice that IBM produces a non-physical pressure drop right before the stagnation point, due to the use of a continuous forcing enabled by the smoothed δ function. Both methods properly model the pressure jump through the shock. However, the latter is shifted with IBM, due to the mentioned non-physical pressure drop at the stagnation point. Let now consider the same cylinder heated at T w = 2T i . To our knowledge, it does not exist validation case of a supersonic flow past a heated cylinder in the literature so the results are compared to a body-fitted simulation. Pressure and temperature profiles are illustrated in Figure 12. The position of the shock, as well as the pressure and temperature jumps through the shock are in excellent agreement with the bodyfitted results. The pressure coefficient and the local Nusselt number are depicted in Figure 13. Pressure distribution along the cylinder boundary is very well reproduced with the penalization method. On the downstream part of the cylinder (θ ∈ [ π 2 , π]), a difference can be observed between IBM and body-fitted results. However, better results could be expected from this method for ∆x min = D/160 if it was not compromised by the computation time. 

Case 4: supersonic flow past a wedge

A supersonic flow past a wedge of chord D and half-angle θ = 20 • is now investigated to study the behavior of both methods with sharp geometries and attached shocks. The Mach number and the Reynolds number are set to M ∞ = 2 and Re ∞ = 5 × 10 4 . The Reynolds number is calculated based on the triangle chord D. Since we are not interested in thermal aspects in this case, the T -neutral condition is adopted for both methods. The triangle tip is located in (0, 0) inside a rectangular domain of dimensions [-5D, 15D] × [-5D, 5D]. Since a high resolution is needed close to the sharp angles, the minimum mesh size is set to ∆x min = ∆y min = D/250. The flow is steady and the angle of the shock tends to a constant value denoted as β. Instantaneous Schlieren pictures are computed based on the density gradient and are represented in Figure 14. It shows that the downstream flow computed with IBM is very inaccurate. Boundary conditions are not well imposed in critical areas such as angulous corners with IBM. Therefore, the steady state can not be reached in this flow configuration with IBM. A similar flow issue can be found in the results of Chaudhuri et al. [START_REF] Chaudhuri | On the use of immersed boundary methods for shock/obstacle interactions[END_REF] for the simulation of a supersonic flow past a wedge at M ∞ = 3.5 using a direct forcing method.

As in the present IBM, it is observed that the tail shock does not converge towards the center line as expected. It demonstrates that immersed boundary methods which do not impose any conditions inside the solid are not very accurate to simulate the downstream part of a supersonic flow past a wedge, despite the fact that the oblique shock (occuring upstream of the immersed boundary), is correctly reproduced. The longitudinal velocity field computed with the penalization method is presented and compared with a visualization from Abgrall et al. [START_REF] Abgrall | An immersed boundary method using unstructured anisotropic mesh adaptation combined with level-sets and penalization techniques[END_REF] in Figure 15. It shows that the flow topology is well reproduced by the present penalization method. The oblique shock angle is equal to β = 54.8 • for IBM and β = 54.5 • for penalization. It shows a well agreement with the theoretical value (β th = 53.5 • ) and with the results of Boiron et al. [START_REF] Boiron | A high-resolution penalization method for large Mach number flows in the presence of obstacles[END_REF] (β = 54.1 • ) and Abgrall et al. [START_REF] Abgrall | An immersed boundary method using unstructured anisotropic mesh adaptation combined with level-sets and penalization techniques[END_REF] (β = 53.8 • ). Figure 16 shows the pressure profile along the line y/D = 0.88. The present results are compared with the results of Abgrall et al. [START_REF] Abgrall | An immersed boundary method using unstructured anisotropic mesh adaptation combined with level-sets and penalization techniques[END_REF] and of Boiron et al. [START_REF] Boiron | A high-resolution penalization method for large Mach number flows in the presence of obstacles[END_REF]. As discussed above, IBM is not able to properly reproduce the downstream pressure. The pressure right after the shock computed from the oblique shock theory, denoted as p 2 , is also represented in Figure 16. Penalization results show a good agreement with the results present in the literature and the pressure peak is relatively close to the theoretical value. The average relative deviation between the pressure values obtained for ϕ = 1 and ϕ = 0.1 is about 0.0038%. It leads to the conclusion that the influence of the porosity parameter is negligible in this example. In addition to the accuracy of numerical methods, computational cost also represents a major issue in a comparative study. The computation time ratios are presented in Table 7 for both methods. One can notice a significant change in computational cost when going from ϕ = 1 to ϕ = 0.1 with the penalization method. This behaviour is due to the choice of the time step value for reasons of numerical stability. Indeed, the time step is divided by a factor of ten for the transition from ϕ = 1 to ϕ = 0.1. This is due to a large increase in the penalized speed of sound within the solid near the trailing edge, which impacts the stability condition. The increase in the sound speed is a consequence of the fast decrease in the density near the trailing edge due to the low value of ϕ. For this example, the penalization computational cost (with ϕ = 1) is 17 times lower than the IBM computational cost. This huge gap is mainly due to the Lagrangian discretization in IBM that adds an extra dimension to the problem, and also to the fully explicit time discretization.

Case 5: shock-cylinder interaction

An interaction between an incident normal shock wave and a fixed circular cylinder is investigated in order to study the accuracy of both methods in presence of unsteady shock waves. Dimensions of the domain are [-3.75D, 11.25D] × [-7.5D, 7.5D] and the cylinder of diameter D is centered in (0,0). A high resolution 

Method

Penalization IBM ϕ = 1 ϕ = 0.1

Comput. time ratio 1 4 17

Table 7: Supersonic flow past a wedge (M∞ = 2): computational time ratio with respect to the penalization (ϕ = 1) computation time.

is needed in this example to properly capture the shock wave interactions. Thus, the minimum mesh size is set to ∆x min = ∆y min = D/160. In this example, the T -neutral condition is first adopted for both methods.

The normal shock wave is generated by a discontinuity in the domain. Initially, the state 1 (gas at rest) and the state 2 (moving gas) are respectively 

The normal shock wave travels from left to right at a Mach number equal to M s = 2.81. Once it reaches the cylinder position, the normal shock wave interacts with it. The final time is set to t f = 3.10 -7 s, which corresponds to the time needed by the incident shock wave to travel six cylinder diameters. A bow shock is formed upstream of the cylinder and the flow is composed by Mach stems, triple points, reflected shocks, sliplines and vortices. The flow features are illusrated on the top left part of Figure 17. Triple points trajectories are plotted on the right part of Figure 17 for the upper part of the symmetric flow. Results obtained with IBM and penalization show a good agreement with the results of Bryson and Gross [START_REF] Bryson | Diffraction of strong shocks by cones, cylinders, and spheres[END_REF], Kaca et al. [START_REF] Glass | Shock wave diffractions over semi-circular and half-diamond cylinders[END_REF] and Piquet et al. [START_REF] Piquet | A comparative study of Brinkman penalization and direct-forcing immersed boundary methods for compressible viscous flows[END_REF]. Similarly to the previous case, the influence of the porosity parameter ϕ has been investigated. For a T -neutral condition, Figure 17 shows that the wave propagation is almost independent of the value of ϕ. Let now consider an adiabatic cylinder by imposing the zero-gradient temperature at the wall using the ghost-points in the penalization method. Figure 17 shows that the porosity parameter has a greater influence on the wave propagation when the adiabatic condition is imposed to the fluid-solid interface. Table 8 shows the computation time ratios between the different simulations. Compared to IBM, the computational cost is divided by almost 30 with the penalization method (ϕ = 1). It can also be observed that decreasing the porosity parameter ϕ increases the computational cost at approximately the same rate as presented in Figure 3 due to the time step restriction. Interestingly, the computational cost remains unchanged for the transition from ϕ = 1 to ϕ = 0.1, as opposed to the results presented in Table 7. In fact, the stability issue that was mentioned in Table 7 is only observed for steady flows.

Method

Penalization IBM ϕ = 1 ϕ = 0.1 ϕ = 0.01 Comput. time ratio 1 1 7 29

Table 8: Shock/Cylinder interaction: computational time ratio with respect to the penalization computation time (ϕ = 1).

3.2.4. Case 6: normal shock wave reflection on a solid wall Taking into account the accuracy of the results and the computation cost of each approach, the penalization method is selected and further investigated in the following. We now consider an incident normal shock wave travelling in liquid water at Mach number M s = 1.04 and impacting a solid wall. The pressure jump across the shock is equal to 1200, leading to a severe test case. The two-dimensional domain is a rectangle of dimensions L x × L y with L x /L y = 0.6 (see Figure 18). The reference pressure in equation ( 6) is set to P ∞ = 10 9 Pa and the heat capacity ratio is set to γ = 2.35. The flow configuration is presented in Figure 18. Initially, the state 1 (liquid at rest) and the state 2 (moving liquid), separated by the incident shock at x/L x = 0.5 are respectively 

The incident shock wave is reflected on a solid wall located at x/L x = 0.9. Note that the wall, being modelled by the penalization method, cannot be of zero thickness. Therefore, the domain [0.9L x , L x ]×[0, L y ] is entirely penalized (see Figure 18). Simulations are performed using a uniform Cartesian mesh composed by 1501 × 1251 cells. The three temperature conditions (isothermal, adiabatic and T -neutral) are investigated in this case.

The present results, computed with the three thermal conditions, are compared to body-fitted simulations (adiabatic and isothermal). For the isothermal case, the constant wall temperature is set to T w = T 1 , with T 1 = 297.87 K the temperature of state 1. The value of the porosity parameter is investigated for each temperature condition. Fluid velocity and pressure profiles are presented in Figure 19. From the body-fitted results, one can notice that the velocity and pressure profiles are the same for an adiabatic or isothermal wall. The induced flow velocity u p and the reflected pressure p 3 can be derived analytically from the jump relations as Figure 18 shows that the penalization solution is improved for ϕ = 0.01 only when isothermal or adiabatic boundary condition is applied to the solid wall. As observed in the previous cases, the influence of the porosity parameter ϕ on the solution is extremely low when the T -neutral condition is applied. The latter produces an inaccurate solution since the pressure jump is not well reproduced and the liquid in state (3) does not remain at rest. Therefore, the only way to obtain a correct solution is to couple an adiabatic or isothermal condition with a high impedance of the medium by imposing a low porosity ϕ. In fact, Liu and Vasilyev [START_REF] Liu | A Brinkman penalization method for compressible flows in complex geometries[END_REF] emphasized the importance of the porosity parameter ϕ to capture the good behavior of a wave reflection by modelling the solid by a high impedance medium. For a one-dimensional wave impacting a porous medium of length L y and of porosity ϕ, the characteristic acoustic impedance is expressed as Z 0 = ρ w c w /(L y ϕ), with ρ w and c w the density and sound speed of the porous medium, respectively. As discussed in section 2.3 and numerically demonstrated in subsections 3.2.2 and 3.2.3, low porosity values affect the time step and has a significant impact on the computational cost. Therefore, a strategy has been developed to increase the acoustic impedance of the porous medium by imposing a high density value instead of a low porosity. Since the sound speed follows c 2 w ∝ 1/ρ w , the acoustic impedance thus increases as √ ρ w . To impose a constant density ρ w in the solid, the penalization term is expressed as

u p = W 1 - ρ 1 ρ 2 , p 3 p 2 = 1 + 2γ γ + 1 (1 + P ∞ p 2 )(M 2 r -1). ( 35 
) 0.9L x L y L x Incident shock M s (2) 
u 2 = u p (1) 
u 1 = 0 Penalized domain Wall 0.9L x L y L x Reflected shock M r (2) (3) 
f = χ η   ρ w -ρ (ρu) w -ρu u.((ρu) w -ρu)   . (36) 
Let denote a dimensionless imposed wall density as ρ * w = ρ w /ρ 1 . The results computed with the new approach are presented in Figure 20 and are compared to the worst and best solutions from Figure 19. One can observe that the penalization solution tends to the body-fitted one when the imposed density increases. The most important point is that the penalization solution with ρ * w = 1000 (ϕ = 1) is more accurate than the isothermal (ϕ = 0.01) solution, with a computational cost divided by 36 (see Table 9). This makes this new approach an excellent method to efficiently and accurately simulate compressible flows involving shock wave reflections. 10. It can be noted that the results from Nagata et al. [START_REF] Nagata | Investigation on subsonic to supersonic flow around a sphere at low Reynolds number of between 50 and 300 by direct numerical simulation[END_REF] and Riahi et al. [START_REF] Riahi | A pressure-corrected immersed boundary method for the numerical simulation of compressible flows[END_REF] have been computed with a minimum grid size more than three times finer than the present one. The present results show a very well agreement with the results of Nagata et al. [START_REF] Nagata | Investigation on subsonic to supersonic flow around a sphere at low Reynolds number of between 50 and 300 by direct numerical simulation[END_REF]. The Mach number (x-z plane) and the pressure (x-y plane) fields are depicted in Figure 21a. The streamlines show that the recirculation topology is axially symmetric around the x axis. In the isothermal case, the sphere is heated at temperature T w = 2T ∞ . The surface-averaged Nusselt number N u is defined as

N u = - D A(T w -T ∞ ) Γ ∂T ∂n
(s)ds. [START_REF] Goncalves | Numerical study of pressure loads generated by a shock-induced bubble collapse[END_REF] with A = πD 2 the sphere surface measure, Γ the sphere surface domain and n the surface normal vector. In order to reduce the computation time, the temperature gradient at the interface in equation ( 37) is computed from the penalization term of the energy equation. Indeed, the volume integral of the source term f E allows to easily calculate the net heat rate applied to solid, as shown in [START_REF] Chern | Direct-forcing immersed boundary method for mixed heat transfer[END_REF]. The Mach number (x-z plane) and the temperature (x-y plane) fields are depicted in Figure 21b. The drag coefficient C d , the recirculation length L, the separation angle θ s and the shock stand-off distance ∆ s are presented in 

Conclusion and perspectives

A continuous forcing IBM and a volume penalization method have been investigated to perform compressible viscous flow simulations past solid obstacles. The present methods have been adapted to carry out isothermal, adiabatic and temperature-neutral boundary conditions. They have been validated on several cases that have been carefully selected to test the ability of the methods to properly simulate a large range of flow configurations. This includes steady/unsteady incompressible and compressible flows past adiabatic and isothermal obstacles. A convergence study has shown that both methods are of first order in space as expected. The results obtained by the penalization method showed a better agreement with the reference results, compared to the continuous forcing IBM. It has been found out that the continuous forcing IBM is not able to properly reproduce the downstream part of a supersonic flow past a wedge, due to the artificial free flow inside the immersed boundary that contaminates the external flow. Moreover, the computational cost of the continuous forcing IBM is largely more higher in comparison with the penalization method (between 1600% to 2900% more expensive depending on the case), which compromised its extension to three-dimensional cases. This is mostly due to the Lagrangian discretization that adds an extra dimension to the problem, and thus increases drastically the algorithm complexity. The penalization method has been extended to three dimensions and the analysis of supersonic flows past an adiabatic or heated sphere confirmed its capabilities to capture the main physical features.

The impact and reflection of intense shock waves have been especially investigated using the penalization method and the different thermal boundary conditions have been compared. It has been shown that the porosity parameter had no influence on the wave propagation when the temperature-neutral boundary condition was imposed to the solid obstacle. It has been found out that assigning the value of ϕ is a compromise between accuracy and computation cost. It also depends on the flow regime and on the thermal boundary condition that is applied to the solid obstacle. For incompressible flows, the influence of ϕ on the solution is negligible and the porosity parameter can therefore be set to 1. For compressible flows, the numerical solution is improved as ϕ decreases, but the computation cost is highly affected. Lower values than ϕ = 0.01 have not been considered in this study and are not recommended for reasons of computational efficiency. The previous points have to be considered only for the adiabatic and isothermal boundary conditions (i.e. when a specific treatment is applied on temperature). For the T-neutral boundary condition, the influence of ϕ on the solution is not significant and it can therefore be set to 1. A new penalization model has been designed by imposing a large density value in the obstacle in order to increase the porous medium acoustic impedance, which made it possible to use larger time steps than the standard porosity approach. The computational time of the shock reflection simulation has been divided by 36 with this new penalization model, while providing more accurate results. This model is very promising to accurately and efficiently simulate compressible flows involving shock-obstacle interactions.

Future work will be dedicated to adapt the present penalization method to compressible multiphase flows with mass transfer and to fluid-structure interaction. [64] H. Riahi, E. Goncalves, M. Meldi, A discrete immersed boundary method for the numerical simulation of heat transfer in compressible flows (2023). doi:10.48550/arXiv.2301.09349.
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Figure 1 :

 1 Figure 1: Left: illustration of the setup used in IBM for isothermal or T -neutral conditions. • Lagrangian points X, • Eulerian points x (cell centers), δ h function kernel centered in X. Right: illustration of the setup used in IBM for an adiabatic condition. • sampling points Xc, δ h function kernel centered in Xc.

Figure 2 :

 2 Figure 2: Left: illustration of the setup used in penalization for isothermal or T -neutral conditions. • Eulerian points (cell centers), penalized cells. Right: illustration of the setup used in penalization for an adiabatic condition. solid interior cells, ghost-cells, • ghost point, ▲ interface point, • first image point, • second image point, • Lagrangian points.

Figure 3 :

 3 Figure 3: Influence of the porosity parameter ϕ on the spectral radius ρ(A) for two different Mach numbers M∞, with A the Jacobian matrix of the hyperbolic system.

Figure 4 :

 4 Figure 4: Schematic view of the mesh and boundary conditions used in the present simulations.

Figure 5 :

 5 Figure 5: Fixed cylinder, Re∞ = 40 (adiabatic): streamlines and flow characteristics (the whole domain is not shown entirely).

Figure 6 :

 6 Figure 6: Circular cylinder, Re∞ = 40 (adiabatic): numerical convergence of velocity norm error (left) and temperature error (right).

Figure 7 :

 7 Figure 7: Circular cylinder, Re∞ = 40 (adiabatic): pressure coefficient (θ = 0 at leading edge and θ = π at trailing edge).

Figure 8 :

 8 Figure 8: Heated circular cylinder, Re f = 20 (T * w = 1.5): pressure coefficient (left) and local Nusselt number (right), with θ = 0 at leading edge and θ = π at trailing edge.

Figure 9 :

 9 Figure 9: Heated circular cylinder, Re f = 100 (T * w = 1.5): pressure coefficient and local Nusselt number (θ = 0 at leading edge and θ = π at trailing edge).

Figure 10 :

 10 Figure 10: Circular cylinder, M∞ = 2, Re∞ = 300 (adiabatic): Mach field and definition of the flow topology (the whole domain is not represented).

p 2 Figure 11 :

 211 Figure 11: Circular cylinder, M∞ = 2, Re∞ = 300 (adiabatic): pressure coefficient along the cylinder wall (left) and pressure profile along the stagnation line (the stagnation point is located at x/D = -0.5).

Figure 12 :

 12 Figure 12: Heated circular cylinder, M∞ = 2, Re∞ = 300 (Tw = 2T i ): pressure and temperature profiles along the stagnation line (the stagnation point is located at x/D = -0.5).

Figure 13 :

 13 Figure 13: Heated circular cylinder, M∞ = 2, Re∞ = 300 (Tw = 2T i ): pressure coefficient and local Nusselt number (θ = 0 at leading edge and θ = π at trailing edge).

Figure 14 :

 14 Figure 14: Supersonic flow past a wedge (M∞ = 2): instantaneous Schlieren picture computed with penalization and IBM. The wedge half-angle θ and the oblique shock of angle β are depicted in the left part.

Figure 15 :

 15 Figure 15: Supersonic flow past a wedge (M∞ = 2): u-velocity field computed with the present penalization method (left) and u-velocity from Abgrall et al. [28] (right).

Figure 16 :

 16 Figure 16: Supersonic flow past a wedge (M∞ = 2): pressure profile along the line y/D = 0.88 and zoom in the pressure peak.

Figure 17 :

 17 Figure 17: Shock/Cylinder interaction: instantaneous Schlieren picture computed from the density gradient (top left), triple points trajectories computed for both methods (right).

Figure 18 : 2 Figure 19 :

 18219 Figure 18: Schematic representation of the shock reflection on a solid wall modelled by the penalization method. The incident shock (left) and the reflected shock (right), as well as the different states (1), (2) and (3) are represented.

2 Figure 20 :

 220 Figure 20: Shock wave reflection on a solid wall: fluid velocity (left) and pressure (right) profiles of the reflected shock wave for different wall densities.
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 25 Case 7: 3D supersonic flow past a sphere The simulation of a supersonic flow past a sphere of diameter D is carried out with the penalization method considering the T -neutral and isothermal boundary conditions. The Mach number and the Reynolds number are set to M ∞ = 2 and Re ∞ = 300. The free-stream pressure and temperature are set to p ∞ = 1 bar and T ∞ = 162.8 K so that the stagnation temperature is equal to T i = 293 K. The sphere is centered in a rectangular domain of dimensions [-10D, 30D] × [-10D, 10D] × [-10D, 10D]. The grid is refined in the interest zone [-D, 3D] × [-D, D] × [-D, D] where the uniform grid size is set to ∆x min = ∆y min = ∆z min = D/40. The shock front and the recirculation region are included in this refined region. The mesh is composed of around 2 473 000 points. The shock stand-off distance ∆ s is defined as the distance between the shock front and the stagnation point. The recirculation length L is defined as the distance from the sphere surface and the end of the recirculation region, where the sign of the longitudinal velocity component u changes from negative to positive. Note that L and ∆ s are normalized by the sphere diameter D. The drag coefficient, the recirculation length, the separation angle and the shock stand-off distance obtained with the T -neutral boundary condition are compared with existing results of the literature in Table

  (a) Unheated sphere: streamlines, pressure (x-y plane) and Mach (x-z plane) visualization (b) Heated sphere (Tw = 2T∞): streamlines, pressure (x-y plane) and Mach (x-z plane) visualization

Figure 21 :

 21 Figure 21: Supersonic flow past a sphere (M∞ = 2, Re∞ = 300).

23 4. 0 Table 11 :

 011 Supersonic flow past a heated sphere, M∞ = 2 , Re∞ = 300 (Tw = 2T∞): drag coefficient C d , recirculation length L, separation angle θs, shock stand-off distance ∆s and average Nusselt number N u.
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Table 1 :

 1 Summary of the present test cases.

	1	Cylinder	0.1	40	adiabatic, isothermal (T w = 1.5T ∞ )
	2	Cylinder	0.1	100	adiabatic, isothermal (T w = 1.5T ∞ )
	3	Cylinder	2	300	adiabatic, isothermal (T w = 2T i )
	4 5 6 7	Wedge Cylinder Plane wall Sphere	2 2.81 1.04 2	5 × 10 4 3 × 10 3 6.6 × 10 4 300	T -neutral T -neutral, adiabatic T -neutral, adiabatic T -neutral, isothermal (T w = 2T ∞ )

Table 2 :

 2 Circular cylinder at Re∞ = 40 (adiabatic): comparison of the characteristic flow quantities with reference results.

Table 3 :

 3 Circular cylinder, Re∞ = 100 (adiabatic): comparison of characteristic flow quantities with the reference results.

Table 4 :

 4 Heated circular cylinder, Re f = 100 (T * w = 1.5): mean drag coefficient and Strouhal number.

	∞ Re f	C d	St

Table 5 :

 5 Heated circular cylinder, Re f = 100 (T * w = 1.5): average Nusselt number.

Table 6 :

 6 Circular cylinder, M∞ = 2, Re∞ = 300 (adiabatic): drag coefficient C d and shock distance ∆s.

	C d	∆ s

Table 9 :

 9 Shock wave reflection on a solid wall (penalization): computational time ratio with respect to the T -neutral (ϕ = 1) computation time.

Table 10 :

 10 Supersonic flow past an unheated sphere, M∞ = 2, Re∞ = 300: drag coefficient C d , recirculation length L, separation angle θs and shock stand-off distance ∆s.

  Table 11 and show a good agreement with the results of Nagata et al.[START_REF] Nagata | Direct numerical simulation of flow around a heated/cooled isolated sphere up to a Reynolds number of 300 under subsonic to supersonic conditions[END_REF] andRiahi et al. [64]. Since the Nusselt number is highly dependent on the mesh size, smaller differences between the present Nusselt number and the one found by Nagata et al.[START_REF] Nagata | Direct numerical simulation of flow around a heated/cooled isolated sphere up to a Reynolds number of 300 under subsonic to supersonic conditions[END_REF] may be expected by using a finer computational grid. It can be noticed that the sphere heating increases the drag coefficient and shortens the recirculation area, compared to the unheated sphere, because the fluid viscosity increases with the temperature.

		C d	L	θ s	∆ s	N u
	Nagata et al. [63]	1.44 0.29 154 0.22 3.5
	Riahi et al. [64]	1.48	-	-	0.23	-
	Penalization (present) 1.48 0.28 156 0.