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APPENDIX

PROOFS OF PROPOSITIONS 1 (P. 4) AND 2 (P. 4)
In this section, the proofs of propositions 1 and 2 are given. They were previously demonstrated in [18].

Proof of proposition 1: δ△+b is a dilation (def. 1) because as the addition △+ preserves the order ≤ [16], we have
∀f, g ∈ FM , ∀x ∈ D,

δ△
+

b (f ∨ g)(x) = ∨h∈D {[(f ∨ g)(x− h)]△+ b(h)}
= ∨h∈D {[f(x− h)△+ b(h)] ∨ [g(x− h)△+ b(h)]}
= [∨h∈D {f(x− h)△+ b(h)}] ∨ [∨h∈D {g(x− h)△+ b(h)}]
= δ△

+

b (f)(x) ∨ δ△
+

b (g)(x).

For the least element O of FM , we have ∀x ∈ D:

δ△
+

b (O)(x) = δ△
+

b (f−∞)(x) = ∨h∈D{(−∞(x− h)△+ b(h))}
= ∨h∈D{−∞(1− b(h)/M) + b(h)} = −∞
= O(x).

Similarly, ε△+b is an erosion because we have ∀f, g ∈ FM , ε△+b (f ∧ g) = ε△+b (f) ∧ ε△+b (g) and ε△+b (I) = ε△+b (fM ) = M = I.
Finally, the pair (ε△+b , δ△+b ) is an adjunction because, ∀f, g ∈ FM , we have:

δ△
+

b (f) ≤ g ⇔ ∀x ∈ D, ∨h∈D{f(x− h)△+ b(h)} ≤ g(x)

⇔ ∀x, h ∈ D, f(x− h)△+ b(h) ≤ g(x)

⇔ ∀y, h ∈ D, f(y) ≤ g(y + h)△− b(h)

⇔ ∀y ∈ D, f(y) ≤ ∧h∈D{g(y + h)△− b(h)}
⇔ f ≤ ε△

+

b (g).

Proof of proposition 2: The logarithmic-erosion ε△+b and dilation δ△+b are dual by their negative function because for
b ∈ FM we have, ∀f, g ∈ FM , ∀x ∈ D,

(δ△
+

b (f∗))∗(x) = △− (∨h∈D{△− f(x− h)△+ b(h)})
= ∧h∈D{f(x− h)△− b(h)}
= ∧h∈D{f(x+ h)△− b(h)}
= ε△

+

b
(f)(x).

Similarly, we have (ε△+b (f∗))∗ = δ△+
b
(f).

PROOF OF PROPOSITION 3 (P. 5)
In this section, the proof of proposition 3 is given. It was previously demonstrated in [18]. The dilation δb and the erosion
εb are mappings of the lattice RD

, whereas the logarithmic-dilation δ△+b and erosion ε△+b are mappings of the lattice FM .
In order to link these operations, a bijective mapping (i.e. an isomorphism) is needed between these two lattices. Such an
isomorphism ξ : FM → RD

and its inverse ξ−1 : RD → FM were both defined in [44] by ξ(f) = −M ln (1− f/M) and
ξ−1(f) = M(1− exp (−f/M)).

We also need to demonstrate the following lemma.

Lemma 1. Let f, g ∈ FM be two functions. The isomorphism ξ transforms the LIP-sum △+ and the LIP-difference △− between
functions into the usual sum + and difference −, respectively. We have

ξ(f △+ g) = ξ(f) + ξ(g), (A.1)
ξ(f △− g) = ξ(f)− ξ(g). (A.2)
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Proof of lemma 1: Let f, g ∈ FM be two functions. There is:

ξ(f △+ g) = −M ln (1− (f △+ g)/M)

= −M ln ((1− f/M)(1− g/M))

= −M ln (1− f/M)−M ln (1− g/M)

= ξ(f) + ξ(g),

ξ(△− g) = −M ln (1 + g/(M − g)) = −M ln (M/(M − g))

= M ln (1− g/M) = −ξ(g),

ξ(f △− g) = ξ(f △+ (△− g)) = ξ(f) + ξ(△− g) = ξ(f)− ξ(g).

We can now establish the proof of proposition 3.
Proof of proposition 3: Let f be a function and b a structuring function of FM . Let f́ : D → R be a function equal

to f́ = − ln (1− f/M). As increasing bijections, the isomorphisms ξ and ξ−1 distribute over infima and suprema. The
dilation δ△+b can therefore be expressed for all x ∈ D by:

δ△
+

b (f)(x) = ξ−1 ◦ ξ[∨h∈D {f(x− h)△+ b(h)}]
= ξ−1 [∨h∈D{ξ[f(x− h)△+ b(h)]}]
= ξ−1 [∨h∈D{ξ[f(x− h)] + ξ[b(h)]}] (A.3)
= ξ−1

[
δξ(b)[ξ(f)]

]
From (A.3), we have:

δ△
+

b (f)(x) = M
[
1− e

−1
M ∨h∈D{−M ln [1− f(x−h)

M ]−M ln [1− b(h)
M ]}

]
= M

[
1− e

−1
M ∨h∈D{M(− ln [1− f(x−h)

M ]−ln [1− b(h)
M ])}

]
= M

[
1− e

−M
M ∨h∈D{− ln [1− f(x−h)

M ]−ln [1− b(h)
M ]}

]
= M

[
1− e−∨h∈D{f́(x−h)+b́(h)}

]
= M

[
1− e−δb́(f́)(x)

]
.

Similarly, we have
ε△

+

b (f) = ξ−1
[
εξ(b)[ξ(f)]

]
= M [1− e−εb́(f́)].

This ends the proof.

PROOF OF PROPOSITION 4 (P. 6)
Proof of proposition 4: From (15), we have ∀x ∈ D:

c1b(f)(x) = ∨{f(x+ h)△− b(h), h ∈ Db}
= ∨{f(x− h)△− b(−h),−h ∈ Db}
= ∨

{
f(x− h)△+ (△− b(h)), h ∈ Db

}
= δ△

+

△− b
(f)(x).

By comparing (8) with (16), we have for all x ∈ D:

c2b(f)(x) = ε△
+

b (f)(x).

From (14), we deduce that Asp△+b (f) = δ△+△− b
(f)△− ε△+b (f).

MAP OF ASPLUND DISTANCES: LINK BETWEEN DOUBLE PROBING AND LOGARITHMIC-OPENING AND CLOS-
ING

Let us study the location of the supremum or infimum of the translated probes b ∈ FM such that they are in contact
with the function f from below or from above, respectively. In a similar way to that used by Heijmans et al. in [1], the
mapping τh,v of horizontal and vertical translations on FM is defined by (τh,v(f))(x) = f(x − h) △+ v, where h ∈ D
and v ∈ ]−∞,M [ . For the lower probes, the supremum of the translated probes b which are in contact with the function
f from below is the supremum of the translated probes τh,v(b) which are less or equal to the function f . It is equal to
Γ△+
b (f) = sup {τh,v(b) | h ∈ D, v ∈ ]−∞,M [ , τh,v(b) ≤ f}. As demonstrated in [2], Γ△+

b (f) is an opening.
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Fig. 1. (a) An image f is analysed by a probe b from above and below. (b) The mlub c1b (f), the mglb c2b (f) and the map of Asplund distances
Asp△+b (f) between the image and the probe. (c) The supremum of the probe b such that the probe is in contact with the function f from below is
the logarithmic-opening γ△+

b of the function f . (d) The infimum of the probe b such that the probe is in contact with the function f from above is the
logarithmic-closing φ△+

△− b̄
(f) of the function f by the structuring function △− b̄.

Similarly, for the upper probes, the infimum of the translated probes b which are in contact with the function f from
above is equal to Φ△+

b (f) = inf {τh,v(b) | h ∈ D, v ∈ ]−∞,M [ , τh,v(b) ≥ f}. As demonstrated in [2], Φ△+
b (f) is a closing.

Proposition A.1. The supremum of the translated probes b which are in contact with the function f from below, Γ△+
b (f), is equal to

the logarithmic-opening of f , γ△+
b (f):

Γ△+
b (f)(x) = γ△+

b (f)(x). (A.4)

The infimum of the translated probes b which are in contact with the function f from above, Φ△+
b (f), is equal to the logarithmic-

closing of f , φ△+
△− b̄

(f):

Φ△+
b (f)(x) = φ△+

△− b̄(f)(x). (A.5)

Fig. 1c and 1d illustrate the supremum or infimum of the translated probes b which are in contact with the function f
from below or from above, respectively. In Fig. 1c, one can notice that the opening γ△+

b (f) of f is very close the image f .
In Fig. 1d, the closing φ△+

△− b̄
(f) of f is similar to the image f with the exception of both valleys of f , where the structuring

function f is very dissimilar to f .
Proof of proposition A.1:

Let f and b be a function and a probe of FM , respectively. For h ∈ D and v ∈ −]∞,M [ , the mapping τh,v of horizontal
and vertical translations on FM is defined by (τh,v(f))(x) = f(x−h)△+ v. The supremum of the translated probes b which
are in contact with the function f from below is equal to:

Γ△+
b (f)(x) = sup {τh,v(b)(x) | h ∈ D, v ∈ ]−∞,M [ , τh,v(b) ≤ f}

= sup {b(x− h)△+ v | h ∈ D, v ∈ ]−∞,M [ , x′ ∈ D, b(x′ − h)△+ v ≤ f(x′)}
= ∨h∈D{b(x− h)△+ v(h) | v(h) = sup

x′∈D
{v, b(x′ − h)△+ v ≤ f(x′)}}

= ∨h∈D{b(x− h)△+ v(h) | v(h) = sup
x′∈D

{v, b(x′)△+ v ≤ f(h+ x′)}}

= ∨h∈D{b(x− h)△+ c2bf(h)} (from (16))
= ∨h∈D{b(x− h)△+ ε△

+

b (f)(h)} (from Prop. 4)
= ∨h∈D{ε△+b (f)(h)△+ b(x− h)}
= ∨h∈D{ε△+b (f)(x− h)△+ b(h)}
= δ△

+

b ε△
+

b (f)(x) (from (7))
= γ△+

b (f)(x). (from (9))



4

Such a relation is an opening one.
The infimum of the translated probes b which are in contact with the function f from above is equal to:

Φ△+
b (f)(x) = inf {τh,v(b)(x) | h ∈ D, v ∈ ]−∞,M [ , τh,v(b) ≥ f}

= inf {b(x− h)△+ v | h ∈ D, v ∈ ]−∞,M [ , x′ ∈ D, b(x′ − h)△+ v ≥ f(x′)}
= ∧h∈Db

{b(x− h)△+ v(h) | v(h) = inf
x′∈Db

{v, b(x′ − h)△+ v ≥ f(x′)}}

= ∧h∈Db
{b(x− h)△+ v(h) | v(h) = inf

x′∈Db

{v, b(h)△+ v ≥ f(x′ + h)}}

= ∧h∈Db
{b(x− h)△+ c1bf(h)} (from (15))

= ∧h∈Db
{b(x− h)△+ δ△

+

△− b
(f)(h)} (from Prop. 4)

= ∧h∈Db
{δ△+△− b

(f)(h)△+ b(x− h)}
= ∧h∈Db

{δ△+△− b
(f)(x− h)△+ b(h)}

= ∧−h∈Db
{δ△+△− b

(f)(x+ h)△+ b(−h)}
= ∧h∈Db̄

{δ△+△− b
(f)(x+ h)△− (△− b̄(h))}

= ε△
+

△− b̄δ
△+
△− b̄(f)(x) (from (8))

= φ△+
△− b̄(f)(x) (from (10)).

Such a relation is a closing one.

PROOFS OF EQUATIONS (20) AND (21) (P. 7)
Proof of equation 20: Let B0 a flat structuring element with the same support Db0 as the symmetric and constant struc-

turing element b0. b0 : D → R is defined for all x ∈ Db0 , where Db0 ⊂ D, by
b0(x) = b0 and b0(−x) = b0(x). For all x ∈ D, we have:

Asp△
+

b0(f)(x) = δ△
+

△− b0
(f)(x)△− ε△

+

b0(f)(x)

= ∨h∈Db0

{
f(x− h)△+ (△− b0)

}
△− ∧h∈Db0

{f(x+ h)△− b0}

=
(
∨h∈Db0

{f(x− h)} △− b0
)
△−

(
∧h∈Db0

{f(x+ h)} △− b0
)

= ∨h∈Db0
{f(x− h)} △− ∧h∈Db0

{f(x+ h)}
= δB0

(f)(x)△− εB0
(f)(x)

= ϱLIP
B0

(f)(x).

Proof of equation 21: Let Y ⊂ D be a constant (i.e. flat) zone of a function f and let X = Y ⊖Db be the eroded flat
zone by the domain Db of the structuring function b. ⊖ represents the binary erosion [3], [4]. We have, for all x ∈ X :

Asp△
+

b (f)(x) = c1bf(x)△− c2bf(x)

= ∨h∈Db
{f(x+ h)△− b(h)} △− ∧h∈Db

{f(x+ h)△− b(h)}
= (f(x)△− ∨h∈Db

{b(h)})△− (f(x)△− ∧h∈Db
{b(h)})

= △− ∨h∈Db
{b(h)} △+ ∧h∈Db

{b(h)}
= ∧h∈Db

{b(h)} △− ∨h∈Db
{b(h)}

= bsup △− binf .

bsup and binf are the supremum and the infimum, respectively, of the structuring element b. In the eroded flat zone X , the
Asplund metric is therefore equal to the constant bsup △− binf .

PROOFS OF PROPERTIES 1 (P. 9) AND 2 (P. 9)
Proof of property 1: Let f ∈ FM be a function and bl, br ∈ FM be structuring functions. From (8), we have ∀x ∈ D,

∧h∈Db
{f(x+ h)△− bl(h)} = ε△+bl (f)(x) and from (19), c2b(f) = ε△+b (f). From (25), we deduce that:

E(bl, f)(x) = ∧h∈Db
{f(x+ h)△− bl(h)} △− c2b(f)(x)

= ε△
+

bl (f)(x)△− ε△
+

b (f)(x).

In a similar way, we have E(br, f)(x) = ε△+br (f)(x)△− ε△+b (f)(x).
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Proof of property 2: From (8), we have ∀c ∈ ]−∞,M [ and ∀x ∈ D:

ε△
+

b (f △+ c)(x) = ∧h∈Db
{(f △+ c)(x+ h)△− b(h)}

= ∧h∈Db
{f(x+ h)△+ c△− b(h)}

= ∧h∈Db
{f(x+ h)△− b(h)} △+ c

= ε△
+

b (f)(x)△+ c. (A.6)

From (28), one deduces that:

E(bl, f △+ c) = ε△
+

bl (f △+ c)△− ε△
+

b (f △+ c)

= (ε△
+

bl (f)△+ c)△− (ε△
+

b (f)△+ c)

= ε△
+

bl (f)△− ε△
+

b (f)△+ c△− c

= ε△
+

bl (f)△− ε△
+

b (f)

= E(bl, f).

In a similar way, we obtained E(br, f △+ c) = E(br, f). As a result, from (27), we have E(b, f △+ c) = E(b, f).

PROOF OF PROPERTY 3 (P. 10)
Proof of property 3: Let f ∈ FM be a function and b, br ∈ FM be structuring functions. Similarly as in (A.6), we have

∀c ∈ ]−∞,M [ and ∀x ∈ D:

δ△
+

b (f △+ c)(x) = ∨h∈Db
{(f △+ c)(x− h)△+ b(h)}

= ∨h∈Db
{f(x− h)△+ c△+ b(h)}

= ∨h∈Db
{f(x− h)△+ b(h)} △+ c

= δ△
+

b (f)(x)△+ c. (A.7)

From (9), (A.6) and (A.7), we have ∀c ∈ ]−∞,M [ :

γ△+
b (f △+ c) = δ△

+

b

[
ε△

+

b (f △+ c)
]

= δ△
+

b

[
ε△

+

b (f)△+ c
]

= δ△
+

b

[
ε△

+

b (f)
]
△+ c

= γ△+
b (f)△+ c. (A.8)

From (30), one deduces ∀c ∈ ]−∞,M [ that:

G△+
b (f △+ c) = γ△+

b (f △+ c)△− γ△+
br (f △+ c)

= γ△+
b (f)△+ c△−

[
γ△+
br (f)△+ c

]
= γ△+

b (f)△+ c△− γ△+
br (f)△− c

= γ△+
b (f)△− γ△+

br (f)

= G△+
b (f).

PROOF OF PROPERTY 4 (P. 11)
Proof of property 4: Let f ∈ FM be a function and b, br ∈ FM be structuring functions. From (32) and (A.8), we have

∀c ∈ ]−∞,M [ :

R△+
b (f △+ c) = [f △+ c]△− γ△+

b (f △+ c)

= f △+ c△−
[
γ△+
b (f)△+ c

]
= f △+ c△− γ△+

b (f)△− c

= f △− γ△+
b (f)

= R△+
b (f).
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PROOF OF PROPOSITION 5 (P. 11)
Proof of proposition 5: First of all, let us remind the definition of the LIP-additive Asplund metric with tolerance

which was introduced in [5].

Definition A.1 (LIP-additive Asplund metric with tolerance). Let (1− p) be a percentage of points of D to be discarded and D′

the set of these discarded points. The LIP-additive Asplund metric with tolerance between two functions f and g ∈ FM is defined by:

d△
+

asp,p(f, g) = c1,p △− c2,p. (A.9)

The constants c1,p and c2,p are equal to:

c1,p = inf{c,∀x ∈ D, γ△+
(f|D\D′ ,g|D\D′ )(x) ≤ c},

c2,p = sup{c,∀x ∈ D, c ≤ γ△+
(f|D\D′ ,g|D\D′ )(x)}.

A percentage (1 − p)/2 of the points x ∈ D with the greatest, respectively lowest contrast values γ△+
(f,g)(x) = f(x) △− g(x) are

discarded.

Remark A.1. In practice, for a function f : D → ]∞,M [ defined on a discrete grid D, e.g. D ⊂ Zn, the number of points to
be suppressed are selected as follows. Let #D be the cardinal of D. The number of points nsupr to be suppressed is equal
to nsuppr = round[(1 − p)#D], where round is the rounding operator of any real number to its nearest integer. For the
constant c1,p and c2,p, the number of points to be suppressed are respectively equal to:

n1 = round(nsuppr/2), (A.10)
n2 = nsuppr − n1, (A.11)

Let us now recall the rank filter definitions. Let ζb,k : RD → RD
be the erosion-rank filter of rank k by the structuring

function b. Let ϑb,k be the dilation-rank filter of rank k by the structuring function b. Both operations are defined by:

ζb,k(f)(x) =
k∧
{f(x+ h)− b(h), h ∈ Db}, (A.12)

ϑb,k(f)(x) =
k∨
{f(x− h) + b(h), h ∈ Db}. (A.13)

The LIP-erosion-rank filter ζ△+b,k : FD
M → FD

M and the LIP-dilation-rank filter ϑ△+
b,k are defined as follows:

ζ△
+

b,k(f)(x) =
k∧
{f(x+ h)△− b(h), h ∈ Db}, (A.14)

ϑ△+
b,k(f)(x) =

k∨
{f(x− h)△+ b(h), h ∈ Db}. (A.15)

The map of LIP-additive Asplund distances with tolerance (to noise extrema) is defined as follows.

Definition A.2 (Map of LIP-additive Asplund distances with tolerance [5]). Let f ∈ FM be a grey-level image and b : Db →
]−∞,M [ a probe. Let (1 − p) be a percentage of points of Db to be discarded. The map of Asplund distances Asp△+b : FM → FM

with a tolerance (to extrema) p is defined by:

Asp△
×

b,p(f)(x) = d△
×

asp,p(f|Db(x), b). (A.16)

For each point x ∈ D, the distance d△+asp(f|Db(x) , b) is computed in the neighbourhood Db(x) centred in x and the
template b is acting like a structuring function. f|Db(x) is the restriction of f to Db(x). Asp△+b,p(f) : D → FM is the map of
Asplund distances between the image f and the probe b.

In order to establish the link with MM, we will express the map of Asplund distances with neighbourhood operations.
From Eq. A.9, for each x ∈ D, the map expression becomes

d△
+

asp,p(f|Db(x) , b) = c1b,p(f)(x)△− c2b,p(f)(x),

where

c1b,p(f)(x) = inf {c,∀h ∈ Db, γ△+
(f|Db(x)\D′

b
(x),b|Db\D

′
b
(x))

(h) ≤ c}

c2b,p(f)(x) = sup {c,∀h ∈ Db, c ≤ γ△+
(f|Db(x)\D′

b
(x),b|Db\D

′
b
(x))

(h)}.

This leads to the following definition.

Definition A.3 (LIP-additive maps of the least upper and of the greatest lower bounds with tolerance). Let f ∈ FM be a
function and b : Db → ]∞,M [ a probe. For any x ∈ D, let (1 − p) be a percentage of points of the neighbourhood Db(x) to be
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discarded and D′
b(x) the set of these discarded points. The map of the least upper bounds (mlub) c1b,p : FM → FM and the map of

the greatest lower bounds (mglb) c2b,p : FM → FM , of f by b are defined, for any x ∈ D, by:

c1b,p(f)(x) = inf

{
c,∀h ∈ Db, γ△+

(f|Db(x)\D′
b
(x),b|Db\D

′
b
(x))

(h) ≤ c

}
, (A.17)

c2b,p(f)(x) = sup

{
c,∀h ∈ Db, c ≤ γ△+

(f|Db(x)\D′
b
(x),b|Db\D

′
b
(x))

(h)

}
. (A.18)

The number of points to be suppressed n1 and n2 for the mlub c1b,p and for the mglb c2b,p are equal to n1 =
round(nsuppr/2), and n2 = nsuppr − n1, respectively, where nsuppr = round[(1 − p)#Db] and Db is the cardinal of
#Db.

From (A.17), one deduces, for any x ∈ D, that:

c1b,p(f)(x) =
∨{

γ△+
(f|Db(x)\D′

b
(x),b|Db\D

′
b
(x))

(h), h ∈ Db

}
=

n1∨{
γ△+
(f|Db(x),b)

(h), h ∈ Db

}
=

n1∨
{f(x+ h)△− b(h), h ∈ Db}

=
n1∨

{f(x− h)△− b(−h),−h ∈ Db}

=
n1∨{

f(x− h)△+ (△− b(h)), h ∈ Db

}
= ϑ△+

△− b,n1
(f)(x) (from (A.13)).

Similarly, from (A.18), one deduces, for any x ∈ D, that:

c2b,p(f)(x) =
∧{

γ△+
(f|Db(x)\D′

b
(x),b|Db\D

′
b
(x))

(h), h ∈ Db

}
=

n2∧
{f(x+ h)△− b(h), h ∈ Db}

= ζ△
+

b,n2
(f)(x) (from (A.12)).

As a consequence, the following proposition holds.

Proposition A.2 (i.e. proposition 5 (p. 8)). Let f ∈ FM be a function defined on a discrete grid, e.g. D ⊂ Zn. Let b ∈ FM be a
structuring function, where for all x ∈ Db, Db ⊂ D, b(x) > −∞. Let (1 − p) be a percentage of points of Db to be discarded. The
map of LIP-additive Asplund distances with a tolerance p between the function f and the structuring function b is equal to:

Asp△
+

b,p(f) = ϑ△+
△− b,n1

(f)△− ζ△
+

b,n2
(f). (A.19)

The number of points to be suppressed n1 and n2 for the mlub ϑ△+
△− b,n1

and for the mglb ζ△+b,n2
are equal to n1 = round(nsuppr/2),

and n2 = nsuppr − n1, respectively, where nsuppr = round[(1 − p)#Db] and #Db is the cardinal of Db. For the mlub and the
mglb of f , c1b,p(f) and c2b,p(f), we have:

c1b,p(f) = ϑ△+
△− b,n1

(f), (A.20)

c2b,p(f) = ζ△
+

b,n2
(f). (A.21)

PROOF OF PROPERTY 5 (P. 16)
Proof of property 5:

Let f ∈ FM be a function and b, bθ , blθ , bcθ brθ ∈ FM be structuring functions.
From (A.14), we have ∀c ∈ ]−∞,M [ and ∀x ∈ D:

ζ△
+

b (f △+ c)(x) = ∧k
h∈Db

{(f △+ c)(x+ h)△− b(h)}
= ∧k

h∈Db
{f(x+ h)△+ c△− b(h)}

= ∧k
h∈Db

{f(x+ h)△− b(h)} △+ c

= ζ△
+

b (f)(x)△+ c. (A.22)
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From (A.6), (A.22) and knowing that the LIP-addition of a constant △+ c preserves the order ≤, one deduces that:

c̀bθ,k(f △+ c) =
∧{

ε△
+

bcθ
(f △+ c),

∧
[ζ△

+

blθ,k
(f △+ c), ζ△

+

brθ,k
(f △+ c)]

}
=

∧{
ε△

+

bcθ
(f)△+ c,

∧
[ζ△

+

blθ,k
(f)△+ c, ζ△

+

brθ,k
(f)△+ c]

}
=

∧{
ε△

+

bcθ
(f)△+ c,

∧
[ζ△

+

blθ,k
(f), ζ△

+

brθ,k
(f)]△+ c

}
=

∧{
ε△

+

bcθ
(f),

∧
[ζ△

+

blθ,k
(f), ζ△

+

brθ,k
(f)]

}
△+ c. (A.23)

From (34), (A.22) and (A.23), we have:

Ek(blθ, f △+ c) = ζ△
+

blθ,k
(f △+ c)△− c̀bθ,k(f △+ c)

= ζ△
+

blθ,k
(f)△+ c△− [c̀bθ,k(f)△+ c]

= ζ△
+

blθ,k
(f)△− c̀bθ,k(f)

= Ek(blθ, f). (A.24)

Similarly, from (35), we have:

Ek(brθ, f △+ c) = Ek(brθ, f). (A.25)

From (36), (A.24) and (A.25), we have:

Ek(bθ, f △+ c) =
∨

{Ek(blθ, f △+ c), Ek(brθ, f △+ c)}

=
∨

{Ek(blθ, f), E
k(brθ, f)}.

= Ek(bθ, f) (A.26)

As a consequence from (37), we have:

Ek(b, f △+ c) =
∧

{Ek(bθ, f △+ c) | θ ∈ Θ}

=
∧

{Ek(bθ, f) | θ ∈ Θ}
= Ek(b, f). (A.27)

Finally, from (38), we have :

ekb (f △+ c) =
∧

{Ek(bi, f △+ c) | i ∈ [[1 . . . I]]}

=
∧

{Ek(bi, f) | i ∈ [[1 . . . I]]}
= ekb (f). (A.28)
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