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BOUNDARY STATES OF THE ROBIN MAGNETIC LAPLACIAN

R. FAHS, L. LE TREUST, N. RAYMOND, AND S. VŨ NGO. C

Abstract. This article tackles the spectral analysis of the Robin Laplacian on a smooth
bounded two-dimensional domain in the presence of a constant magnetic field. In the semi-
classical limit, a uniform description of the spectrum located between the Landau levels is
obtained. The corresponding eigenfunctions, called edge states, are exponentially localized
near the boundary. By means of a microlocal dimensional reduction, our unifying approach
allows on the one hand to derive a very precise Weyl law and a proof of quantum magnetic
oscillations for excited states, and on the other hand to refine simultaneously old results
about the low-lying eigenvalues in the Robin case and recent ones about edge states in the
Dirichlet case.

1. Motivations and results

1.1. About the magnetic Robin Laplacian. We want to describe the spectrum of the
semiclassical magnetic Laplacian Lh = (−ih∇ − A)2 on a smooth, bounded, and simply
connected open Euclidean domain Ω ⊂ R2, with boundary conditions of Robin type. The
vector potential A : Ω → R2 is supposed to be smooth and generating a constant magnetic
field of intensity 1:

∂1A2 − ∂2A1 = 1 .

The magnetic Robin boundary conditions are enforced by defining the operator Lh = Lh,A,γ

to be the selfadjoint operator associated with the quadratic form defined for all ψ ∈ H1(Ω)
by:

(1.1) Qh,A(ψ) =

∫
Ω

|(−ih∇−A)ψ|2dx+ γh
3
2

∫
∂Ω

|ψ|2ds ,

where γ ∈ R∪{+∞}, and ds is the length measure of the boundary induced by the Euclidean
metric. By convention, γ = +∞ corresponds to the Dirichlet boundary condition ψ ∈ H1

0 (Ω).
In the whole paper, our estimates will be uniform when γ ∈ [−γ0,+∞] for an arbitrary fixed
γ0 > 0. When γ ∈ R, the domain of Lh is given by

Dom(Lh) = {ψ ∈ H1(Ω) : (−ih∇−A)2ψ ∈ L2(Ω) ,−ihn · (−ih∇−A)ψ = γh
3
2ψ on ∂Ω} ,

where n is the outward pointing normal to the boundary. Note that a change of gauge can
be used to ensure that A ·n = 0. In this case, the magnetic Robin condition becomes a usual
Robin condition:

(1.2) −n · ∇ψ = γh−
1
2ψ .

We would like to establish accurate spectral asymptotics for Lh in regimes where the magnetic
field plays a major role, competing with the Robin condition (this is the origin, as we will
see, of the factor h

3
2 in the Robin condition). Until now, very accurate results are available

only for the Neumann magnetic Laplacian (when γ = 0). In this case, the lowest eigenvalues
have been analyzed in detail in [10] and uniform estimates have been recently established
in [3] where a purely magnetic tunnelling effect formula has been proved. When γ ̸= 0,
the only known results go back to the works by Kachmar, see [23], where only the smallest
eigenvalue has been estimated. In all these situations (except when γ = +∞, where the first
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eigenvalue is asymptotic to h times the magnetic intensity — here, 1), one can show that
the first eigenvalue becomes smaller than h as soon as h is small enough. This energy bound
is usually associated with a localization behavior near the boundary of the eigenfunctions,
which can be quantified by semiclassical Agmon estimates.

By a simple scaling, the semiclassical limit h→ 0 translates into a quantum regime where
the intensity of the magnetic field tends to infinity. In the physics literature of thin conductors
or electron gases (approximated by 2D domains) subject to a strong external magnetic field,
it is well known that the presence of a boundary (or, more generally, of an abruptly changing
magnetic field along a curve) generates a current along the boundary due to the presence of
“bouncing modes” classically localized at a distance

√
E/B to the boundary (E is the kinetic

energy and B is the magnetic intensity: in this work B = 1), see for instance [15]. These
so-called “edge states” or “boundary states” exist as soon as the Fermi level of the conductor
lies strictly in between two consecutive Landau levels, and produce ballistic dynamics along
the boundary. If the boundary ∂Ω is compact, this dynamics is quantized and produces new
discrete energy levels. These are precisely the eigenvalues that we wish to describe in this
work.

Heuristically, the localization near ∂Ω is often explained by the classical bouncing modes
alluded to above, but it is also easy to understand from a quantum perspective. Indeed, if we
forget the boundary condition, Lh acts as the magnetic Laplacian with constant magnetic
field, on the Euclidean plane, L R2

h,A. The spectrum of this so-called “bulk” operator is well-
known and made of the famous Landau levels {(2n − 1)h , n ⩾ 1}, which are infinitely
degenerate eigenvalues. This suggests that, if one considers potential eigenvalues of Lh in
a window of the form Ih = [ha, hb] with 2n − 1 < a < b < 2n + 1 for some integer n ⩾ 0
(for n = 0, we take a = −∞), they cannot correspond to any bulk state, and hence the
corresponding eigenfunctions should be localized near the boundary. This phenomenon has
interesting physical applications; a famous one is the quantum Hall effect, when the domain
is not simply connected, which expresses the collective effects of several boundaries on the
total net current. Another application is the confinement of particles in small domains, or
“quantum dots” (sometimes called “anti-dots” because one takes B = 0 inside the domain,
and B = 1 outside), see [30, 27].

On the mathematics side, the existence of edge currents in a half-plane with Dirichlet
boundary condition was shown in [6]. In a compact setting, the eigenfunction localization at
the boundary has been observed (again in the Dirichlet case γ = +∞, which is usually chosen
in physics) in [14], which was one of our motivations for this work. The methods of [14] lead
to a description of the spectrum in a thin spectral window, see [14, Corollary 2.7]. However
the exponential decay was not established. In fact, as we will see, this decay does not follow
from the usual Agmon estimates, but from a strategy à la Combes-Thomas (see the original
article [5] or the review [22]).

In this article we treat the general case γ ∈ R ∪ {+∞}. This corresponds, physically, to a
domain Ω coated with a very thin layer of a different material (see for instance [2]). Since Ω
is bounded, the spectrum in Ih is always discrete and a first rough estimate shows that the
number of eigenvalues lying in Ih, denoted by N(Lh, Ih), satisfies

(1.3) N(Lh, Ih) ⩽ Ch−2 ,

for some C > 0 and all h > 0 small enough (see Appendix A where we recall the origin of
this estimate). Our goal is to obtain a very precise description, in the semiclassical regime, of
the spectral elements corresponding to the interval Ih, much more accurate than (1.3). This
includes the localization behavior near ∂Ω of the corresponding eigenfunctions. For instance,
when γ ∈ R, a consequence of our main result Theorem 1.7 is the appearance of a quite
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interesting phenomenon: for a given (low) energy, one can have boundary quasimodes corre-
sponding to classical currents flowing in opposite directions, leading to magnetic oscillations
of eigenvalues, see Theorem 1.12.

This work is also an opportunity to revisit the Neumann case analyzed in [17, 10] (see also
[3]) by establishing more uniform asymptotic expansions, with slightly more general boundary
conditions.

1.2. De Gennes operator with Robin condition. Our results will be expressed in terms
of the eigenvalues of the de Gennes operator with Robin boundary condition. This operator,
which appears naturally in the study of boundary induced magnetic effects [32, 11], is a
differential operator of order two depending on the real parameters γ and σ and acting as

H[γ, σ] = − d2

dt2
+ (t− σ)2 ,

on the domain

Dom(H[γ, σ]) =

{
u ∈ B1 (R+) :

(
− d2

dt2
+ (t− σ)2

)
u ∈ L2(R+), u

′(0) = γ u(0)

}
,

where
B1 (R+) = {u ∈ H1 (R+) : [t 7→ tu(t)] ∈ L2 (R+)} .

It is well-known that H[γ, σ] is a self-adjoint elliptic operator with compact resolvent. Its
spectrum can be written as a non-decreasing sequence of eigenvalues (µn(γ, σ))n⩾1 (which are
all simple due to the Cauchy-Lipschitz theorem). We denote by u[γ,σ]n the normalized sequence
of the corresponding eigenfunctions (with u[γ,σ]n (0) > 0). We let

Θ[n−1](γ) := inf
σ∈R

µn(γ, σ).

The index n− 1 is compatible with the notation used in the case of the de Gennes operator
(case when γ = 0), see [11, Section 3.2]. The family (H[γ, σ])(γ,σ)∈R2 is analytic of type (B)
(in the sense of Kato, see [25, Chapter VII, §4]), i.e., the form domain does not depend on
the parameters and the sesquilinear form is analytic as a function of γ or σ. By convention,
we denote by H[+∞, σ] (i.e. we let γ = +∞) the corresponding operator with Dirichlet
boundary condition u(0) = 0.

The following proposition gathers the main properties of the functions µn(γ, ·) (which are
usually called dispersion curves) that will be used in this article. Most of them have been
established in [23] (see also [24], and [6] in the Dirichlet case).

Proposition 1.1. Let us fix n ⩾ 1. When γ ∈ R, the function µn(γ, ·) is analytic and

(1.4) lim
σ→−∞

µn(γ, σ) = +∞ , lim
σ→+∞

µn(γ, σ) = 2n− 1 .

Moreover, µn(γ, ·) has a unique minimum attained at σ = ξn−1(γ), but not attained at infinity.
This minimum is non-degenerate. The function µn(γ, ·) is decreasing on (−∞, ξn−1(γ)) and
increasing on (ξn−1(γ),+∞). In addition, we have, for all n ⩾ 2,

(1.5) 2n− 3 < Θ[n−1](γ) < 2n− 1 .

When γ = +∞, that is when the Robin condition is replaced by the Dirichlet condition,
µn(+∞, ·) is still smooth, but now decreasing from +∞ to 2n− 1.

The non-degeneracy of the minimum of µn(γ, ·) for γ ∈ R is obtained by adapting the
Dauge-Helffer formula, see [23] for the case n = 1, which gives:

(1.6) ∂2σµn(γ, σ)|σ=ξn−1(γ) = 2ξn−1(γ)
∣∣u[γ,σ]n (0)

∣∣2 .
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The lower bound in (1.5) will be established in Appendix B. This proposition has the following
elementary but important consequences for our analysis, which are illustrated in Figure 1.

Corollary 1.2. Let γ ∈ R ∪ {+∞} be fixed. Let Θ be the set of all critical values of the
functions µn: we have

Θ = {Θ[n−1](γ), n ⩾ 1} .

Let Λ be the set of limit points of the functions µn at infinity:

Λ := {2n− 1, n ⩾ 1} .

Let [a, b] ⊂ R be an interval disjoint from Λ. Let either n = 1 if a < 1 or n ⩾ 2 be such that
[a, b] ⊂ (2n− 3, 2n− 1). (In the case n = 1 we allow a = −∞.) It follows from (1.4) that for
any integer k ⩾ 1, µ−1

k ([a, b]) is compact.
Let p(k) be the number of connected components of µ−1

k ([a, b]): we have

p(k) = 1 if 1 ⩽ k < n

p(n) = 0 if γ = +∞
p(n) = 1 if γ ∈ R and Θ[n−1] ∈ [a, b]

p(n) = 2 if γ ∈ R and Θ[n−1] < a

p(n) = 0 if γ ∈ R and b < Θ[n−1]

p(k) = 0 if k > n .

Therefore, when γ ∈ R,

(1.7) N(γ, a, b) := #{k ⩾ 1 : µk(γ, ·)−1([a, b]) ̸= ∅} =

{
n if b ⩾ Θ[n−1](γ)

n− 1 otherwise
,

and if γ = +∞ (Dirichlet case) then µ1(+∞, ·) does not take any value in (−∞, 1), and
N(γ, a, b) = n− 1.

From now on, we denote by N(γ, a, b) = N this cardinal.

Assumption 1.3. In the following, a and b are allowed to depend on h, as soon as they stay
in an h-independent compact interval inside (2n− 3, 2n− 1).

With this picture in mind, for each k ⩾ 1, we may construct a smooth function ◦
µk, bounded

with all its derivatives, which coincide with µk in a neighborhood of µ−1
k ([a, b]). Indeed, let

Ξ0 : R → R be a smooth, bounded with all its derivatives, and increasing function such that
for all k ∈ {1, . . . , N}, µk(γ,Ξ0(σ)) = µk(γ, σ) in a neighborhood of µ−1

k ([a, b]) and µk ◦ Ξ0

takes its values in (−∞, a) ∪ (b,+∞) away from it. We consider

(1.8) ◦
µk := µk(γ,Ξ0(·)) ,

where we omit the reference to the parameter γ to lighten the notation. In the following, we
will more generally denote by ◦

φ, the function φ after Ξ0.

1.3. Results. Let us now describe the main results of our article, which will be expressed in
terms of pseudo-differential operators in one dimension.
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Figure 1. This figure shows the dispersion curves µk(γ, ·), for γ = −1. We
visualise the preimage of a given interval [a, b] ⊂ (2n − 3, 2n − 1) with n = 3.
The curves are obtained by a standard finite difference numerical scheme.

1.3.1. A pseudo-differential framework. The bounded functions ◦
µk will be convenient to state

our main theorem, which involves h
1
2 -pseudo-differential operators with symbols in the usual

class SR2(1) given by

SR2(1) = {a ∈ C ∞(R2
s,σ) : ∀α ∈ N2 , ∃Cα > 0 : |∂αa| ⩽ Cα} .

As we said before, the eigenfunctions of Lh will be localized near the boundary of Ω, which
is a closed smooth curve with length 2L. Our main result describes their distribution with
the help of an h

1
2 -pseudo-differential operator on the boundary (see for instance [12, Section

4.1] where similar considerations have been done in the context of discontinuous magnetic
fields). Let us denote ℏ = h

1
2 . We recall that the Weyl quantization of a symbol p is given

by the formula:

(1.9) (OpW
ℏ p)ψ(x) =

1

2πℏ

∫
R2

ei(x−y)η/ℏp

(
x+ y

2
, η

)
ψ(y)dydη , ∀ψ ∈ S (R) ,

and that this formula defines a bounded operator form L2(R) to L2(R) if p ∈ SR2(1), by the
Calderón-Vaillancourt theorem. To shorten the notation, we will sometimes write pW instead
of OpW

ℏ p.
Let T2L = R/2LZ, and L2(T2L) be the subset of L2

loc(R) of 2L-periodic functions, equipped
with the usual L2 norm on [0, 2L]. When p ∈ ST2L×R(1), i.e. p ∈ SR2(1) and is 2L-periodic
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in its first variable s, then for any θ ∈ R, the operator given in (1.9) induces a bounded
operator from eiθ·L2(T2L) to eiθ·L2(T2L) — we denote by eiθ· the function x 7→ eiθx.

Remark 1.4. The space eiθ·L2(T2L) only depends on the class of θ modulo π
L
; it is equal to the

subspace of functions in L2
loc(R) equipped with the Floquet boundary condition ψ(x+2L) =

ei2Lθψ(x). The operator OpW
ℏ p acting on eiθ·L2(T2L) is unitarily equivalent to OpW

ℏ p(x, η+ℏθ)
acting on L2(T2L).

1.3.2. Main theorem. Since our main result describes the spectrum of Lh “modulo O(h∞)”,
we need to make this notion precise.

Definition 1.5. In this article, we will say that the spectra of two self-adjoint operators T1
and T2 depending on h coincide in Ih modulo O(hα), α ∈ R ⊔ {+∞}, when there exists
C, h0 > 0 such that, for all h ∈ (0, h0),

— T1 and T2 have discrete spectrum in Ih + [−Chα, Chα],
— for all interval Jh ⊂ Ih we can find an interval Kh such that Jh ⊂ Kh with dH(Kh, Jh) ⩽

Chα and

rank1Jh(T1) ⩽ rank1Kh
(T2) , rank1Jh(T2) ⩽ rank1Kh

(T1) ,

where dH denotes the Hausdorff distance:

dH(A,B) = sup
(a,b)∈A×B

max(d(a,B), d(b, A)) .

This definition translates to discrete subsets of R as follows: for each discrete subset S ⊂ R,
we associate the sum of Dirac masses δS :=

∑
s∈S δs, and consider the corresponding self-

adjoint operator whose spectral measure is δS. Then we say that two discrete subsets A1

and A2 coincide modulo O(hα) when the spectra of the corresponding operators coincide
modulo O(hα) in the above sense. In order to deal with multiplicities, we will, by convention,
associate with the disjoint union S ⊔ S ′ the operator corresponding to the spectral measure
δS + δS′ .

Remark 1.6. — The relation "the spectra of T1 and T2 coincide in Ih modulo O(hα)” is
an equivalence relation. It is obviously symmetric and reflexive (taking Kh = Jh). The
transitivity follows from the triangle inequality for dH .

— If the spectra of T1 and T2 coincide in Ih modulo O(hα), then, for all Ĩh ⊂ Ih, the spectra
of T1 and T2 coincide in Ĩh modulo O(hα).

— If the spectra of T1 and T2 coincide in Ih modulo O(hα), we have

dH(sp(T1) ∩ Ih, sp(T2) ∩ Ih) = O(hα) .

— If the endpoints of the interval Ih stay away from an hβ-neighborhood of the spectrum,
with β < α, then for h small enough T1 and T2 have exactly the same number of eigenvalues
inside Ih, counted with multiplicities.

— The notion described in Definition 1.5 already appears under various forms in the literature
(see, for instance, the view point in [20, Section 1] and [16, §4]).

We can now state our main result, where we use, among others, the eigenvalues µk(γ, σ) and
eigenfunctions u[γ,σ]k of the de Gennes operator (Section 1.2), the integer N defined in (1.7),
and the notation introduced in (1.8).
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Theorem 1.7. Under Assumption 1.3, the spectrum of Lh in [ha, hb] coincides with that of
hMh modulo O(h2), where

Mh :=


mW

1 0 · · · 0

0 mW
2

...
... . . . 0
0 · · · 0 mW

N


is a bounded operator acting diagonally on eiθ(h)·L2(T2L)

N . Here

θ(h) =
|Ω|

|∂Ω|h
,

and each mW
k is an h

1
2 -pseudodifferential operator with symbol in ST2L×R(1). Let us denote

by (s, σ) the (canonical) variables in T2L ×R. Then we have:

• the principal symbol of mW
k is

◦
µk(σ);

• its subprincipal symbol is −κ(s)
◦
Ck(σ) with

(1.10) Ck(σ) =
〈 (

(τ − σ)τ 2 − ∂τ − 2τ(σ − τ)2
)
u
[γ,σ]
k (τ), u

[γ,σ]
k (τ)

〉
L2(R+)

,

and κ(s) is the curvature of the boundary at the point of curvilinear abscissa s.

Remark 1.8. One can check that, for all k ⩾ 1, Ck(ξk−1(γ)) has the same sign as γ[k−1]
0 − γ,

see Proposition B.5 where the threshold γ
[k−1]
0 is discussed. Proposition B.5 also corrects a

mistake in [23, Lemma II.3 & (2.24)], where it is stated that C1(ξ0(γ)) is always positive.

It is important to notice that Theorem 1.7 is actually a diagonalization result since it
reduces the spectral analysis of Lh to that of a family of pseudo-differential operators in
one dimension: the spectrum of Mh is the superposition (counting multiplicities) of the
spectra of the mW

k , k = 1, . . . , N . As it turns out, the spectrum of each of these pseudo-
differential operators can be completely described using (refinements of) old and new results
in the literature. Indeed, notice that the principal symbols ◦

µk have a special feature: they
depend only on the frequency variable σ, and, as functions of σ, they have at most a unique
critical point, which is a nondegenerate minimum (Proposition 1.1). Hence, from a microlocal
viewpoint, only two situations must be considered. Let E ∈ [a, b], either E is a regular value
of ◦
µk (or µk(γ, ·), equivalently), and then the well-known Bohr-Sommerfeld rules apply, or E

is a critical value of ◦
µk, in which case the Hamiltonian (s, σ) 7→ ◦

µk(σ) admits a transversally
non-degenerate minimum on a circle, and the recent study [7] of folded quantum action
variables applies.

1.3.3. Eigenvalues in a regular spectral window. Our first application concerns the case where
the interval [a, b] consists of regular values of all µk. We will use the following well-known
spectral result, an extension to all orders of the Bohr-Sommerfeld rules (see, for instance,
[31, 18, 19, 8]), which we prove in Section 5.2.1.

Proposition 1.9. Consider an ℏ-pseudo-differential operator Pℏ ∈ OpW
ℏ (SR2(1)) with symbol

2L-periodic with respect to s and with principal symbol (s, σ) 7→ µ(σ) and subprincipal symbol
(s, σ) 7→ −κ(s)C(σ). We consider its realization on eisθ(ℏ

2)L2(T2L). Let E be a regular value
of µ for which µ−1(E) is a finite set of points σE

1 , . . . , σ
E
p .

Then, there exists ε > 0 such that [E − ε, E + ε] is a set of regular values of µ, and
µ−1([E−ε, E+ε]) is the disjoint union Σ1⊔· · ·⊔Σp where each Σq ⊂ R is a compact interval
containing σE

q in its interior. Let ε > 0 be any value satisfying the above conditions. For
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each q = 1, . . . , p, let Σ̃q be an open interval containing Σq such that the Σ̃q’s are pairwise
disjoint. Then the following holds.

For each q = 1, . . . , p, there exists a smooth map Σ̃q ∋ σ 7→ fq(σ, ℏ) ∈ R with an asymptotic
expansion, in the smooth topology,

fq(σ, ℏ) ∼ fq,0(σ) + ℏfq,1(σ) + ℏ2fq,2(σ) + · · ·
depending only on the symbol of Pℏ in the cylinder T2L × Σq, such that the spectrum of Pℏ
inside [E − ε, E + ε] coincides, modulo O(ℏ∞), with the disjoint union(

p⊔
q=1

{
fq(σ, ℏ), σ ∈ ℏ( π

L
Z+ θ(ℏ2)) ∩ Σ̃q

})
∩ [E − ε, E + ε] ,

see Definition 1.5. Moreover, we have

fq,0(σ) = µ(σ)|Σq(1.11)

fq,1(σ) =
−C(σ)|Σq

2L

∫ 2L

0

κ(s)ds .(1.12)

Combining Proposition 1.9 and Theorem 1.7, we get the following result, where we use the
notation of Corollary 1.2 and Theorem 1.7.

Corollary 1.10 (Spectrum of Lh at regular values). Let [a, b] be an interval disjoint from
Θ and Λ. For each k = 1, . . . N , for each q = 1, . . . , p(k), let Σk,q ⊂ R be an interval such
that µk(γ, ·) is a diffeomorphism from Σk,q to a neighborhood of [a, b], in such a way that all
Σk,q are pairwise disjoint and

⋃p(k)
q=1 Σk,q contains µk(γ, ·)−1([a, b]). Then there exists a smooth

map Σk,q ∋ σ 7→ fk,q(σ, ℏ) ∈ R with an asymptotic expansion (in the smooth topology)

fk,q(σ, ℏ) ∼ fk,q,0(σ) + ℏfk,q,1(σ) + ℏ2fk,q,2(σ) + · · ·
such that the spectrum of Lh in [ha, hb] coincides, modulo O(h2), with the disjoint union N⊔

k=1

p(k)⊔
q=1

{
hfk,q(σ, h

1
2 ), σ ∈ h

1
2 ( π

L
Z+ θ(h)) ∩ Σk,q

} ∩ [ha, hb] .

Moreover, we have, when σ ∈ Σk,q,

fk,q,0(σ) = µk(γ, σ)(1.13)
fk,q,1(σ) = −⟨κ⟩Ck(σ)(1.14)

where ⟨κ⟩ is the average curvature:

⟨κ⟩ = 1

2L

∫ 2L

0

κ(s)ds .

Since the leading terms (1.13) and (1.14) do not depend on q (apart from the domain of
definition Σk,q) we obtain that the spectrum of Lh in [ha, hb] coincides, modulo O(h2), with
the disjoint union

(1.15)
N⊔
k=1

{
hµk(γ, σ)− h

3
2 ⟨κ⟩

◦
Ck(σ), σ ∈ h

1
2 ( π

L
Z+ θ(h))

}
∩ [ha, hb] .

As a first application of this corollary, we obtain a very accurate formula for the number
of eigenvalues of Lh in [ha, hb], this number being much smaller than what the crude esti-
mate (1.3) says:
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Theorem 1.11 (Precise Weyl formula). Let Ih = [ha, hb] where [a, b] is an interval disjoint
from Θ and Λ. Then the number of eigenvalues of Lh in Ih is

N(Lh, Ih) =

⌊
L

πh1/2

∑
k,q

δ
[0]
k,q +

L⟨κ⟩
π

∑
k,q

δ
[1]
k,q + O(h1/2)

⌋
,

where we use the notation
∑

k,q :=
∑N

k=1

∑p(k)
q=1 , and

δ
[0]
k,q := |αk,q − βk,q| , δ

[1]
k,q :=

Ck(βk,q)

|µ′
k(βk,q)|

− Ck(αk,q)

|µ′
k(αk,q)|

,

with αk,q := µ−1
k,q(a), βk,q := µ−1

k,q(b).

In this statement we have denoted µk,q := µk(γ, ·)|Σk,q
. Notice that, since the remainder

term O(h1/2) tends to 0, we obtain that, when h is small enough, N(Lh, Ih) is equal to the
integer part of L

πh1/2

∑
k,q δ

[0]
k,q +

L⟨κ⟩
π

∑
k,q δ

[1]
k,q, or this plus or minus 1.

In a second application, we focus on the regular eigenvalues of Lh below the first Landau
level, and investigate how the eigenvalues move when h varies (by the scaling mentioned
in the introduction, this corresponds to the variation of the quantum energies when the
external magnetic field is modified). This variation of eigenvalues is mainly due to the strong
flux term θ(h) = |Ω|

|∂Ω|h , see (1.15). When γ ∈ R, the eigenvalues below the first Landau
level are described by only two intervals Σ1,1 and Σ1,2, for which the sense of variation of
the approximate eigenvalues with respect to h are opposite. Hence, we obtain a strongly
oscillating behavior for these eigenvalues, which is a generalization to excited states of the
Little-Parks effect, see [13].

Theorem 1.12 (Magnetic quantum oscillations). Let γ ∈ R. Let Ih = [ha, hb] with a >
Θ0(γ) and b < 1. There exists h0 > 0, C > 0 and M > 0 such that the following holds.
Let h < h0, and let j ∈ N be such that the j-th eigenvalue λj(γ, h) of Lh belongs to Ih.
Then there exists Ci = Ci(j, h), i = 1, 2, 3, with 0 < C1 < C2 < C3 ⩽ M such that, letting
hi := h+ Cih

2, we have
• λj(h2) ⩾ λj(h1) + Ch3/2,
• λj(h2) ⩾ λj(h3) + Ch3/2 .

Moreover, the gap between consecutive eigenvalues is — (roughly) periodically with period
O(h2) — smaller than any order in h, precisely: there exists h′ such that |h− h′| = O(h2)
and λj(h′)−λj+1(h

′) = O(h2), and there exists h′′ such that |h− h′′| = O(h2) and λj+1(h
′′)−

λj(h
′′) ⩾ Ch3/2.

See also Figure 2. The proof of this theorem is given in Section 5.2.4. We believe that
this is the first mathematical treatment of quantum magnetic oscillations for excited states
in the first Landau band. In principle, similar oscillations for eigenvalues between higher
Landau levels could be obtained in the same vein. However, the growing number of connected
components Σk,q involved would make the analysis (and statement) quite complicated.

Remark 1.13. These applications illustrate the fact that Corollary 1.10 gives a very accurate
description of the spectrum of Lh by providing us with explicit approximations of the eigen-
values in [ha, hb] modulo O(h2). When γ = +∞ (i.e. in the Dirichlet case), it also improves
the description given in [14, Corollary 2.7] concerned with a thin spectral window containing
a regular value. Moreover, although our results are formulated in terms of approximation of
the eigenvalues, the strategy, based on microlocal projections, leading to Theorem 1.7 can
also be used to describe the eigenspaces of Lh in terms of those of Mh.
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1.3.4. Critical values. Our main theorem also applies to the case when the spectral window
contains a critical value, i.e. an element of Θ, see Corollary 1.2 (such a critical value is the
unique non-degenerate global minimum of a unique dispersion curve, see Proposition 1.1).
To illustrate this, let us focus on the low-lying eigenvalues. The following corollary improves
[23, Theorem I.5, α = 1

2
] by establishing the spectral asymptotics of the lowest eigenvalues

and by exhibiting spectral gaps of order h
7
4 instead of h

3
2 in the case of regular values for

each given dispersion curve. It also extends to any Robin parameter the result obtained by
Fournais and Helffer in [10] when γ = 0.

Once Theorem 1.7 is applied and reduces the analysis to a single ℏ-pseudo-differential
operator, this corollary becomes essentially an application of [7, Proposition 6.8], see details
in Section 5.2.2.

Corollary 1.14. Consider γ ̸= γ
[0]
0 with γ[0]0 defined in Remark 1.8, and let ϵ = sign(γ[0]0 −γ) =

sign(C1(ξ0(γ))). Assume that ϵκ admits a unique maximum at smax, which is non-degenerate.
Then, for all j ⩾ 1, uniformly when jh

1
4 = o(1),

λj(γ, h) = Θ[0](γ)h− κ(smax)C1(ξ0(γ))h
3
2 +

h
7
4 (2j − 1)

2

√
k2C1(ξ0(γ))µ′′

1(γ, ξ0(γ)) + o(h
7
4 ) ,

with k2 = −κ′′(smax), and where we recall that ξ0(γ) is given in Proposition 1.1.

Remark 1.15. Let us end the description of our results with a few comments about conse-
quences and extensions following from our approach.

(i) Corollary 1.14 describes the low-lying eigenvalues with some uniformity in j (which
was not the case in [10]), in an interval of the form (−∞,Θ[0](γ)h + Ch3/2]. On the
other hand, Corollary 1.10 gives the spectrum in any interval of the form [ha, hb] with
a > Θ0(γ) and b < 1. Hence we have a spectral interval between these two regimes
which we don’t describe here. But actually, by using refined spectral results for 1D
pseudodifferential operators, and in particular the strategy of [7] in the case where κ
is a Morse function, it should also be possible to close this gap. However, this would
require an analysis of the hyperbolic singularities arising from the minima of ϵκ, where
we expect both a concentration of the eigenfunctions and a higher density of eigenvalues.

(ii) When γ > γ
[0]
0 , Corollary 1.14 shows that the eigenfunctions (associated with the low-

lying eigenvalues) are concentrated near the points of minimal curvature. This contrasts
with the Neumann case when the points of maximal curvature play the role of attractive
wells. This phenomenon was not observed before, see Remark 1.8.

(iii) The case γ = γ
[0]
0 is critical since C1(ξ0(γ)) = 0. However, our analysis can still be

used by computing additional subprincipal terms in our effective operator method. A
similar phenomenon has recently been observed in the study of the magnetic Dirac
operator [1, Section 8] and also in the analysis of the magnetic Schrödinger operator
with discontinuous magnetic fields [12]. In this case, we have, for all j ⩾ 1,

λj(γ, h) = Θ[0](γ)h+ h2λj(Ah) + o(h2) ,

where Ah = ∂2
σµ(γ,ξ0(γ))

2
(Ds + θ(h) − h−

1
2 ξ0(γ))

2 + Cγκ
2(s), for some Cγ ∈ R. In this

transition regime, the effective operator is not semiclassical.
(iv) When the curvature κ is constant, in the case γ ∈ R, we are in a degenerate situation

rather similar to the case when γ = γ
[0]
0 . Concerning the operators mW

k of Theorem 1.7,
this case corresponds to [7, Proposition 6.4]. We can prove an expansion in the form

λj(γ, h) = Θ[0](γ)h− κC1(ξ0(γ))h
3
2 + h2λj(Ah) + o(h2) .
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Here, the eigenvalues of Ah will generate magnetic oscillations, see [7, Theorem 2.2;
k = 0]. When γ = 0 and j = 1, a similar estimate is described in [10, Theorem 5.3.1].

1.4. Organization of the article. In Section 2, we prove that the eigenfunctions associated
with eigenvalues of Lh in [ha, hb] are exponentially localized near the boundary of Ω, see
Proposition 2.1. Note that the strategy used to derive this localization deviates from the
usual variational method (see, for instance, [16] or [29, Prop. 4.7]), which fails since we want
to consider eigenvalues between two consecutive Landau levels. To overcome this issue, our
strategy, which eventually generalizes the variational method, is based on establishing the
bijectivity of the magnetic Laplacian between exponentially weighted L2 spaces. In Section
3, by means of tubular coordinates (s, t) near the boundary and a rescaling t = h

1
2 τ , we

introduce a model operator Nℏ depending on the effective semiclassical parameter ℏ = h
1
2 ,

acting on 2L-periodic functions and involving a flux term f0, see (3.3) and (3.2). We also show
that the eigenfunctions of Lh are roughly microlocalized in a compact set of the phase space
attached to the boundary, see Proposition 3.1. This allows to prove that the spectrum of Lh

(between the Landau levels) is located near that of Nℏ, see Proposition 3.2. However, one will
see that Proposition 3.2 is not directly useful to establish our main theorems. It is rather a
pretext to motivate the introduction of Nℏ and to describe the spectral estimates required to
prove that spectra coincide modulo O(h∞). Actually, one will compare directly the spectrum
of Lh to that of an effective operator on the boundary of Ω. For that purpose, in Section 4, we
construct a Grushin problem in order to invert the (pseudo)differential operator Nℏ (which
acts as Nℏ with f0 replaced by 0). This method, inspired by the works of Martinez and
Sjöstrand (and adapted to magnetic operators by Keraval, see [26]), has recently shown its
efficiency to describe the low-lying eigenvalues of various magnetic operators (see, for instance,
[3] and [12]). The novelty in the present paper is to use it to tackle the description of larger
eigenvalues for magnetic Schrödinger operators with boundaries, when several dispersion
curves are involved (see Figure 1), and not only the first one as in [3] or [12]. In order to use
this method, we write a semiclassical expansion of Nℏ, see Proposition 4.2. The principal
operator symbol is the de Gennes operator (with Robin condition), which can be inverted in
the spectral window [a, b] up to considering an augmented matrix involving the eigenfunctions
of the de Gennes operator, see Lemma 4.3. This allows to build an approximate inverse of an
augmented version of Nℏ denoted by OpW

ℏ Pℏ, see (4.4) (and the left and right quasi inverses
(4.6) and (4.7)). Thanks to these quasi inverses, the bijectivity of Lh−z is reduced to that of a
pseudodifferential operator on T2L whose matrix symbol is Mℏ, modulo some remainders, see
Proposition 4.4 where the eigenfunctions of Lh are directly used as quasimodes for MW

ℏ . In
Section 5, we perform the spectral analysis of MW

ℏ by using that the principal matrix symbol
M0 is diagonal with uniform gaps between the diagonal entries. We deduce Proposition 1.9
and Corollary 1.14. In Appendix A, we recall the origin of the estimate (1.3). Appendix B
is devoted to the de Gennes operator with Robin conditions: a couple of known results are
recalled and useful new ones are established.

2. Exponential localization near the boundary and consequences

Let us consider a smooth function Φ0 : Ω → R+ that coincides with dist(x, ∂Ω) near ∂Ω,
and which vanishes only on ∂Ω. Such a function can be constructed as follows. Let ϵ > 0 be
such that the ϵ-neighborhood of ∂Ω, which we call Ω1, admits a trivialization by the geodesic
exponential: in other words Ω1 ≃ T× [−ϵ, ϵ] with coordinates (s, t), and for any x(s, t) ∈ Ω1,
we have dist(x, ∂Ω) = |t|, and t > 0 if x ∈ Ω. We denote by t : Ω1 → R the corresponding
(smooth) map x 7→ t. Let Ω0 ⊂ Ω be the complementary set of the ϵ/2-neighborhood of ∂Ω.
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Thus, Ω0∪Ω1 is an open neighborhood of Ω. Let (χ0, χ1), be an associated partition of unity.
The function Φ0 := χ0 + tχ1 meets our requirements.

Next, we extend Φ0 to a smooth function on R2 that also belongs to W 2,∞(R2).
The following proposition states that the eigenfunctions of Lh associated with eigenvalues

in Ih are localized near the boundary of Ω. The estimates look like Agmon’s estimates, but
they are not obtained via variational means as it is the case in many magnetic settings. Here,
they follow from resolvent estimates using the distance to the Landau levels.

Proposition 2.1. There exist α > 0, C > 0, h0 > 0 such that for all h ∈ (0, h0) and all
eigenfunctions ψ associated with an eigenvalue in Ih, we have

(2.1)
∫
Ω

e2αΦ0(x)/h1/2|ψ(x)|2dx ⩽ C∥ψ∥2 ,

and

(2.2)
∫
Ω

e2αΦ0(x)/h1/2|(−ih∇−A)ψ|2dx ⩽ Ch∥ψ∥2 ,

2.1. Preliminaries. In the following, L R2

h denotes the operator (−ih∇−A)2 acting on the
Hilbert space L2(R2). By using the gauge invariance, we assume in the whole section that
A = 1

2
(−x2, x1). Due to our choice of eigenvalue λ, we deduce that L R2

h − λ is bijective and
that there exists C > 0 such that, for all h > 0,

∥(L R2

h − λ)−1∥ ⩽ Ch−1 .

More precisely, we can take C = min(|2n − 3 − a|, |2n − 1 − b|)−1. We let Φ = αΦ0, with
α > 0 to be determined, and consider the conjugated operator

L Φ
h := eΦ/h1/2

L R2

h e−Φ/h1/2

= (−ih∇−A+ ih
1
2∇Φ)2(2.3)

= L R2

h + 2ih
1
2∇Φ · (−ih∇−A)− h |∇Φ|2 − ih

3
2∆Φ .(2.4)

The following lemma tells us that the invertibility is preserved for L Φ
h −λ if α is small enough.

Lemma 2.2. There exists C > 0 such that for all h > 0 and all α > 0,

(2.5) h
1
2∥∇Φ · (−ih∇−A)(L R2

h − λ)−1∥ ⩽ Cα .

In particular, L Φ
h − λ is bijective as soon as α ⩽ α0 and α0 is chosen small enough. With

such a choice of α0, there exists C > 0 such that, for all h > 0, and all α ⩽ α0,

(2.6)
∥∥∥(L Φ

h − λ
)−1
∥∥∥ ⩽

C

h
.

Proof. Consider v ∈ L2(R2) and let u = (L R2

h − λ)−1v. We have

(L R2

h − λ)u = v ,

so that, by taking the scalar product with u and using that λ ⩽ Ch,

∥(−ih∇−A)u∥2 ⩽ Ch∥u∥2 + ∥u∥∥v∥ .
Therefore, since ∇Φ0 ∈ L∞, there is a new constant C ′ > 0 such that

h
1
2∥∇Φ · (−ih∇−A)u∥ ⩽ C ′αh∥u∥+ C ′h

1
2α∥u∥

1
2∥v∥

1
2 .

Since ∥u∥ =
∥∥∥(L R2

h − λ)−1v
∥∥∥ ⩽ Ch−1∥v∥, we see that

h
1
2∥∇Φ · (−ih∇−A)(L R2

h − λ)−1v∥ ⩽ C̃α∥v∥ ,
which gives (2.5).
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Let us now deal with the bijectivity. We have

L Φ
h − λ = L R2

h − λ+B

with
B := 2ih

1
2∇Φ · (−ih∇−A)− h |∇Φ|2 − ih

3
2∆Φ .

Since ∇Φ0 and ∆Φ0 are bounded, we deduce from (2.5) that

∥B(L R2

h − λ)−1∥ ⩽ Cα+ C1α + h1/2C2α
2 ⩽ C̃α ,

when α is small enough. On the other hand,

L Φ
h − λ =

(
Id +B(L R2

h − λ)−1
)
(L R2

h − λ) ;

For α small enough, we deduce that Id+B(L R2

h −λ)−1 is invertible, and thus so is L Φ
h −λ. □

In order to prove Proposition 2.1, we need to localize on an h1/2-neighborhood of ∂Ω. For
this purpose, we introduce two functions χh ∈ C ∞

0 (Ω) and χ̃h ∈ C ∞(Ω) as follows.

χh :

{
Ω −→ [0, 1]

x 7−→ g(Φ0(x)/h
1
2 )

and χ̃h :

{
Ω −→ [0, 1]

x 7−→ 1− g(Φ0(x)/2h
1
2 )

where g is a smooth non-decreasing function on R, valued in [0, 1], equal to 0 on (−∞, 1)
and to 1 on (2,+∞). In particular,

(2.7) supp(χh) ∩ Ω ⊂ {x ∈ Ω , h−
1
2Φ0(x) ⩾ 1} ,

and

supp(∇χh) ∩ Ω ⊂ {x ∈ Ω : h−
1
2Φ0(x) ∈ [1, 2]} ⊂ {x ∈ Ω : χ̃h(x) = 1} .(2.8)

Note that the following properties hold:
— χh = 1 away from an h1/2-neighborhood ∂Ω,
— ∇χh is supported in an h1/2-neighborhood of ∂Ω,
— 1supp∇χh

⩽ χ̃h,
— χ̃h = 0 away from an h1/2-neighborhood of ∂Ω.

2.2. Proof of Proposition 2.1. Let us consider λ ∈ [ha, hb] ∩ sp(Lh) and an associated
eigenfunction ψ ∈ Dom(Lh). We have(

(−ih∇−A)2 − λ
)
ψ = 0 .

Let φ = eΦ/h1/2
ψ. Using (2.4) in Ω, the equation becomes

(2.9)
(
L Φ

h − λ
)
φ = 0 .

Then, we have(
L Φ

h − λ
)
(χhφ) = [L Φ

h , χh]φ

= eΦ/h1/2

[Lh, χh]e
−Φ/h1/2

φ

= eΦ/h1/2 (−h2∆χh − 2ih∇χh · (−ih∇−A)
)
e−Φ/h1/2

φ

=
(
−h2∆χh − 2ih∇χh · (−ih∇−A+ ih

1
2∇Φ)

)
φ(2.10)

We have ∥h2(∆χh)φ∥ ⩽ Ch∥χ̃hφ∥. (Here and in the rest of the paper, C denotes a constant
that is independent on h but that can vary from line to line.) Let us explain how to deal
with the last term. We have

h∥∇χh · (−ih∇−A+ ih
1
2∇Φ)φ∥ ⩽ h∥∇χh · (−ih∇−A)φ∥+ Ch∥χ̃hφ∥ .
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Let us temporarily admit that, for α small enough,

(2.11) h∥∇χh · (−ih∇−A)φ∥ ⩽ Ch∥χ̃hφ∥ .
We then immediately deduce from (2.10) that

(2.12) ∥
(
L Φ

h − λ
)
(χhφ)∥ ⩽ C̃h∥χ̃hφ∥ .

Since χhφ ∈ Dom(L R2

h ) we obtain from (2.6) that

∥χhφ∥ ⩽ C∥χ̃hφ∥ ,
which implies that

∥φ∥ ⩽ C̃(∥χ̃hφ∥+ ∥(1− χh)φ∥) ,

showing that φ is localized near ∂Ω. More precisely, recalling that φ = eΦ/h
1
2ψ, using that

Φ0(x) = dist(x, ∂Ω) near the boundary, and the fact that the supports of χ̃h and 1 − χh lie
in neighborhood of the boundary of size h

1
2 , we deduce (2.1).

Let us now deal with (2.2). We have the Agmon identity

Re ⟨Lhψ, e
2Φ/h1/2

ψ⟩ = Qh,A(e
Φ/h1/2

ψ)− h∥eΦ/h1/2

ψ∇Φ∥2 ,

which follows from (2.4) where we see that ReL Φ
h = Lh − h |∇Φ|2 and we notice that

Re ⟨Lhψ, e
2Φ/h1/2

ψ⟩ = ⟨(ReL Φ
h )eΦ/h1/2

ψ, eΦ/h1/2
ψ⟩. Recall also that, when u ∈ Dom(Lh),

then ⟨Lhu, u⟩ = Qh,A(u), see (1.1).
Then, by using that ψ is an eigenfunction, we get∫
Ω

∣∣∣(−ih∇−A)
(
eΦ/h1/2

ψ
)∣∣∣2 dx+ γh

3
2

∫
∂Ω

|eΦ/h1/2

ψ|2ds− h∥eΦ/h1/2

ψ∇Φ∥2 = λ∥eΦ/h1/2

ψ∥2 .

With (2.1), we find∫
Ω

∣∣∣(−ih∇−A)
(
eΦ/h1/2

ψ
)∣∣∣2 dx+ γh

3
2

∫
∂Ω

|eΦ/h1/2

ψ|2ds ⩽ Ch∥ψ∥2 .

From a classical trace theorem (see for instance [9, Section 5.5]), there exists C > 0 such that
for all ε > 0, we have ∫

∂Ω

|φ|2ds ⩽ C
(
ε−1∥φ∥2 + ε∥∇|φ|∥2

)
.

With the diamagnetic inequality (see for instance [11, Theorem 2.1.1]), we deduce that

h2
∫
∂Ω

|φ|2ds ⩽ C
(
h2ε−1∥φ∥2 + ε∥(−ih∇−A)φ∥2

)
,

and then
h

3
2

∫
∂Ω

|φ|2ds ⩽ C
(
h

3
2 ε−1∥φ∥2 + εh−

1
2∥(−ih∇−A)φ∥2

)
.

Taking ε = h
1
2

2|c|C implies that∫
Ω

∣∣∣(−ih∇−A)
(
eΦ/h1/2

ψ
)∣∣∣2 dx ⩽ C̃h∥ψ∥2 .

Computing a commutator gives (2.2).
It remains to explain why (2.11) holds. From (2.4) we can write

(2.13) L Φ
h = L1 + ih

1
2L2 ,

with
L1 = (−ih∇−A)2 − h|∇Φ|2 , L2 = 2∇Φ · (−ih∇−A)− ih∆Φ .



15

From (2.13) and (2.9), we get
(L1 − λ+ ih

1
2L2)φ = 0 .

For j = 1, 2, we have

Re⟨(L1 − λ)φ, (∂jχh)
2φ⟩ − h

1
2 Im⟨L2φ, (∂jχh)

2φ⟩ = 0 .

Thanks to the classical localization formula (see, for instance, [29, Prop. 4.2]), we have

Re⟨(L1 − λ)φ, (∂jχh)
2φ⟩

= ∥(−ih∇−A)[(∂jχh)φ]∥2 − h

∫
Ω

|∇Φ|2|(∂jχh)φ|2dx− λ∥∂jχhφ∥2 − h2∥∇(∂jχh)φ∥2 .

Moreover,

|Im⟨L2φ, (∂jχh)
2φ⟩|

= |Im⟨(∂jχh)L2φ, (∂jχh)φ⟩|
⩽ |Im⟨L2((∂jχh)φ), (∂jχh)φ⟩|+ |⟨[L2, ∂jχh]φ, (∂jχh)φ⟩|
⩽ Ch∥(∂jχh)φ∥2 + Cα∥(−ih∇−A)(∂jχh)φ∥∥∂jχhφ∥+ Ch∥∇(∂jχh)φ∥∥∂jχhφ∥ .

Due to the properties of χh, we have

|Im⟨L2φ, (∂jχh)
2φ⟩| ⩽ C∥χ̃hφ∥+ Ch−

1
2α∥(−ih∇−A)(∂jχh)φ∥2 + Ch−

1
2α∥χ̃hφ∥2

+ Ch−
1
2∥χ̃hφ∥2 .

Therefore,

∥(−ih∇−A)[(∂jχh)φ]∥2 ⩽ C∥χ̃hφ∥2 + Cα∥(−ih∇−A)(∂jχh)φ∥2 .
Taking α small enough, we get

∥(−ih∇−A)[(∂jχh)φ]∥2 ⩽ C∥χ̃hφ∥2 .
Computing a commutator, we get (2.11).

3. An operator on a semi-cylinder

3.1. A model operator. The exponential localization near the boundary at a scale of order
h

1
2 given by Proposition 2.1 invites us to use the classical tubular coordinates (s, t) near the

boundary. We recall that these coordinates are defined thanks to the map

Γ : T2L × (0, t0) ∋ (s, t) 7→ Γ(s)− tn(s) T2L := R/2LZ ,

which is injective if t0 is small enough. Its Jacobian is a(s, t) = 1 − tκ(s), where κ is the
curvature of the boundary at the point Γ(s). Here Γ is a counterclockwise parametrization
by the curvilinear abscissa. Thus, Γ induces a smooth diffeomorphism between T2L × (0, t0)
and Ωt0 := Γ(T2L × (0, t0)).

By using [11, Appendix F], we can check that the magnetic Laplacian acts locally near the
boundary in these coordinates as

L̃h = a(s, t)−1

(
−ih∂s − t+ f0 + κ(s)

t2

2

)
a(s, t)−1

(
−ih∂s − t+ f0 + κ(s)

t2

2

)
− h2a(s, t)−1∂ta(s, t)∂t ,

in the ambient Hilbert space L2(adsdt). Here f0 = |Ω|
|∂Ω| . The boundary condition (1.2)

becomes
∂tψ(s, 0) = γh−

1
2ψ(s, 0) .
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Of course the operator L̃h is only defined near t = 0. We would like to consider a global
operator. This can be done by inserting cutoff functions with respect to t. We let ť =
tζ(h−

1
2
+ηt) with η ∈ (0, 1

2
) and ζ a smooth cutoff function equal to 1 near 0.

Let us consider the differential operator acting as

L̃h = a(s, ť)−1

(
−ih∂s − t+ f0 + κ(s)

ť2

2

)
a(s, ť)−1

(
−ih∂s − t+ f0 + κ(s)

ť2

2

)
− h2a(s, ť)−1∂ta(s, ť)∂t ,

on the domain

Dom(L̃h) =
{
u ∈ L2(T2L ×R+) : −∂2t u ∈ L2(T2L ×R+),

(−ih∂s − t+ f0)
2 u ∈ L2(T2L ×R+), ∂tu(·, 0) = γh−

1
2u(·, 0)

}
.

The ambient Hilbert space is L2(a(s, ť)dsdt) = L2(dsdt), with 2L-periodic condition with
respect to s.

The exponential localization of the original eigenfunctions at the scale h
1
2 near the boundary

suggests to consider the partial rescaling

(s, t) = (s, ℏτ) ,

where ℏ = h
1
2 . We consider the new operator, acting in the ambient Hilbert space L2(âℏdsdτ) =

L2(dsdτ),

(3.1) L̂h = âℏ(s, τ)
−1ps,ℏâℏ(s, τ)

−1ps,ℏ − âℏ(s, τ)
−1∂τ âℏ(s, τ)∂τ ,

with

(3.2) ps,ℏ = −iℏ∂s − τ + ℏ−1f0 + ℏκ(s)
τ̂ 2

2
,

and where âℏ(s, τ) = 1− ℏτ̂κ with τ̂ = ζ(ℏ2ητ)τ .
The boundary condition becomes

∂τψ(s, 0) = γψ(s, 0) .

The domain is given by

Dom(L̂h) =
{
u ∈ L2(T2L ×R+) : −∂2τu ∈ L2(T2L ×R+),(
−iℏ∂s − τ + ℏ−1f0

)2
u ∈ L2(T2L ×R+), ∂τu(·, 0) = γu(·, 0)

}
.

In fact, it will even be more convenient to deal with the following operator

(3.3) Nℏ = âℏ(s, τ)
−1pΞ0

s,ℏâℏ(s, τ)
−1pΞ0

s,ℏ − âℏ(s, τ)
−1∂τ âℏ(s, τ)∂τ ,

where we recall that Ξ0 was defined in (1.8), and

(3.4) pΞ0
s,ℏ := Ξ0(·+ ℏ−1f0)

W − τ + ℏκ(s)
τ̂ 2

2
.

Dom(Nℏ) =
{
u ∈ L2(T2L ×R+) : −∂2τu ∈ L2(T2L ×R+),

τ 2u ∈ L2(T2L ×R+), ∂τu(·, 0) = γu(·, 0)
}
.
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3.2. Microlocalization of the eigenfunctions of Lh. In fact, we can prove that the
eigenfunctions of Lh associated with eigenvalues in [ha, hb] are roughly microlocalized with
respect to σ + ℏ−1f0, the (shifted) dual variable of s. In order to quantify this, we consider
the compact set

(3.5) K =
⋃
j⩾1

{σ ∈ R : µj(σ) ∈ [a, b]} ⊂ [σmin, σmax] =: K̃ .

Note that K is indeed compact due to the properties of the µj (tending to +∞ in −∞) and
to the choice of [a, b], which does not contain Landau levels (the limits of the µj in +∞).

The following result establishes a rather rough microlocalization result (with respect to σ)
for the eigenfunctions: it tells us that the eigenfunctions are microlocalized in the compact
set K̃. To quantify this, we consider a smooth function Ξ with values in [0, 1] such that Ξ = 0
near K̃ and 1 away from K̃.

We let λ̂ = h−1λ.

Proposition 3.1. Let us consider the eigenvalue equation Lhψ = λψ for λ ∈ [ha, hb]. Then,

(3.6) L̂hφ = λ̂φ+ O(h∞)∥ψ∥ .

with φ = χ̂ℏψ̂, where ψ̂ = ψ ◦ Γ(s, ℏτ) and χ̂ℏ(τ) = χ(ℏητ) for a smooth cutoff function χ
equal to 0 away from τ = 0.

Moreover,

(3.7) OpW
ℏ (Ξ(σ + ℏ−1f0))φ = O(ℏ∞)∥ψ∥ .

Proof. The estimate (3.6) follows from the localization near the boundary (Proposition 2.1).
Then, let us only prove that (3.7) holds when Ξ is 0 near (−∞, σmax+

ϵ
2
) and 1 on (σmax+

ϵ,+∞), the estimate following from similar arguments on (−∞, σmin − ϵ).
In order to lighten the notation, we will use a slight abuse of notation by writing

(3.8) ΞW := OpW
ℏ (Ξ(σ + ℏ−1f0)) .

Then, we write (
L̂h − λ̂

)
ΞWφ = [L̂h,Ξ

W]φ+ O(ℏ∞)∥ψ∥ .

Thanks to the explicit expression (3.1), we get

(3.9) ∥[L̂h,Ξ
W]φ∥ ⩽ Cℏ∥ΞWφ∥+ Cℏ∥ΞW∂τφ∥+ O(ℏ∞)∥ψ∥ ,

and we can write, by using the support of χ(h−
1
2
+ηt),

(3.10) L̂h = L̂0 + Rℏ , L̂0 = −∂2τ + p2s,ℏ,0 , ps,ℏ,0 = −iℏ∂s + ℏ−
1
2 f0 − τ ,

where the remainder Rℏ can be written as

(3.11) Rℏ = ℏ1−2ηRℏ,2(s, τ)p
2
s,ℏ,0 + ℏ1−4ηRℏ,1(s, τ)ps,ℏ,0 + ℏ2−8ηRℏ,3 + ℏRℏ,4∂τ ,

the Rℏ,j being smooth functions, uniformly bounded in ℏ.
Then, we consider an increasing function σ 7→ Ξ̃(σ) ∈ (σmax +

ϵ
4
,+∞) that coincides with

Id on (σmax +
ϵ
2
,+∞). We let

L̂ cut
0 = OpW

ℏ

(
−∂2τ + (Ξ̃(σ + ℏ−1f0)− τ)2

)
,

acting on L2(T2L×R+), where the superscript "cut" refers to the replacement of −iℏ∂s+ℏ−1f0
by Ξ̃W (with the same abuse of notation as in (3.8)). We notice that L̂ cut

0 − λ̂ is bijective
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(with an inverse uniformly bounded in ℏ) due to the choice of Ξ̃ and the definition of σmax.
Moreover, we have {Ξ ̸= 0} ⊂ {Ξ̃ = Id} so that, with (3.10),(

L̂ cut
0 − λ̂+ Rcut

ℏ

)
ΞWφ = [L̂h,Ξ

W]φ+ O(ℏ∞)∥ψ∥ ,

which can be written as(
Id + Rcut

ℏ (L̂ cut
0 − λ̂)−1

)
(L̂ cut

0 − λ̂)ΞWφ = [L̂h,Ξ
W]φ+ O(ℏ∞)∥ψ∥ .

By using (3.11) and applying the Calderón-Vaillancourt theorem, we get that

∥Rcut
ℏ (L̂ cut

0 − λ̂)−1∥ = O(ℏ1−4η) .

Thus, the operator Id + Rcut
ℏ (L̂ cut

0 − λ̂)−1 is bijective as soon as ℏ is small enough.
With (3.9), this provides us first with

∥ΞWφ∥2 ⩽ Cℏ∥ΞWφ∥2 + Cℏ∥ΞW∂τφ∥2 + O(ℏ∞)∥ψ∥2 ,
and then

∥ΞW∂τφ∥2 + ∥ΞWφ∥2 ⩽ Cℏ∥ΞWφ∥2 + Cℏ∥ΞW∂τφ∥2 + O(ℏ∞)∥ψ∥2 .
The estimate (3.7) follows by induction on the size of the support of Ξ. □

3.3. First spectral estimates. The aim of the following proposition is to establish that the
spectrum of Lh in Ih is close to that of hNℏ and thus that Nℏ is a nice auxiliary operator
to describe the spectrum of Lh. In fact, we will see that this proposition is not necessary to
prove our spectral estimates, but its proof is instructive.

Proposition 3.2. There exists h0 > 0 such that for all h ∈ (0, h0) the following holds. Let
us consider an interval Jh ⊂ Ih. Then, there exists an interval Ĵh such that Jh ⊂ Ĵh ⊂ Ih
with dH(Jh, Ĵh) = O(h∞) and

(3.12) rank1Jh(Lh) ⩽ rank1Ĵh
(hNℏ) .

Moreover, for all λ ∈ Ih ∩ sp(Lh),

(3.13) dist(λ, hsp(Nℏ)) = O(h∞) .

Proof. Let us start by proving (3.13). Let us consider an eigenvalue λ ∈ Ih of Lh. We write
the eigenvalue equation Lhψ = λψ.

With Proposition 3.1, we can write (3.6). Then, with (3.7), we deduce that

hNℏφ = λφ+ O(ℏ∞)∥ψ∥ .
Thus, (3.13) follows from the spectral theorem.

Let us now consider (3.12), which deals with multiplicities. Let us write sp(Lh) ∩ Jh =
{λ1, . . . , λp} (where the λj are distinct) and underline that these eigenvalues depend on h
as well as p. Consider the associated eigenspaces (Ej)1⩽j⩽p and note that dim

⊕p
j=1Ej =

O(h−2) thanks to the Weyl estimate (1.3). With the same notation as above, we consider the
spaces of quasimodes (χ̂ℏÊj)1⩽j⩽p. Thanks to Proposition 3.1 (and the rough Weyl estimate),
dim(χ̂ℏÊj) = dimEj, as soon as h is small enough. Moreover, we have

∥(⊕p
j=1hNℏ − λ)φ∥ ⩽ εh∥φ∥ , εh = O(h∞) ,

for all φ = (φ1, . . . , φp) ∈
⊕p

j=1 χ̂ℏÊj and where λ = (λ1, . . . , λp).
We set Jh = [ah, bh] and Ĵh = [ah − εh, bh + εh]. If rank1Ĵh

(hNℏ) < rank1Jh(Lh), then
the projection Π :

⊕p
j=1 χ̂ℏÊj → ran1Ĵh

(hNℏ) could not be injective. Considering a non-zero
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φ in its kernel, the spectral theorem would give ∥(⊕p
j=1hNℏ − λ)φ∥ > εh∥φ∥, which is a

contradiction when φ ̸= 0. Therefore, (3.12) follows. □

4. A Grushin problem

4.1. A pseudodifferential operator with operator-valued symbol. Recalling Remark
1.4, we notice that the operator Nℏ can be seen as a pseudo-differential operator acting as

Nℏ = âℏ(s, τ)
−1Tℏâℏ(s, τ)

−1Tℏ − âℏ(s, τ)
−1∂τ âℏ(s, τ)∂τ ,

on functions of the form eisf0/hL2(T2L ×R+) and where

Tℏ = ΞW
0 − τ + ℏ

κ

2
τ̂ 2 .

In fact, it will be convenient to see Nℏ as a pseudo-differential operator with operator-
valued symbol. At a formal level, the principal symbol of Nℏ is n0(s, σ) = −∂2τ +(Ξ0(σ)− τ)2

equipped with the domain

Dom(n0) = {ψ ∈ B2(R+) : ψ
′(0) = cψ(0)} .

The vector space B2(R+) is equipped with the (s, σ)-independent norm

∥ψ∥2B2(R+) = ∥ψ′′∥2 + ∥ψ′∥2 + ∥⟨t⟩2ψ∥2 .

With this convention, we may write that n0 ∈ S(R2,L (B2(R+), L
2(R+))).

We say that Ψ ∈ S(R2,L (B2(R+), L
2(R+))) when, for all α ∈ N2, there exists Cα > 0

such that for all (s, σ) ∈ R2,

∥∂αΨ∥L (B2(R+),L2(R+)) ⩽ Cα .

Such symbols might also depend on ℏ; in this case, the constant Cα is uniform in ℏ.

Lemma 4.1. The operator Nℏ can be written as the Weyl quantization of a symbol in
S(R2,L (B2(R+), L

2(R+))).

Proof. We can write
Tℏ = OpW

ℏ

(
Ξ0(σ)− τ + ℏ

κ

2
τ̂ 2
)
,

the symbol (2L-periodic with respect to s) belonging to the class S(R2,L (B1(R+), L
2(R+)))∩

S(R2,L (B2(R+), B
1(R+))). The functions aℏ(s, τ) and aℏ(s, τ)

−1 are bounded uniformly
with respect to ℏ (and so are all their derivatives). Then, the conclusion follows from the
composition theorem for pseudo-differential operators, see [26, Theorem 2.1.12]. □

In the following, we let µ = ℏ2η and ζµ(τ) = ζ(µτ). This is convenient when expanding the
operator in powers of ℏ (µ will be considered a parameter). This expansion allows to describe
rather accurately the symbol of Nℏ by expanding it in powers of ℏ. An analogous description
for a very similar operator can be found in great detail in [12, Section 4.2].

Proposition 4.2. The operator Nℏ can be written as follows:

(4.1) Nℏ = n0 + ℏn1 + ℏ2R(2)
ℏ + ℏwℏ∂τ ,

where, for some N ∈ N, C, ℏ0 > 0, we have, for all ℏ ∈ (0, ℏ0),
(i) wℏ is a smooth function supported in {(s, τ) : C−1ℏ−2η ⩽ ⟨τ⟩ ⩽ Cℏ−2η} and such that

wℏ = O(⟨τ⟩) ,
(ii) R(2)

ℏ is a pseudodifferential operator whose symbol belongs to a bounded set in the space
of symbols S(R2,L (B2(R+), L

2(R+, ⟨τ⟩−Ndτ))).
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Moreover, the nj are given by nj = OpW
ℏ nj with

n0 = −∂2τ + (Ξ0(σ)− τ)2 ,

n1 = κ(s)
[
(Ξ0(σ)− τ)ζ2µτ

2 + ζµ∂τ + 2ζµτ(Ξ0(σ)− τ)2
]
.

(4.2)

In particular, we can write Nℏ = OpW
ℏ (nℏ) with a symbol nℏ satisfying

nℏ = n0 + ℏn1 + ℏ2r(2)ℏ + ℏwℏ∂τ ,

where r(2)ℏ belongs to the class of operator symbols S(R2,L (B2(R+), L
2(R+, ⟨τ⟩−Ndτ))) uni-

formly in ℏ.

4.2. Dimensional reduction. The aim of this section is to analyse the spectrum of Nℏ.
This can be done thanks to a Grushin reduction. The principal symbol of Nℏ is the "de
Gennes operator" with Robin boundary conditions. Explicitly, we have

n0(s, σ) = −∂2τ + (Ξ0(σ)− τ)2 .

The increasing sequence of its (simple) eigenvalues is (µk(Ξ0(σ)))k⩾1. We recall that the
functions µk are described in Proposition 1.1.

Now, consider the window [a, b] ⊂ (2n−3, 2n−1). For simplicity, let us denote ◦
uk :=

◦
u
[γ,σ]

k ,
see Section 1.2 and (1.8). Let N be defined as in (1.7).

Lemma 4.3. For all z ∈ [a, b], let us consider the matrix operator

P0(z) =

(
n0(s, σ)− z Π∗

Π 0

)
: B2(R+)×CN −→ L2(R+)×CN ,

where Π∗(α) =
∑N

j=1 αj
◦
uj and Πψ = (⟨ψ, ◦uj⟩)1⩽k⩽N .

Then, P0(z) is bijective with inverse

Q0(z) =

(
q0 Π∗

Π z −M0(σ)

)
, q0 = (n0(s, σ)− z)−1(Π∗Π)⊥ ,

where M0(σ) is the diagonal N ×N matrix whose diagonal is (
◦
µ1, . . . ,

◦
µN).

Proof. Let g ∈ L2(R+) and β ∈ CN . Let us look for f ∈ Dom(n0) and α ∈ CN such that

P0(z)(f ⊕ α) = g ⊕ β .

In other words,
(n0(s, σ)− z)f +Π∗α = g, Πf = β .

Let E = span(
◦
u1, . . . ,

◦
uN), and F = E⊥ . We can write f = fE + fF where

fE =
N∑
j=1

⟨f, ◦uj⟩
◦
uj = Π∗Πf , fF = (Π∗Π)⊥f .

We have

(n0(s, σ)− z)fF = −(n0(s, σ)− z)fE − Π∗α + g

= −(n0(s, σ)− z)
N∑
j=1

βj
◦
uj − Π∗α + g ,

so that

(4.3) (n0(s, σ)− z)fF = −
N∑
j=1

βj(
◦
µj − z)

◦
uj − Π∗α + g .
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The space F is stable by n0(s, σ)− z.
Moreover, thanks to the self-adjointness of n0, the min-max principle and the fact that

min
◦
µN+1 ⩾ 2N + 1 > z, there exists c > 0 such that, for all u ∈ Dom(n0) ∩ F ,

⟨(n0 − z)u, u⟩ = ⟨n0u, u⟩ − z∥u∥2 ⩾ (
◦
µN+1 − z)∥u∥2 ⩾ c∥u∥2 .

Thus, the operator (n0 − z)|F is injective with closed range and, by considering the adjoint,
we deduce that it is bijective. We also notice that

∥(n0 − z)−1
|F ∥ ⩽ (

◦
µN+1 − z)−1 ⩽ c−1 .

Then (4.3) has a solution if and only if the right-hand-side belongs to F , that is

−
N∑
j=1

βj(
◦
µj − z)

◦
uj − Π∗α + g ∈ F

which means that, for all k ∈ {1, . . . , N},

−βk(
◦
µk − z)− αk + ⟨g, ◦uk⟩ = 0 .

We deduce that
α = Πg + (z −M0(σ))β.

This unique solution is given by

fF = (Π∗Π)⊥(n0(s, σ)− z)−1g .

Therefore,
f = fE + fF = Πβ + (Π∗Π)⊥(n0(s, σ)− z)−1g .

□

Let us now consider the full symbol

Pℏ(z) :=

(
nℏ − z Π∗

Π 0

)
,

which may be expanded in powers of ℏ as

Pℏ(z) = P0(z) + ℏP1(z) + Rℏ ,

with

P0(z) =

(
n0(s, σ)− z Π∗

Π 0

)
, P1(z) =

(
n1 0
0 0

)
, Rℏ(z) =

(
rℏ 0
0 0

)
,

where rℏ = ℏ2r(2)ℏ + ℏw̃ℏ,1 + ℏwℏ,2∂τ , see Proposition 4.2.
We notice that

(4.4) PW
ℏ =

(
Nℏ − z P∗

P 0

)
, P = ΠW .

Since the principal symbol of PW
ℏ is bijective, it is natural to try to construct an approximate

inverse in the semiclassical limit. Let us look for an approximate inverse whose symbol is in
the form

(4.5) Qℏ,1 = Q0(z) + ℏQ1(z) .

As in [26], we are led to choose

Q1 = −Q0P1Q0 = −
(
q0n1q0 q0n1Π

∗

Πn1q0 Πn1Π
∗

)
.
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This choice is convenient since the composition theorem for pseudo-differential operators (see
[26]) implies that

QW
ℏ,1 (P0(z) + ℏP1)

W = Id + ℏ
(
1

i
{Q0,P0}+ Q0P1 + Q1P0

)W

+ OL2(T2L×R+,⟨τ⟩Ndsdτ)×L2(T2L)→L2(T2L×R+)×L2(T2L)(ℏ
2) ,

where the remainder is estimated thanks to the Calderón-Vaillancourt theorem (see [26, The-
orem 2.1.16]) and the resolvent estimate in Lemma B.6 (applied with an appropriate α > 0).
The ℏ-term vanishes due the choice of Q1 and that fact that the Poisson bracket is actu-
ally 0 since the principal symbol does not depend on s. With this choice, the bottom right
coefficient, denoted by Q±

ℏ,1, of the matrix Qℏ,1 is

Q±
ℏ,1 = z −M0(σ)− ℏΠn1Π

∗ .

This invites to consider the effective matrix pseudo-differential operator whose symbol is

Mℏ =M0(σ) + ℏM1(s, σ) ,

with

M1(s, σ) = κ(s)ΠC (τ,Ξ0(σ))Π
∗ , C (τ, ξ) = (ξ − τ)ζ2µτ

2 + ζµ∂τ + 2ζµτ(ξ − τ)2 .

Using again the composition theorem to deal with the remainder Rℏ, we get
(4.6)

QW
ℏ,1P

W
ℏ = Id + OL2(T2L×R+,⟨τ⟩Ndsdτ)×L2(T2L)→L2(T2L×R+)×L2(T2L)(ℏ

2) + QW
ℏ,1

(
ℏwℏ∂τ 0

0 0

)W

.

Moreover, similar arguments show that QW
ℏ,1 is also an approximate right inverse of PW

ℏ in
the sense that
(4.7)

PW
ℏ QW

ℏ,1 = Id + OL2(T2L×R+,⟨τ⟩Ndsdτ)×L2(T2L)→L2(T2L×R+)×L2(T2L)(ℏ
2) +

(
ℏwℏ∂τ 0

0 0

)W

QW
ℏ,1 .

Proposition 4.4. The spectrum of Lh in [ha, hb] coincides (with multiplicity) with that of
hOpW

ℏ Mℏ modulo O(h2).

Proof. First, we consider ψ an eigenfunction of Lh associated with λ ∈ [ha, hb]. We use (4.6)
with z = h−1λ o get that

QW
ℏ,1P

W
ℏ

(
φ
0

)
=

(
φ
0

)
+ O(ℏ2)∥φ∥ ,

where φ denotes the function ψ after multiplication by a cutoff function in t and rescaling as
in Proposition 3.1. Note that we used the exponential decay in τ of our quasimode φ (which
comes from that of ψ) to control the remainder term in (4.6). We infer that

(4.8) P∗Pφ = φ+ O(ℏ)∥φ∥ , (λ̂−OpW
ℏ Mℏ)Pφ = O(ℏ2)∥φ∥ ,

where we used that the principal symbol of the top right coefficient of Qℏ,1 is Π∗. Since P∗ is
bounded uniformly in ℏ (as the quantization of a bounded symbol), the first relation implies
that

∥φ∥ ⩽ C∥Pφ∥ .
Then, from the second relation and the spectral theorem, we deduce that

dist(λ̂, sp(OpW
ℏ Mℏ)) ⩽ Cℏ2 .
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This means that the spectrum of h−1Lh in the window [ha, hb] is at a distance of order ℏ2 to
the spectrum of the effective operator OpW

ℏ Mℏ.
Let us now proceed as in the proof of Proposition 3.2 and keep the same notation. We

have
∥(⊕p

j=1Nℏ − λ̂)φ∥ ⩽ εh∥φ∥ , εh = O(h∞) ,

for all φ = (φ1, . . . , φp) ∈
⊕p

j=1 χ̂ℏÊj and where λ̂ = (λ̂1, . . . , λ̂p).
Similarly as (4.8), we have

(4.9) ∥φ∥ ⩽ C∥Pφ∥ ,
and

(⊕p
j=1OpW

ℏ Mℏ − λ̂)Pφ = O(ℏ2)∥Pφ∥ ,

where Pφ = (Pφ1, . . . ,Pφp). Due to (4.9), the action of the map P is injective on
⊕p

j=1 χ̂ℏÊj.
Therefore, as in the proof of Proposition 3.2, the spectral theorem provides us with

rank1Jh(Lh) ⩽ rank1Kh
(hMW

ℏ ) ,

where Jh ⊂ Ih and Kh is an interval such that Jh ⊂ Kh and dH(Jh, Kh) = O(h2).
Let us now prove the converse estimate. We use (4.7) with an eigenvalue z = λ̂ of MW

ℏ and
for f a corresponding eigenfunction. We have

(4.10) PW
ℏ QW

ℏ,1

(
0
f

)
=

(
0
f

)
+ O(ℏ2)∥f∥ ,

where the remainder term involving wℏ has been controlled by using the exponential decay
of the eigenfunctions of the de Gennes - Robin operator n0.

Then, the first line in (4.10) gives

(4.11) (Nℏ − λ̂)
(
Q+

ℏ,1
)W

f = O(ℏ2)∥f∥ ,

whereas the second line gives

P
(
Q+

ℏ,1
)W

f = O(ℏ2)∥f∥ ,

which leads to
∥f∥ ⩽ C

∥∥∥(Q+
ℏ,1
)W

f
∥∥∥ .

With (4.11), we get

(Nℏ − λ̂)
(
Q+

ℏ,1
)W

f = O(ℏ2)
∥∥∥(Q+

ℏ,1
)W

f
∥∥∥ .

Now, by using the exponential decay of
(
Q+

ℏ,1
)W

f and the rough microlocalization of f in
the support of Ξ0 (since the principal symbol of the scalar pseudodifferential operator Mℏ is
n0), we get the quasimode estimate

(Lh − λ)ψquasi = O(h2)∥ψquasi∥ ,
with ψquasi(x) = χ(t(x)/ℏ1−γ)Ψquasi ◦ Γ−1(x) where

Ψquasi(s, t) =
(
Q+

ℏ,1
)W

f(s, ℏ−1t) ,

and χ is a smooth cutoff function equal to 1 near 0 and 0 away from a neighborhood of t = 0
and γ ∈ (0, 1) is chosen small enough so that tζ(h−

1
2
+ηt) = t on the support of χ(t/ℏ1−γ).

Note that Ψquasi satisfies the Robin condition at t = 0 since Q+
ℏ,1 (as well as Q0, see (4.5)) takes

values in a space of functions satisfying the Robin condition. In particular, ψquasi belongs to
the domain of Lh.
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The spectral theorem shows that λ is close to the spectrum of Lh at a distance or order
at most O(h2). The argument concerning the multiplicities can again be used (as above) by
exchanging the roles of Nℏ and MW

ℏ . The conclusion follows. □

Remark 4.5. In Proposition 3.2 we only proved one inclusion of spectra. In contrast, Propo-
sition 4.4 is stronger, since it provides an equality modulo O(h2), in the sense of Definition 1.5.
Indeed, in the proof of Proposition 4.4, we only have to use quasimodes for Nℏ and not neces-
sarily the true eigenfunctions of Nℏ (whose existence in the spectral window of interest is not
obvious). Our presentation avoids the spectral analysis of Nℏ (existence of the discrete spec-
trum, Agmon estimates, etc.) by comparing directly the spectra of Lh and of the effective
operator.

5. Analysis of the effective operator

This section is devoted to the spectral study of MW
ℏ in [a, b]. Let us diagonalize this

operator, up to a remainder of order O(ℏ2). Note that, by using the exponential decay of the
eigenfunctions of n0, we may (and so do we) replace ζµ by 1.

5.1. Asymptotic diagonalization and end of the proof of Theorem 1.7. The end of
the proof follows from classical arguments (see, for instance, [21, Section 3.1] where such
arguments are used). We notice that the spectrum of

Tℏ = exp(ℏAW)MW
ℏ exp(−ℏAW)

is the same as the one of MW
ℏ , as soon as A belongs to S(1) and is 2L-periodic with respect

to s. In this case, we recall that AW is bounded from L2(T2L) to L2(R2L) (and thus its
exponential is well-defined as an element of L (L2(T2L)) thanks to the classical power series).
Let us explain how to choose A. By expanding the exponential, we have

Tℏ = (Id + ℏAW)MW
ℏ (Id− ℏAW) + O(ℏ2) ,

and thus
Tℏ =MW

ℏ + ℏ[AW,MW
ℏ ] + O(ℏ2) ,

so that
Tℏ =MW

0 + ℏ (M1 + [A,M0])
W + O(ℏ2) .

Therefore, A should be chosen so that M1 − [M0, A] is diagonal. The map SkewN(R) ∋ A 7→
[M0, A] ∈ Sym0

N(R) is well-defined and an isomorphism since M0 is diagonal with distinct
real entries, where SkewN(R) is the vector space of skew-symmetric matrices and Sym0

N(R)
the space of symmetric matrices with null diagonal. It is actually easy to compute its inverse.
Consider M a symmetric matrix with null diagonal. We want to find A ∈ SkewN(R) such
that [M0, A] =M . For all j ∈ {1, . . . , N}, we have

(M0 −
◦
µj)Aej =Mej ,

and then, for all k ∈ {1, . . . , N},

(
◦
µk −

◦
µj)⟨Aej, ek⟩ = ⟨Mej, ek⟩ .

Thus, for all k ̸= j,
⟨Aej, ek⟩ = (

◦
µk −

◦
µj)

−1⟨Mej, ek⟩ ,
which determines a unique A ∈ SkewN(R).
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Since there is a uniform gap between the ◦
µj (with respect to σ), we get the existence of a

skew-symmetric A in S(1) such that

M1 − diag(M1)︸ ︷︷ ︸
∈Sym0

N (R)

+[A,M0] = 0 .

With this choice, we get
Tℏ =MW

0 + ℏdiag(MW
1 ) + O(ℏ2) .

Note that, for all j ∈ {1, . . . , N}, we have ⟨M1ej, ej⟩ = κ(s)⟨C (τ,Ξ0(σ))u
[Ξ0(σ),γ]
j , u

[Ξ0(σ),γ]
j ⟩.

By the spectral theorem, we deduce that the spectra of MW
ℏ and MW

0 + ℏdiag(MW
1 ) coincide

modulo O(ℏ2). This procedure can be continued at any order.

5.2. Spectral consequences. The aim of this last section is to prove Proposition 1.9 and
Corollary 1.14.

5.2.1. Proof of Proposition 1.9. We could not find this particular statement in the literature,
because a) we have to deal with non-connected level sets of the principal symbol, and b)
we have Floquet periodic conditions, with ℏ-dependent Floquet exponent. The first issue
is treated with usual microlocal arguments: each connected component carries with itself a
Bohr-Sommerfeld asymptotic series, as in [19], and the initial spectrum is obtained, modulo
O(ℏ∞), by the superposition (with multiplicities) of all these series. The second one is
easily included in the general theory thanks to the “sheaf” approach of [34]. Indeed, near
each point of the energy level curve σ = const, the operator Pℏ is microlocally a usual ℏ-
pseudo-differential operator, and the quantum Darboux-Carathéodory normal form holds.
Therefore, the Bohr-Sommerfeld cocycle of [34, Proposition 5.6] holds; the difference being
that the condition for a global section should include the Floquet exponent θ. This gives a
Bohr-Sommerfeld rule for quantized energies E (for each connected component) of the form

(5.1) A(E) + ℏm(E)π
2
+ ℏK(E) + O(ℏ2) = 2πℏ(ℓ+ L

π
θ) , ℓ ∈ Z ,

where A(E) is the action integral (here A(E) = 2Lσ when E = µ(σ)), m(E) the Maslov
index (which vanishes here, because the curves σ = const project diffeomorphically on the
s variable), and K(E) is the integral of the subprincipal form [34, Definition 3.2] along the
energy level set. In order to compute K, we notice that the Hamiltonian vector field of µ(σ)
is µ′(σ) ∂

∂s
and hence the subprincipal form is −r

µ′(σ)
ds, where r is the subprincipal symbol of

Pℏ (here r = −C(σ)κ(s)). Hence, for E = µ(σ), we have

K(E) =
C(σ)

µ′(σ) |Σq

∫ 2L

0

κ(s)ds .

Inverting the formal series (5.1), we get

E = µ(σ)−K(µ(σ)) 1
2L
µ′(σ) + O(ℏ2) , σ = π

L
ℏ(ℓ+ L

π
θ)

which gives (1.11) and (1.12).

5.2.2. Proof of Corollary 1.14. Thanks to Proposition 4.4 and the considerations in Section
5.1, we know that the spectrum of Lh in [ha, hb] coincides with that of hMW

ℏ modulo O(h2).
In the present section, since we are interested in the low-lying eigenvalues, we take a = −∞
and b = Θ0(γ) + ε < 1 (for ε > 0 small enough). Therefore, we have N = 1 and the matrix
symbol Mℏ reduces to a scalar symbol:

Mℏ(s, σ) = µ1(γ, σ) + ℏκ(s)⟨C (τ,Ξ0(σ))u
[Ξ0(σ),γ]
1 , u

[Ξ0(σ),γ]
1 ⟩ .
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We are interested in the spectrum of MW
ℏ (when acting on eisf0/hL2(T2L)). Hence, Corollary

1.14 can be obtained by [7] (see in particular the Morse case, section 6.3.1) followed by a
standard Birkhoff normal form (here, the Floquet exponent f0/h plays no role because the
analysis is local near a point in the boundary ∂Ω). Here are the details.

Thanks to the Weyl asymptotic formula for pseudodifferential operators (see, for instance,
[35, Theorem 14.11]), the counting function N(MW

ℏ ,Θ0(γ) + ε) (giving the number of eigen-
values less than Θ0(γ) + ε) satisfies

N(MW
ℏ ,Θ0(γ) + ε) =

1

2πℏ

∫
{(s,σ):µ1(σ)⩽Θ0(γ)+ε}

dsdσ + o(ℏ−1)

=
L

πℏ
|{σ : µ1(σ) ⩽ Θ0(γ) + ε}|(1 + o(1)) .

Now, we take ε = ℏη, for some given η > 0.
Due to the non-degeneracy of the minimum of σ 7→ µ1(γ,Ξ0(σ)), the eigenfunctions asso-

ciated with eigenvalues less than b are microlocalized in a neighborhood of ξ0(γ) of size ℏη/2
(and so are all the linear combinations of such eigenfunctions due to the Weyl estimate). This
invites us to expand the symbol near ξ0(γ):
(5.2)

Mℏ(s, σ) = Θ0(γ)+
∂2σµ(γ, ξ0(γ))

2
(σ−ξ0(γ))2−ℏκ(s)C1(ξ0(γ))+O(|σ−ξ0(γ)|3+ℏ|σ−ξ0(γ)|) .

Therefore, Mℏ is relative perturbation of the symbol of a classical electric Schrödinger oper-
ator. The corresponding operator is

Mℏ = Θ0(γ) +
∂2σµ(γ, ξ0(γ))

2
(ℏDs − ξ0(γ))

2 − ℏκ(s)C1(ξ0(γ)) .

Let us only consider the case when γ < γ
[0]
0 (i.e., ϵ = 1). The assumption that κ has a

unique maximum, which is non-degenerate, allows to use the harmonic approximation near
the maximum of κ (and even a Birkhoff normal form, see, for instance, [29, Chapter 5] or the
original references [33, 4]). The eigenvalues of Mℏ satisfy

λj(Mℏ) = Θ0(γ)− κmaxC1(ξ0(γ))ℏ+

(
(2j − 1)

√
k2C1(ξ0(γ))µ′′

1(γ, ξ0(γ))

4

)
ℏ

3
2 + o(ℏ

3
2 ) ,

uniformly in j ⩾ 1 such that jℏ 1
2 = o(1).

We recall that ℏ = h
1
2 . We get Corollary 1.14 by noticing, thanks to a perturbation analysis

using (5.2), that the spectra of hMW
ℏ and hMℏ below h(Θ0(γ) + ℏη) coincide modulo o(h

7
4 ).

5.2.3. Proof of Theorem 1.11. By Theorem 1.7, and Definition 1.5 we have, for ϵ = O(h),

(5.3) N(hMh, [h(a+ ϵ), h(b− ϵ)]) ⩽ N(Lh, [ha, hb]) ⩽ N(hMh, [h(a− ϵ), h(b+ ϵ)]) .

From Corollary 1.10, for any interval [a′, b′] disjoint from Θ and Λ, the number of eigenvalues
of Mh in [ha′, hb′] is bounded by C b′−a′

h1/2 for some constant C > 0. Applying this with (a′, b′)
equal, respectively, to the four intervals (a, a+ ϵ), (b− ϵ, b), (a− ϵ, a), and (b, b+ ϵ), it follows
from (5.3) that

N(Lh, [ha, hb]) = N(hMh, [ha, hb]) + O(ϵh−1/2) = N(hMh, [ha, hb]) + O(h1/2) .

Therefore, it is enough to estimate N(hMh, [ha, hb]), for which we apply Corollary 1.10 (which
is actually a description of the spectrum of Mh). This corollary says that the number of
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eigenvalues of hMh inside [ha, hb], including multiplicities, is given, modulo O(h2), by the
number of integers ℓ ∈ Z such that

(5.4) h
1
2 ( π

L
ℓ+ θ(h)) ∈ f−1

k,q,h([a, b]) ,

for some admissible (k, q), where fk,q,h(σ) := fk,q(σ, h
1/2).

To simplify notations, let us momentarily fix (k, q) and denote fh := fk,q,h =: f0 + h1/2f1 +
O(h), where f0 and f1 are defined in (1.13) and (1.14). By assumption, f0 is monotonous on
Σk,q, let us assume that it is increasing; the decreasing case is obtained by swapping (a, b).
For h small enough, fh is also increasing and hence f−1

h ([a, b]) = [f−1
h (a), f−1

h (b)]. Therefore,
the solutions to (5.4) are exactly the integers belonging to the interval

(5.5)
Lh−1/2

π
[f−1

h (a), f−1
h (b)]− L

π
θ(h) .

Let σ = f−1
h (a); of course σ depends on h, but since σ ∈ Σk,q, it is bounded and we have

σ = f−1
0 (a) + O(h1/2). Therefore, f1(σ) = f1(f

−1
0 (a)) + O(h1/2). According to the statement

of Theorem 1.11, we denote α := f−1
0 (a). Writing f0(σ) = a − h1/2f1(α) + O(h) we get, by

Taylor expansion,

σ = α− h1/2(f−1
0 )′(a)f1(α) + O(h) = α + h1/2

⟨κ⟩Ck(α)

µ′
k(α)

+ O(h) .

Using the analogous formula for f−1
h (b), we may compute the difference f−1

h (b)− f−1
h (a) and

obtain the length of the interval (5.5):

Lh−1/2

π
(f−1

h (b)− f−1
h (a)) =

Lh−1/2

π
(β − α) +

L⟨κ⟩
π

(
Ck(β)

µ′
k(β)

− Ck(α)

µ′
k(α)

)
+ O(h1/2)

which gives Theorem 1.11 by summing over admissible (k, q).

5.2.4. Proof of Theorem 1.12. We use the notation of Theorem 1.7. By Proposition 1.9, the
self-adjoint operators mW

k acting on eiθ(h)·L2(T2L) satisfy the Gårding inequality:

mW
k ⩾ minµk − O(h1/2) = Θ[k−1] − O(h1/2) > b ∀k = 2, . . . , N, ∀h < h0

for h0 small enough. Hence the spectrum of Lh in Ih coincides, modulo O(h2), with the
spectrum of hmW

1 in that interval. In other words, for this choice of interval Ih, the disjoint
unions of Corollary 1.10 reduce to a union of the two components (k = 1, q = 1) and (k =
1, q = 2), and the spectrum in Ih coincides modulo O(h2) with⊔

q=1,2

{
hf1,q(σ, h

1
2 ), σ ∈ h

1
2 ( π

L
Z+ θ(h)) ∩ Σ1,q

}
∩ [ha, hb] .

So eigenvalues λj in Ih are associated with integers ℓ = ℓ(h) ∈ Z such that h
1
2 ( π

L
ℓ + θ(h)) ∈

Σ1,1 ∪ Σ1,2; therefore there are constants α, β, independent on h, such that

σℓ(h) := h
1
2 ( π

L
ℓ+ θ(h)) ∈ [α, β] .

Hence π
L
ℓ ∈ [ α

h1/2 − θ(h), β
h1/2 − θ(h)]. Recalling that θ(h) = |Ω|

|∂Ω|h , we get that, for h < h0 :=√
|Ω|

β|∂Ω| , ℓ must be negative. Thus, for each fixed ℓ, σℓ(h) increases when h decreases to zero.
In other words, because of the non-zero flux term, the corresponding semiclassical eigenvalues
hf1,q(σℓ(h), h

1
2 ) “move to the right” (in the sense of Figure 1) towards the Landau level µ1 = 1.

Let us now describe the semiclassical branches, i.e. the curves

(5.6) h 7→ hf1,q(σℓ(h), h
1
2 ), q = 1, 2, ℓ ∈ Z−.
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We may assume that the intervals Σ1,q satisfy Σ1,1 ⩽ Σ1,2. Recall from Proposition 1.1 (or
Figure 1) that there exists c > 0 such that µ′

1|Σ1,1
⩽ −c while µ′

1|Σ1,2
⩾ c. Hence, in view of

the semiclassical expansion of fk,q, and up to reducing c, we get

(5.7) f ′
1,1 ⩽ −c and f ′

1,2 ⩾ c

uniformly for h ⩽ h0 small enough. Thus, for each fixed admissible ℓ ∈ Z−, the branch (5.6)
generated by Σ1,1 (i.e. corresponding to q = 1) is an increasing curve, while the branch
corresponding to q = 2 is decreasing. Moreover, the semiclassical branches generated by Σ1,1

and associated with different integers ℓ1 ̸= ℓ2 will never cross as h varies, and their mutual
vertical distance is bounded below as

(5.8)
∣∣∣hf1,q(σℓ1(h), h 1

2 )− hf1,q(σℓ2(h), h
1
2 )
∣∣∣ ⩾ h

3
2
πc

L
.

Hence, in view of (5.7), we see that the horizontal distance between these curves is O(h2).
Of course, the same holds for the branches associated with Σ1,2, which thus form a collection
of disjoint decreasing curves. Therefore, the superposition of all branches is a deformed grid
intersected with the window (0, h0] × [ha, hb], see Figure 2. In particular, there are many
crossing points, and the horizontal distance between consecutive crossing points along a fixed
branch is O(h2).

Figure 2. Illustration of the collection of semiclassical branches of eigenvalues.
Here we plot the graphs of f1,q(σℓ(h), h) with respect to the variable ℏ =

√
h, for

q = 1 (blue curves) and q = 2 (red curves). The continuous curve of λj(h)/h,
for fixed j, where λj(h) is the exact eigenvalue of Lh, lies within the greyed
stair-case like curve (of vertical width O(h)).

Consider now the exact eigenvalues λj ∈ [ha, hb]. By Corollary 1.10, each λj must be
O(h2)-close to one of the semiclassical branches. For fixed ℓ ∈ Z−, modifying the value
of h by an amount of order O(h2) amounts to shifting the abscissa σℓ(h) by an amount
proportional to h

1
2 . Therefore, by suitably choosing C1 and setting h1 := h + C1h

2 we may
assume that λj(h1) corresponds to a unique increasing branch (parameterized by Σ1,1): when
h varies in an interval of size O(εh2) around h1, with ε > 0 small enough, there is a unique
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and fixed ℓ1 ∈ Z such that ∣∣∣λj(h)− hf1,1(σℓ1(h), h
1
2 )
∣∣∣ = O(h2) .

Next, we choose C2 > C1 so that with h2 := h + C2h
2, σℓ1(h2) is O(h3) close to the first

crossing on the right hand side of σℓ1(h1). The exponent 3 is not important, any exponent
N ⩾ 3 will work as well. We have∣∣∣λj(h2)− h2f1,1(σℓ1(h2), h

1
2
2 )
∣∣∣ = O(h2) .

and since
∣∣f ′

1,1

∣∣ ⩾ c, we obtain a constant C > 0 such that

λj(h2) ⩾ λj(h1) + Ch3/2 .

On the right hand side of the crossing, the integer ℓ1, and the increasing branch, do not
longer correspond to the eigenvalue λj (this branch will now correspond to λj+1). Instead, we
have to select the branch parameterized by Σ1,2, labelled by some ℓ2 ∈ Z−; then, as before,
with a suitable C3 > C2, we have, with h3 := h+ C3h

2∣∣∣λj(h3)− h3f1,2(σℓ2(h3), h
1
2
3 )
∣∣∣ = O(h2) ,

and hence, since the new branch is now decreasing,

λj(h3) ⩽ λj(h2)− Ch3/2 .

Note that, in the above analysis, the constants Cj depend on h, but in a uniform way:
they belong to a fixed compact interval contained in (0,+∞). The above estimates are then
uniform for h ⩽ h0 if h0 is chosen small enough.

We now turn to the last statement of the theorem. We choose h2 as before, but with more
precision: we can always select the exact crossing point h′ between the semiclassical branches,
i.e.:

h′f1,1(σℓ1(h
′), h′

1
2 ) = h′f1,2(σℓ2(h

′), h′
1
2 ) .

This gives
λj(h

′)− λj+1(h
′) = O(h2) .

Finally, for any value of h sufficiently far from the crossing, for instance h′′ = h1 or h3, the
vertical estimate (5.8) ensures that

λj+1(h
′′)− λj(h

′′) ⩾ Ch3/2 ,

for some C > 0, which finishes the proof of the theorem.
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Appendix A. A rough Weyl estimate

The aim of this section is recall why (1.3) holds. Thanks to the Young inequality, we have,
for all ψ ∈ H1(Ω) ,

Qh,A(ψ) ⩾
h2

2
∥∇ψ∥2 − 2∥A∥2∞∥ψ∥2 + γ h

3
2

∫
∂Ω

|ψ|2ds .

When γ ⩾ 0, we get that

Qh,A(ψ) ⩾
h2

2
∥∇ψ∥2 − 2∥A∥2∞∥ψ∥2 .
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When γ < 0, we use a classical trace theorem: there exists C > 0 such that, for all ε > 0,∫
∂Ω

|ψ|2ds ⩽ ε∥∇ψ∥2 + Cε−1∥ψ∥2 .

By choosing ε = −
√
h

4γ
> 0, we deduce that

Qh,A(ψ) ⩾
h2

4
∥∇ψ∥2 − 2∥A∥2∞∥ψ∥2 − 4γ2Ch∥ψ∥2 .

In both cases, there exists C̃ > 0 such that, for all h ∈ (0, 1) and all ψ ∈ H1(Ω),

Qh,A(ψ) ⩾
h2

4
∥∇ψ∥2 − C̃∥ψ∥2 .

With the min-max principle, this shows that, for all λ,

N(Lh, λ) ⩽ N

(
−∆Neu, 4

λ+ C̃

h2

)
.

The conclusion follows from the Weyl asymptotics for the Neumann Laplacian, which is the
same at the main order as in the Dirichlet case, see, for instance, [28, Introduction].

Appendix B. Spectral analysis of De Gennes operator

Lemma B.1. For each γ ∈ R, n ⩾ 2, we have

µn(γ, σ) > 2n− 3 .

In particular, we have
Θ[n−1](γ) > 2n− 3 .

Proof. From the Sturm–Liouville theory, u[γ,σ]n admits n − 1 zeros on R+ . We denote by
zn,1(γ, σ) its first zero. We consider the function

v[γ,σ]n (t) = u[γ,σ]n (t+ zn,1(γ, σ)) ,

which satisfies the Dirichlet condition at 0 and

HDir[σ − zn,1(γ, σ)]v
[γ,σ]
n = µn(γ, σ)v

[γ,σ]
n ,

where HDir[σ] is the Dirichlet realization of −∂2τ + (σ − τ)2 on L2(R+). The function v
[γ,σ]
n

has exactly n − 2 zeros on R+ . By the Sturm’s oscillation theorem, v[γ,σ]n is the (n − 1)-th
eigenfunction of HDir[σ − zn,1(γ, σ)] . Therefore we have

µn(γ, σ) = µDir
n−1(σ − zn,1(γ, σ)) .

Moreover, by monotonicity of the Dirichlet problem, for all σ ∈ R,

µDir
n−1(σ) > 2n− 3 .

□

The following proposition is obtained by adapting the proof of [23, Theorem II.2].

Proposition B.2. Let n ⩾ 1. If σ is a critical point of µn(γ, ·), we have

µn(γ, σ) = σ2 − γ2 .
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Lemma B.3. When γ ∈ R, we have the following relations

(B.1)
∫ +∞

0

(t− ξn−1(γ))|u[γ,ξn−1(γ)]
n (t)|2dt = 0 ,

(B.2)
∫ +∞

0

(t− ξn−1(γ))
3|u[γ,ξn−1(γ)]

n (t)|2dt = 1

6
[1 + 2γξn−1(γ)]u

[γ,ξn−1(γ)]
n (0) .

Proof. We let
u[γ]n = u[γ,ξn−1(γ)]

n .

Let us consider the differential operator:

L = −∂2t + (t− ξn−1(γ))
2 −Θ[n−1](γ) .

Note that for any polynomial p, we have:

(B.3) Lv =
(
p(3) − 4

[
(t− ξn−1(γ)

2 −Θ(γ)[n−1]
]
p′ − 4(t− ξn−1(γ))p

)
u[γ]n ,

and

(B.4)
∫ +∞

0

u[γ]n (t)(Lv)(t)dt =

∫ +∞

0

Lu[γ]n (t)v(t)dt+ (v′(0)− γv(0))u[γ]n (0),

for v = 2p[u
[γ]
n ]′ − p′u

[γ]
n . Taking p = 1, we get

−4

∫ +∞

0

(t− ξn−1(γ))
∣∣u[γ]n (t)

∣∣2 dt = 2
(
ξn−1(γ)

2 − γ2 −Θ[n−1](γ)
) ∣∣u[γ]n (0)

∣∣2 .
Recalling Proposition B.2, the above formula proves (B.1). To prove (B.2), we take p =
(t− ξn−1(γ))

2. Then, we have

v′(0)− γv(0) = −2 (2γξn−1(γ) + 1)u[γ]n (0) .

We get now from (B.3) and (B.4)

−12

∫ +∞

0

(t− ξn−1(γ))
3
∣∣u[γ]n (t)

∣∣2 dt = −2 (2γξn−1(γ) + 1) |u[γ]n (0)|2 .

□

Lemma B.4. We have

Cj(ξj−1(γ)) =
1

2

(
u
[γ]
j (0)

)2
−
∫ +∞

0

(t− ξj−1(γ))
3
(
u
[γ]
j (t)

)2
dt

=
1

3
(1− γξj−1(γ))

(
u
[γ]
j (0)

)2
,

where Cj is defined in (1.10).

Proof. We write
(σ − t)t2 + 2t(σ − t)2 = (t− σ)3 − σ2(t− σ) .

We take σ = ξj−1(γ). The conclusion follows from Lemma B.3. □

Proposition B.5. Let us fix j ⩾ 1. When γ ∈ R, there exists γ
[j−1]
0 > 0, such that,

Cj(ξj−1(γ)) is positive if γ < γ
[j−1]
0 and negative if γ > γ

[j−1]
0 .
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Proof. We notice that, for γ ⩽ 0, we get Cj(ξj−1(γ)) < 0.
Now, for γ > 0. From Proposition B.2, we can rewrite Cj(ξj−1(γ)) as

Cj(ξj−1(γ)) =
1

3

(
1− γ

√
γ2 +Θ[j−1](γ)

)(
u
[γ]
j (0)

)2
,

Since
(
u
[γ]
j (0)

)2
> 0, then, to study the sign of Cj(ξj−1(γ)) it is sufficient to study the sign

of the function f defined by f(γ) = 1− γ
√
γ2 +Θ[j−1](γ). We have

f ′(γ) = −
√
γ2 +Θ[j−1](γ)− γ

2

(
Θ[j−1](γ)

)′
+ 2γ√

γ2 +Θ[j−1](γ)
.

We can use [23, Section B] (which can be adapted to j ⩾ 1) to deduce that f ′(γ) < 0.
Therefore, f is increasing on [0,+∞[.

Let us notice now that f(0) = 1 and limγ→+∞ f(γ) = −∞. This establishes the existence
of a unique zero of f(γ), denoted by γ[j−1]

0 . □

Lemma B.6. Let α ∈ R and β ∈ N. Consider the interval [a, b]. We consider Πψ =

(⟨ψ, u[γ,σ]j ⟩)1⩽j⩽n, where n is the number of dispersion curves µj(γ, σ) taking values in [a, b]

(see the discussion at the beginning of Section 3.2). We consider K̂ a neighborhood of K̃.
There exists Cα,β > 0 such that for all z ∈ [a, b] and all σ ∈ K̂, the following holds. For all

v ∈ L2(R+) such that ⟨t⟩αv ∈ L2(R+), we have

∥⟨t⟩−α∂βσ (H[γ, σ]− z)−1(Π∗Π)⊥(⟨t⟩αv)∥ ⩽ Cα,β∥v∥ .

Proof. Let us only prove this estimate for β = 0. We consider z ∈ [a, b]. Let us consider
v ∈ S (R+) and let u be the unique solution to the equation

(B.5) (H[γ, σ]− z)u = (Π∗Π)⊥(⟨ϵt⟩αkv)

that is orthogonal to (u
[γ,σ]
j )1⩽j⩽n, with

⟨t⟩k =
(
1 + t2χ2

k

) 1
2 ,

where χk is a smooth non-negative function equal to 0 on [0, 1] and to 1 on [2k,+∞) and
such that |χ′

k| ⩽ k−1. In particular, the weight is 1 near 0. Here ϵ > 0 is a parameter to be
chosen small enough.

We have seen in Lemma 2.2 that(
H[γ, σ]− z Π∗

Π 0

)
: B2(R+)×Cn −→ L2(R+)×Cn

is bijective. Thus, the equation (B.5) is equivalent to(
H[γ, σ]− z Π∗

Π 0

)(
u
0

)
=

(
(Π∗Π)⊥(⟨ϵt⟩αkv)

0

)
.

Note that(
⟨ϵt⟩−α

k 0
0 1

)(
H[γ, σ]− z Π∗

Π 0

)(
⟨ϵt⟩αk 0
0 1

)
=

(
H[γ, σ] +Rϵ,k − z ⟨ϵt⟩−α

k Π∗

Π(·⟨ϵt⟩αk ) 0

)
,

where

Rϵ,k = −αϵ2(t2χ2
k)

′ 1

1 + ϵ2t2χ2
k

∂t −
(
ϵ2α

2

(t2χ2
k)

′′

1 + ϵ2t2χ2
k

+
(α
2
− 1
) ϵ4α

2

(t2χ2
k)

′2

(1 + ϵ2t2χ2
k)

2

)
.

With
u = ⟨ϵt⟩αk ũ ,
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we get

H [γ, σ, ϵ, k]

(
ũ
0

)
=

(
⟨ϵt⟩−α

k (Π∗Π)⊥(⟨ϵt⟩αkv)
0

)
,

with

H [γ, σ, ϵ, k] =

(
H[γ, σ] +Rϵ,k − z ⟨ϵt⟩−α

k Π∗

Π(·⟨ϵt⟩αk ) 0

)
.

Thanks to the exponential decay of the u[γ,σ]j (which is uniform for σ ∈ K̂), we notice that
H [γ, σ, ϵ, k] is bijective as soon as ϵ is small enough and k large enough. Moreover,

∥H [γ, σ, ϵ, k]−1∥ ⩽ C .

This implies that
∥ũ∥ ⩽ C∥⟨ϵt⟩−α

k (Π∗Π)⊥(⟨ϵt⟩αkv)∥ ,
and then (by using again the exponential decay of the eigenfunctions)

∥⟨ϵt⟩−α
k u∥ ⩽ C∥v∥ .

Taking the limit k → +∞, the Fatou lemma gives

∥⟨ϵt⟩−αu∥ ⩽ C∥v∥ .
This provides us with the desired estimate since ⟨ϵt⟩⟨t⟩−1 ∈ [ϵ, 1]. □
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