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APPENDIX
PROOFS OF PROPOSITIONS 1 (P. 4) AND 2 (P. 4)

In this section, the proofs of propositions 1 and 2 are given. They were previously demonstrated in [18].
Proof of proposition 1: &5 is a dilation (def. 1) because as the addition A preserves the order < [16], we have
Vf,.g€ Fu, Ve €D,

5 (f V 9)(x) = Vien {[(f V 9)(x — h)] A b(h)}

= Viwep {[f(x —h) Ab(R)]V [g(x — h) A b(h)]}

= [Vaep {f(z —h) Ab(h)}] V [Vhep {g(z — h) Ab(h)}]

=6 () (@) V65 (9) ().

For the least element O of F;;, we have Vz € D:
54 (0)(x) = 65" (f=s0) () = Vhep{(—oo(x — h) Ab(h))}

= Vhep{—0o(1 = b(h)/M) +b(h)} = —c0
= O(x).

Similarly, £ is an erosion because we have Vf, g € Far, > (f A g) = e (f) Aei(g) and e (I) = e (fur) = M = 1.

Finally, the pair (¢{*, 62) is an adjunction because, Vf, g € F s, we have:

55 (f) < g & Vo e D, Viep{f(x—h) Ab(h)} < g(x)
Ve, he D, f(x—h) Ab(h) < g(x)
©Vy,heD, f(y) <gly+h)Abh)
<= Vye D, f(y) < Anep{g(y+h) Abh)}
& f<ep(g).
O

_ Proof of proposition 2: The logarithmic-erosion 5 and dilation 65 are dual by their negative function because for
be Fy wehave,Vf,ge Fy, Ve e D,

(65 (f*)*(2) = A(Vhep{Af(z — h) A b(h)})
= Anep{f(z —h) Ab(h)}
= Anep{f(z +h) Ab(h)}
=&; (f)(2).
Similarly, we have (5> (f*))* = 62 (f). 0

PROOF OF PROPOSITION 3 (P. 5)
In this section, the proof of proposition 3 is given. It was previously demonstrated in [18]. The dilation d; and the erosion

£, are mappings of the lattice R, whereas the logarithmic-dilation 6 and erosion e;* are mappings of the lattice F .

In order to link these operations, a bijective mappin% (i.e. an isomorphism) is needed between these two lattices. Such an
isomorphism & : Fpr — R” and its inverse £ : R — F 1 were both defined in [44] by £(f) = —MIn (1 — f/M) and
§7(f) = M(1 - exp (= f/M)).

We also need to demonstrate the following lemma.
Lemma 1. Let f,g € Fr be two functions. The isomorphism & transforms the LIP-sum A and the LIP-difference A between
functions into the usual sum + and difference —, respectively. We have
§(f & g) =E(f) +E€(9), (A1)
§(f A 9) =E(f) = €9)- (A2)



Proof of lemma 1: Let f,g € F s be two functions. There is:

§fhg)=—-Mn(1—(fAg)/M)
=-MIn((1- f/M)(1~g/M))
=—MIn(1—f/M)—MIn(1—g/M)
=£(f) +&(9),

£(Ag)=—-Mn(1+g/(M —g))=-Mn(M/(M - g))
=Mln(1-g/M)=—£(9),
£(A

§(fAg)=E(fA(Ag) =E(f) +E(Ag) =&£(f) — £(9)-

U
We can now establish the proof of proposition 3.
Proof of proposition 3: Let f be a function and b a structuring function of F . Let f : D — R be a function equal
to f = —1In(1— f/M). As increasing bijections, the isomorphisms ¢ and {1 distribute over infima and suprema. The
dilation §2 can therefore be expressed for all # € D by:

5 (f) (@) = & 0 &[Vhen {f(x — h) Ab(h)
=& [Vaen{&lf(x — h) Ab(h)]}
=& Vhep{&[f(x — R)] + £[b(A)]}] (A3)
=& [Bey[€0)]]

1
]

From (A.3), we have:

M[1 o Vien{~Mn[1- L] Mln[l_%]}}
M [1 _ o7t Vaen{M (= [1- L&z ]I [1,%])}}
:M[1 o Vien{—In[1- 1M ln[17%]}:|
M [1 _ e—vheu{f'(z—h)%(h)}}

M [1 _ e—és(f')(x)} .

Similarly, we have ,
2 (f) =€ [eem €(f))] = M1 —e=5)],
This ends the proof. .

PROOF OF PROPOSITION 4 (P. 6)
Proof of proposition 4: From (15), we have Vz € D:

c1, (f)(@) = V{f(z+h) Ab(h),h € Dy}
=V{f(x—h) Ab(=h),—h € Dy}
=V {f(z—h) A (Ab(h)),h € Dg}
:(ﬁ\g( )( ).

By comparing (8) with (16), we have for all x € D:

e, (f) () = e (f) ().
From (14), we deduce that Aspy>(f) = 5§E(f) A el (f). O

MAP OF ASPLUND DISTANCES: LINK BETWEEN DOUBLE PROBING AND LOGARITHMIC-OPENING AND CLOS-
ING

Let us study the location of the supremum or infimum of the translated probes b € Fj; such that they are in contact
with the function f from below or from above, respectively. In a similar way to that used by Heijmans et al. in [1], the
mapping 75, of horizontal and vertical translations on F; is defined by (74, (f))(z) = f(z — h) A v, where h € D
and v € |—o0, M]. For the lower probes, the supremum of the translated probes b which are in contact with the function
f from below is the supremum of the translated probes 7y, ,(b) which are less or equal to the function f. It is equal to
P& (f) = sup {7h.,(b) | h € D,v € ]—00, M|, Th,(b) < f}. As demonstrated in [2], T2 (f) is an opening.
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Fig. 1. (a) An image f is analysed by a probe b from above and below. (b) The mlub c1, (f), the mglb c2, (f) and the map of Asplund distances
Asp®(f) between the i |mage and the probe. (c) The supremum of the probe b such that the probe is in contact with the function f from below is
the logarithmic- opemng 7b of the function £. (d) The infimum of the probe b such that the probe is in contact with the function f from above is the
logarithmic-closing @A (f) of the function f by the structuring function Ab.

Similarly, for the upper probes, the infimum of the translated probes b which are in contact with the function f from
above is equal to ®2(f) = inf {7, ,(b) | h € D,v € ]—00, M|, 75,.,(b) > f}. As demonstrated in [2], ®2(f) is a closing.

Proposition A.1. The supremum of the translated probes b which are in contact with the function f from below, T'&(f), is equal to
the logarithmic-opening of f, V&> (f):

L (F)(@) = 7" ()(2). (A4)

The infimum of the translated probes b which are in contact with the function f from above, ®£(f), is equal to the logarithmic-
closing of f, 55 (f):

o5 (f)(2) = ¢a5(f)(@). (A5)

Fig. 1c and 1d illustrate the supremum or infimum of the translated probes b which are in contact with the function f
from below or from above, respectively. In Fig. 1c, one can notice that the opening v (f) of f is very close the image f.
In Fig. 1d, the closing cpﬁl—)( f) of fis similar to the image f with the exception of both valleys of f, where the structuring
function f is very dissimilar to f.

Proof of proposition A.1:

Let f and b be a function and a probe of F ), respectively. For h € D and v € —|oo, M|, the mapping 7}, of horizontal
and vertical translations on F y; is defined by (75, (f))(x) = f(z — h) & v. The supremum of the translated probes b which
are in contact with the function f from below is equal to:

L3 (£)(x) = sup {7,0(b) () | h € D, v € ]—00, M[, 7, (b) < f}
=sup{b(z —h) Av|h € D,ve]—oo,M[,2' € D, b(z' —h) Av< f(z)}
= Vien{be — 1) & v(h) | o(h) = sup {v.0(s' ) A0 < S
<

= Vaep{b(x —h) Av(h) [v(h) = sup {v,b(z") Av < f(h+2')}}

)
= Vhep{b(x — h) Acy, f(h)} (from (16))
= Vpep{blz — h) A 51,‘%‘( f)(h)} (from Prop. 4)
= Vihen{es (f)(h) &bz — h)}
- VheD{Eb (f)(x = h) Ab(h)}
5b gy (f)(x) (from (7))
=7 (f)(z). (from (9))

(
(



Such a relation is an opening one.
The infimum of the translated probes b which are in contact with the function f from above is equal to:

5 (f) (@) = inf {0 (b)(w) | h € D,v € ]—00, M[, 74 (b) > f}
=inf{b(x —h) Av|h € D,v€]—oc0,M[,2" € D, b(a’ —h) Av> f(z')}
= Nuep, (b — ) Avh) [v(h) = jnf {u,b(a’ — ) A v> [()})
(@—h)Avh) |o(h) = inf {v,b(h) &v=>fl"+h)}}
= Anep, {b(x —h) A c1, f(h)}  (from (15))
= Anep,{b(z — h) A 6’$ ;(f)(h)}  (from Prop. 4)
= Mnen, {055 (f)(R) Ab(x — h)}
= Mnep, {055(f) (@ — h) Ab(h)}
= A-nen, {625(F) (@ + h) Ab(=h)}
= Aneny {025() (@ + h) A (Ab(h)}
= enidap(H(@)  (from (8))
= ‘pgb(f)(x) (from (10)).

Such a relation is a closing one. O

= Anep, {b(x —h

PROOFS OF EQUATIONS (20) AND (21) (P. 7)

Proof of equation 20: Let By a flat structuring element with the same support Dy, as the symmetric and constant struc-
turing element by. by : D — R is defined for all z € Dy, where Dy, C D, by
bo(x) = by and by(—x) = bo(x). For all x € D, we have:

Asppy (f) (@) = 655 (F)(@) A efo () (@)
= Vhep;, {f(z—h) A (Ab)} A Anepy, {f(x +h) Abo}

= (Vneny, {F(@ = R)} Abo) A (Anepy, {f(@+h)} & bo)
= Vienu, {F(@ = h)} A Anep,, {f(x+ )}
= 35, (F) (@) A e, (f) (@)
= o5, ()(@).
O

Proof of equation 21: Let Y C D be a constant (i.e. flat) zone of a function f and let X =Y © D, be the eroded flat
zone by the domain Dy, of the structuring function b. © represents the binary erosion [3], [4]. We have, for all z € X:

Aspy (f)(x) = c1, f(x) A cg, f(2)
= Vhep, {f(x+h) Ab(h)} A Awep, {f(x+h) Ab(h)}
= (f(z) A Vhep, {b(R)}) A (f(z) A Anep, {b(R)})
= A Vpep, {b(h)} & Apep, {b(h)}
= Anep, {b(h)} A Vrep, {b(h)}
= bsup A biny.

bsup and b;y, ¢ are the supremum and the infimum, respectively, of the structuring element b. In the eroded flat zone X, the
Asplund metric is therefore equal to the constant by, A bir ¢. O

PROOFS OF PROPERTIES 1 (P. 9) AND 2 (P. 9)

Proof of property 1: Let f € F s be a function and &', b" 6 F ur be structuring functions. From (8), we have Vz € D,
Anep, {f(x+ h) Abl(R)} = &2 (f)(z) and from (19), ca, (f) = i (f). From (25), we deduce that:

E®M, f)(@) = Anep, {f(z +h) AV (h)} A e, (f) (@)
= e (f)(2) & i (f)(@).
In a similar way, we have E(b", f)(z) = et (f)(z) A e2(f)(2). O



Proof of property 2: From (8), we have V¢ € |—oo, M| and Vx € D:
ey (f & 0)(@) = Mnep, {(f & ) (@ + ) Ab(h)}
= Anep, {f(z +h) AcAbh)}
e /\heDb{f(x + h) A b(h)} Ac
=& (@) Ac (A.6)
From (28), one deduces that:
B, fbc)=ep(fbo)bep(fho)
= () Ae) A (e (f) o)
e (f) Aep(f)dche
=ep(f) Aep(f)
= E@, /).
In a similar way, we obtained E(b", f A ¢) = E(b", f). As a result, from (27), we have E(b, f A ¢) = E(b, f). O

PROOF OF PROPERTY 3 (P. 10)

Proof of property 3: Let f € F s be a function and b, b, € F s be structuring functions. Similarly as in (A.6), we have
Ve € |—o0, M| and Vx € D:

5 (f & ) (@) = Vaep, {(f & ¢)(z — h) A b(h)}
=Vhen, {f(z —h) AcAbh)}
= Vihen, {f(z —h) Ab(h)} Ac
=38y (f)(x) Ac (A7)

From (9), (A.6) and (A.7), we have V¢ € |—oco, M| :

b
= () Ac (A8)
From (30), one deduces V¢ € |—o0, M| that:
Gr(fA) =2 (fAc) A (fAQ

A
b
A

=%
A
b
A
b

PROOF OF PROPERTY 4 (P. 11)

Proof of property 4: Let f € F s be a function and b, b, € F ), be structuring functions. From (32) and (A.8), we have
Ve € |—o0, M|:

RE(fA)=[fAdANE(fAC
= faca () ad
=fAcArE(f)Ac
= FA%(S)
= RE(f).



PROOF OF PROPOSITION 5 (P. 11)

Proof of proposition 5: First of all, let us remind the definition of the LIP-additive Asplund metric with tolerance
which was introduced in [5].

Definition A.1 (LIP-additive Asplund metric with tolerance). Let (1 — p) be a percentage of points of D to be discarded and D’
the set of these discarded points. The LIP-additive Asplund metric with tolerance between two functions f and g € Fyy is defined by:

asp,p(f7 ) Cl,p A C2.p- (A9)

The constants cy , and ca p, are equal to:

: A
c1,p = inf{e,Vz € D7FY(f\D\D’7g\D\D’)(l‘) < c},
A
c2,p =sup{c,Vz € D,c < v(f‘D\D“ng\D,)(x)}.

A percentage (1 — p)/2 of the points x € D with the greatest, respectively lowest contrast values fy(Af’g) () = f(z) A g(x) are
discarded.

Remark A.1. In practice, for a function f : D — |oo, M| defined on a discrete grid D, e.g. D C Z", the number of points to
be suppressed are selected as follows. Let #D be the cardinal of D. The number of points 74, to be suppressed is equal
to Nguppr = round|(1 — p)#D], where round is the rounding operator of any real number to its nearest integer. For the
constant ¢y, and ¢y p, the number of points to be suppressed are respectively equal to:

ny = round(Nsyppr/2), (A.10)

N2 = Nsuppr — N1, (All)

Let us now recall the rank filter definitions. Let (3 1. : R” — R” be the erosion-rank filter of rank & by the structuring
function b. Let ¥, i be the dilation-rank filter of rank £ by the structuring function b. Both operations are defined by:

k
Co(f) (2 z/\{fx—i—h —b(h),h € Dy}, (A.12)

D1 ( \/{f T — (h),h € Dy}. (A.13)

The LIP-erosion-rank filter Cl’f‘k : ?11\34 —Fy u and the LIP-dilation-rank filter 19&7&,\1@ are defined as follows:

k
G (f)(@ :/\{f (x4 h) Ab(h),h € Dy}, (A.14)

\/{f x —h) Ab(h),h € Dy}. (A.15)
The map of LIP-additive Asplund distances with tolerance (to noise extrema) is defined as follows.

Definition A.2 (Map of LIP-additive Asplund distances with tolerance [5]). Let f € Far be a grey-level image and b : Dy —
]—00, M| a probe. Let (1 — p) be a percentage of points of Dy, to be discarded. The map of Asplund distances Aspi> : Far — Fur
with a tolerance (to extrema) p is defined by:

Aspp,(f) (@) = disy, (fiDy @)+ b)- (A.16)

For each point z € D, the distance dagp( JiDy(x) > b) is computed in the neighbourhood Dy(z) centred in z and the
template b is acting like a structuring function. fip, (, is the restriction of f to Dy (). Aspb%p( f) : D — Fy is the map of
Asplund distances between the image f and the probe b.

In order to establish the link with MM, we will express the map of Asplund distances with neighbourhood operations.
From Eq. A.9, for each z € D, the map expression becomes

dlﬁp,p(f\Db(fL’) s b) = clb;p(f)(x) A c2b;p(f)(x)’
where
p @) =i e VB Dy A, ) <o)

cap(f)(@) =sup{e,Vh € Dy, e < vé\Db(T)\DL(m)’b|Db\D{,(w))(h)}'

This leads to the following definition.

Definition A.3 (LIP-additive maps of the least upper and of the greatest lower bounds with tolerance). Let f € Fj; be a
function and b : Dy — Joo, M| a probe. For any x € D, let (1 — p) be a percentage of points of the neighbourhood Dy(z) to be



discarded and Dj(x) the set of these discarded points. The map of the least upper bounds (mlub) c1, ,, : Fpg — Far and the map of
the greatest lower bounds (mglb) ca, , © Far — F o, of f by b are defined, for any x € D, by:

clbyP(f)(x) = lnf {C, Vh € Db7 rY(Af\Dh(I)\Dé(z)7b\Db\D£(I))(h’) S C} ) (A17)

c2.p(f)(w) = sup {C’ Vhe Dy, c< 7(&fwb(as)\D{,(ac)”’uab\EhL(:c))(h)} : (A.18)

The number of points to be suppressed n; and no for the mlub ¢, , and for the mglb ¢y, , are equal to n; =
round(Nsuppr/2), and no = Ngyppr — N1, respectively, where ngyppr = round[(1 — p)#Dy] and Dy is the cardinal of

#Dy,.
From (A.17), one deduces, for any « € D, that:

(D) =V {5 . he Dy}

(f1 Dy @)\ D} ()01 Dy \ D} (=)

= <7 {W(Efmmwb)(h)’ he Db}

:@{f(erh)Ab(h)ahEDb}

ni

=\/{f(—h) Ab(—h),—h € Dy}

_\/ {fw — ) & (8B(w), h € Dy)
= ﬂﬁam (f)(x) (from (A.13)).

Similarly, from (A.18), one deduces, for any = € D, that:

_ A
e p(f)(@) = /\ {V(f\Dbm\Dg(w)vleb\Dguﬂ(h)’ he Db}

= N\ {f(z+h) Ab(h),h € Dy}
= le%m (f)(x) (from (A.12)).
As a consequence, the following proposition holds.

Proposition A.2 (i.e. proposition 5 (p. 8)). Let f € F s be a function defined on a discrete grid, e.g. D C Z™. Let b € Fpr be a
structuring function, where for all x € Dy, Dy, C D, b(x) > —oo. Let (1 — p) be a percentage of points of Dy, to be discarded. The
map of LIP-additive Asplund distances with a tolerance p between the function f and the structuring function b is equal to:

Asp,(F) =045, (D) A G, (F). (A19)

The number of points to be suppressed ny and ny for the mlub ﬁ’ﬁb . and for the mglb Cb , are equal to ny = round(Nuppr/2),

and Ny = Ngyppr — N1, respectively, where Ngyppr = round[(1 — )#Db] and #Dy, is the cardinal of Dy,. For the mlub and the
mglb of f, c1, p(f) and ca, p(f), we have:

c1,p(f) = 925, ()5 (A.20)
C2,p(f) = (i, (). (A.21)
0

PROOF OF PROPERTY 5 (P. 16)
Proof of property 5:
Let f € F s be a function and b, by, blg, by by € Fur be structuring functions.
From (A.14), we have Vc € |—o0, M| and Vx eD:

G (f Ac)(x) = Akep, {(f A c)(x +h) Ab(h)}
= Nrepy {f(z+h) AcAb(h)}
= Nrep {f(z+h) Abh)} Ac
= () Ac (A22)



From (A.6), (A.22) and knowing that the LIP-addition of a constant Ac preserves the order <, one deduces that:

tun(f0)= N{ ek (Fac) NG f A0, A}
=Nt ae AN aedanad)
=N{ehhae Al aGanlac)
=N, NG GaD) o

From (34), (A.22) and (A.23), we have:
E* (b, f & c) =Gy (o (f A ) Ay, i(f A o)
= Czi,k ) AcAlen, (f)Ac]
= ¢ () At a(f)
= B (by. f).

—~~

Similarly, from (35), we have:
E* (b, f & ¢) = B* (b, ).
From (36), (A.24) and (A.25), we have:
E*(bg, f &) = \[{E*(0), | & c), E* (b, f &)}
=/ {E" (b, 1), B* (0, 1)}
= E*(bs, f)
As a consequence from (37), we have:
EF(b, f &)= N\N{E*(bo, f A c) |6 €O}
= N {E*(be. /)| 0 € 0}
= E*(0b, f).
Finally, from (38), we have :
ex(fAe)= N{E"(bi, fAc)|ie]l...I]}
= N\{E"(bs. f) li€[1... 1]}
= ey (f)-
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