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Logarithmic Mathematical Morphology: theory
and applications

Guillaume Noyel,

Abstract

Classically, in Mathematical Morphology, an image (i.e., a grey-level function) is analysed by another image which is
named the structuring element or the structuring function. This structuring function is moved over the image domain and
summed to the image. However, in an image presenting lighting variations, the analysis by a structuring function should
require that its amplitude varies according to the image intensity. Such a property is not verified in Mathematical Morphology
for grey level functions, when the structuring function is summed to the image with the usual additive law. In order to address
this issue, a new framework is defined with an additive law for which the amplitude of the structuring function varies according
to the image amplitude. This additive law is chosen within the Logarithmic Image Processing framework and models the
lighting variations with a physical cause such as a change of light intensity or a change of camera exposure-time. The new
framework is named Logarithmic Mathematical Morphology (LMM) and allows the definition of operators which are robust
to such lighting variations. In images with uniform lighting variations, those new LMM operators perform better than usual
morphological operators. In eye-fundus images with non-uniform lighting variations, a LMM method for vessel segmentation
is compared to three state-of-the-art approaches. Results show that the LMM approach has a better robustness to such
variations than the three others.

Index Terms

Mathematical morphology, lighting variations, order-statistic filters, intensity-variant structuring function, robustness to
lighting variations, Asplund metric.
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Fig. 1. Comparison between usual methods and LMM to detect a spiral in (a) a simulated image also containing confounders : two close curves
and a lighting drift. (b) This image is converted in LIP-greyscale (i.e. the inverted greyscale). (d) The top-hat with a flat disk extracts the spiral and
both curves. However, it is sensitive to the lighting drift. (e) The LIP-top-hat with a flat disk extracts the spiral and both curves without the lighting
drift. (f) The LMM operator is a LIP-difference between two LIP-openings: the first LIP-opening is done by (c) a probe composed of a ring and a
Gaussian and the second by a probe composed of the same ring. The LMM operator successfully extracts the spiral and strongly attenuates both
close curves.

Logarithmic Mathematical Morphology: theory
and applications

1 INTRODUCTION

MATHEMATICAL Morphology (MM) was originally defined by Matheron [1] for sets and then extended to functions
with real values by Serra [2], Sternberg [3], [4] and Maragos [5]. In this latter case, a function is analysed by another

function named structuring element or structuring function. This extension includes grey level images whose values are
within the bounded interval [0,M [ of the real space R. For example, for 8 bit-digitised images, M is equal to 256. Generally,
structuring functions and morphological operators are invariant under horizontal translations (i.e. in space) and under
vertical translations (i.e. in intensity) [6].

However, the application of MM to grey level images presents two limitations. (1) Firstly, albeit grey level images have
bounded values, MM was defined for functions with values within the unbounded real space R [7], [8]. Indeed, given an
image f and a structuring function b both defined on the same domain D ⊂ Rn and whose values are within the range
[0,M [ , their sum f + b does not lie within the interval [0,M [ . Practical solutions to this issue consist of using either (i) a
structuring function whose supremum is equal to zero, (ii) or a flat structuring element whose values are equal to zero
(iii) or to truncate the values of the resulting image to the maximal possible value, M [7]. (2) Secondly, adding a structuring
function to an image without taking into account the image intensity into the amplitude of the structuring function is
not physically justified. As in human vision, the eye response to light intensity variations is known to be logarithmic [9],
[10], [11], [12], [13], it follows that in images the contrast variations are also logarithmic and the darkest variations are
more attenuated than the brightest ones [14], [15]. The amplitude of the structuring function must therefore depend on the
image intensity, i.e. the grey value. Such a structuring function will be invariant under horizontal translation but not under
vertical translation, i.e. in the intensity domain [0,M [ .

In parallel to the genesis of grey-level MM, Jourlin has developed the Logarithmic Image Processing (LIP) model which
is adapted to human vision [9], [16], [17] and which allows to process images as a human eye would do. It is not only
rigorously defined from a mathematical point of view, but it also possesses strong physical properties. In particular, the
LIP-addition 4+ of two images results in an image (with bounded values within the interval [0,M [ ). It also allows to
simulate the variations of light intensity or of camera exposure-time in images.

The aim of this paper is to address both previously listed limitations of the MM application to grey level images by
presenting a new framework named Logarithmic Mathematical Morphology (LMM) that was recently introduced [18], [19],
[20]. Such a framework allows to adjust the amplitude of the structuring function according to the image intensity thanks
to the LIP-addition 4+ between the image and the structuring function. LMM extends the theory of MM for images and
functions by introducing operations of Logarithmic Image Processing.

In this article and beyond the prior work, the theory of LMM will be detailed. New theoretical results will be added
at both following levels. (1) A link will be established between LMM and the functional Asplund metric defined with the
LIP-additive law 4+ . Such a metric is robust to lighting variations caused by a change of the light intensity or the camera
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exposure-time [17]. (2) New morphological operators with the same robustness to lighting variations will be introduced
for non flat structuring functions. LMM will also be validated with experiments and compared to state-of the art methods.

2 RELATED WORK: DETECTION OPERATORS ROBUST TO LIGHTING VARIATIONS

Previously in the literature, there has been some attempts to create operators theoretically robust to lighting changes.
However, such operators generally do not take into account the physical causes of these lighting changes such as variations
of light intensity or equivalently variations of camera exposure-time. In LMM, these causes are modelled by the LIP-
additive law 4+ [17]. Fig.1, shows an image composed of a spiral, a lighting drift and two confounding curves (Fig. 1a). In
this example, the LMM operator better detects the spiral without the confounding curves (Fig. 1f) than the usual methods
based on a top-hat (Fig. 1d) or a logarithmic top-hat (Fig. 1e).

Let f : D → R be a function defined on a domain D ⊂ Rn whose values are lying in R = R∪{−∞,+∞}. Let b : D → R
be a structuring function whose values are equal to −∞ outside a domain Db ⊂ D, ∀x ∈ D \Db, b(x) = −∞. In addition,
if its values in Db are equal to zero, the structuring function is called a (flat) structuring element and it is represented by
the upper-case letter B.

2.1 Top-hat operators
Meyer [2], [21] created the top-hat operator THB(f) to detect peaks in a function f . It is equal to the difference between the
function and its morphological opening γB(f) by a flat structuring element B, THB(f) = f − γB(f). The complementary
operation for the detection of valleys is the bottom-hat BTHB(f) defined as the difference between a morphological closing
φB(f) of the function and the function itself, BTHB(f) = φB(f) − f . Both top-hats are invariant to artificial variations
of intensity caused by the addition or the subtraction of any real constant c to a function f , THB(f + c) = THB(f) and
BTHB(f + c) = BTHB(f). However, they are not invariant to any lighting variation with a physical cause and modelled
by a LIP-addition 4+ or a LIP-subtraction 4− of a constant to an image f : D → [O,M [ . To address this issue, Jourlin
et al. [16], [22] have introduced LIP top-hats where the LIP-difference 4− replaces the usual difference “−”. Zaharescu
[23] proposed variants of LIP top-hats. However, all these top-hats are still defined with a flat structuring element. They
constitute a particular case of the extended tops-hats that will be presented in this paper (in section 5.4).

2.2 Morphological gradients
Beucher [24] defined the morphological gradient %B(f) as the difference between the dilation δB(f)and the erosion εB(f) of a
function f : D → R by a flat structuring element B, %B(f) = δB(f)−εB(f). The so-called “morphological gradient” corre-
sponds in fact to the norm of the usual gradient of a function [25]. In order to be the norm of a gradient, it must be defined
with a flat structuring element. It is invariant to the addition or subtraction of any real constant c to a function, %B(f +c) =
%B(f). However, it is not invariant to a lighting variation with a physical cause and modelled by a LIP-addition4+ or a LIP-
subtraction 4− of a constant to an image. Jourlin [22] addressed this issue by defining a LIP-morphological gradient where
the LIP-difference 4− replaces the usual difference “−”,
%LIPB (f) = δB(f)4− εB(f).

2.3 Scale Invariant Feature Transform (SIFT)
Lowe introduced the Scale Invariant Feature Transform to detect image features which are “partially invariant to change
in illumination” [26]. In SIFT, salient points are first detected as some extrema of a function scale-space obtained by
differences between Gaussian filtering of the image. A local image descriptor is then associated to each salient point. This
image descriptor is based on an orientation histogram of the gradient of the Gaussian filtered image. As the gradient is
computed by differences between image values, this makes it insensitive to illumination changes caused by the addition of
a constant. The orientation is weighted by the norm of the gradient which is equal to the so-called “morphological gradient”
and has therefore the same invariance. In addition, a normalisation between 0 and 1 of the orientation histograms makes
the SIFT descriptor invariant to the multiplication of the image by a constant. However, such invariances do not have any
physical causes.

2.4 Trees of connected components
Trees of connected components are based on level sets. An image level set is the set of these pixels whose values are
greater or equal to a given threshold value. By increasing the threshold value, the connected components of a higher
level set are included within the connected components of a lower level set. These inclusion relations can be represented
by trees of connected components. Various types of trees can be built according to the inclusion relation between the
level sets. One can cite e.g., the component-tree, also named max-tree [27], or the tree of shapes, also named inclusion
tree [28]. Recent segmentation methods by trees of connected components have been presented in [29], [30]. Trees of
connected components of a real function are theoretically invariant to intensity changes caused by applying to the function
a continuous and increasing transformation. However, as the intensity of an image is quantised in discrete values in the
range [[0, 1, . . . ,M − 1]] with a constant step, the lower intensities are poorly represented by these discrete values. For this
reason, in low-lighted images, the connected components trees may present a limited robustness to lighting variations [31].
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2.5 Intensity variant Mathematical Morphology
Heijmans [6] named t-operators the usual morphological operators for functions because of their invariance under horizontal
translation (i.e. in space) and under vertical translation (i.e. in intensity). He also defined a class of morphological operators,
the h-operators, which are invariant under horizontal translation but adaptive in the vertical domain (i.e. in intensity).
Although the examples of h-operators given in [6] were mathematically well-defined for real functions, they were not
physically justified. LMM operators form a particular case of h-operators which are in addition defined for functions with
bounded values such as images and are physically justified.

3 BACKGROUND

3.1 Mathematical Morphology
MM is defined on complete lattices [7], [32], [33]. A set L on which a partial order relation is defined is called a complete lattice
if every subset X of L has an infimum (i.e., a greatest lower bound), ∧X , and a supremum (i.e., a least upper bound), ∨X .
In the case of MM for functions, the set of functions RD defined on a domainD with values in R is a complete lattice with the
order ≤. The infimum and the supremum are defined for any family X ⊂ RD by (∧X ) (x) = ∧R {f(x) : f ∈X , x ∈ D}
and (∨X ) (x) = ∨R {f(x) : f ∈X , x ∈ D}, respectively. The least and greatest elements, O and I , are the constant
functions equal to O(x) = −∞ and I(x) = +∞, for all x ∈ D, respectively. Between any two complete lattices L1 and L2,
the fundamental morphological operations of erosion and dilation are defined as follows [7], [33], [34].

Definition 1. A mapping or an operator ε : L1 → L2 is an erosion, if and only if (iff) it distributes over infima, that is
ε(∧X ) = ∧ε(X ), for any family X ⊂ L1. The operator δ : L2 → L1 is a dilation, iff it distributes over suprema, that is
ψ(∨X ) = ∨ψ(X ), for any X ⊂ L2.

The definitions of these mappings apply even to the empty subset ∅ of L1 or L2 because of the relations O = ∨∅ and
I = ∧∅ [7]. We have therefore: ε(I) = I and δ(O) = O. Moreover, the pair (ε, δ) forms an adjunction between L1 and L2

if for all X ∈ L1, Y ∈ L2 there is
δ(Y ) ≤ X ⇔ Y ≤ ε(X). (1)

In an adjunction (ε, δ), ε is an erosion and δ a dilation [7]. If one reverses the ordering of both lattices L1 and L2, the dilation
becomes an erosion and vice versa. The erosion and the dilation are called adjunct operators. The adjunction constitutes a
bijection between the erosion and the dilation. For every dilation δ, there is a unique erosion ε such as (ε, δ) is an adjunction
and vice-versa. Moreover, if (ε, δ) is an adjunction, then the combination δε is an opening on L1 and the combination εδ is
a closing on L2 [35]. Opening and closing are morphological filters defined as follows [1], [2], [35].

Definition 2. An operator ψ : L → L on the complete lattice L is called an opening if ψ is increasing (∀X,Y ∈ L , if X ≤ Y
then ψ(X) ≤ ψ(Y )), anti-extensive (∀X ∈ L , ψ(X) ≤ X) and idempotent (ψ ◦ψ = ψ). ψ is a closing if it is increasing, extensive
(∀X ∈ L , X ≤ ψ(X)) and idempotent.

In the lattice RD of real functions, let b : D → R be a structuring function which is invariant under horizontal and
vertical translations. The functional dilation δb : RD → RD and erosion εb : RD → RD are t-operators which are usually
expressed [2] by:

δb(f)(x) = ∨{f(x− h) + b(h), h ∈ D} = (f ⊕ b)(x) (2)
εb(f)(x) = ∧{f(x+ h)− b(h), h ∈ D} = (f 	 b)(x). (3)

In the case of ambiguous expressions, the following conventions are used: f(x − h) + b(h) = −∞ when f(x − h) = −∞
or b(h) = −∞, and f(x+ h)− b(h) = +∞ when f(x+ h) = +∞ or b(h) = −∞ [7]. The symbols ⊕ and 	 represent the
extension to functions of Minkowski operations between sets [2]. Overviews of MM are available in [34], [36], [37], [38],
[39] and some recent advances in the field can be found in [40], [41], [42], [43].

3.2 Logarithmic Image Processing
The LIP model is a mathematical framework which allows to process images in a way which is compatible with the human
visual system [10], [17]. This makes it valid not only for images acquired with transmitted light but also with reflected light.
The LIP model is based on the physical law of transmittances, Tf4+ g(x) = Tf (x) · Tg(x), where the transmittance Tf4+ g of the
superimposition of two semitransparent objects generating the images f and g ∈ I = [0,M [D is equal to the point-wise
product of their respective transmittances Tf and Tg . The transmittance Tf (x) at point x ∈ D is also related to the image
grey value f(x) by the equation Tf (x) = 1− f(x)/M , where M is the upper-bound of the grey value interval [0,M [ . Due
to this relation, the LIP-scale is inverted compared to the usual grey scale (Fig. 1b). This means that 0 corresponds to the
white extremity, when there is no obstacle between the light source and the camera, whereas M corresponds to the black
extremity when no light is passing. By replacing the transmittances Tf and Tg by their expressions in the transmittance
law, the addition 4+ of two images f and g is deduced:

f 4+ g = f + g − f · g
M

. (4)
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In transmitted light, the addition of two images corresponds to the superimposition of two semitransparent objects
generating the images f and g. From (4), the LIP-multiplication 4× of an image by a scalar λ ∈ R is deduced, λ 4× f =

M −M (1− f/M)
λ. It is equivalent to a variation of thickness or opacity of the object by a factor λ. If λ > 1, the image

becomes darker, whereas if λ ∈ [0, 1] it becomes brighter. The opposite function 4− f = −14× f is then deduced:

4− f =
−f

1− f/M
. (5)

One can notice that 4− f , where f ≥ 0, is not an image as it takes negative values. It belongs to the set FM = ]−∞,M [
D

of real functions f whose values are bounded by M , f : D → ]−∞,M [ . From a physical point of view, the neg-
ative values 4− f , where f ≥ 0, are light intensifiers that can be used to compensate the attenuation of the semi-
transparent object generating the image f . Their superimposition with the image f is equal to zero (i.e. the white intensity),
f4+ (4− f) = f4− f = 0. This is an important physical property that will be used in this paper. In particular, the LIP-addition
of a negative constant will allow to compensate the light attenuation due to a variation of camera exposure-time or of light
intensity [17]. From (5), the difference between two functions with bounded values f and g ∈ FM is deduced:

f 4− g =
f − g

1− g/M
. (6)

f 4− g is an image iff f ≥ g. The space of functions whose values are bounded by M , (FM ,4+ ,4× ), is a real vector space and
the space of images, (I,4+ ,4× ), represents the positive cone of this vector space [16], [17]. FM and I are both ordered by the
usual order ≤ [16].

4 LOGARITHMIC MATHEMATICAL MORPHOLOGY

4.1 The new framework
LMM is defined in the lattice FM = [−∞,M ]D of functions with values in [−∞,M ]. The infimum ∧ and the supremum ∨
are defined for any family X ⊂ FM by (∧X ) (x) = ∧[−∞,M ] {f(x) | f ∈X , x ∈ D} and (∨X ) (x) = ∨[−∞,M ] {f(x) | f ∈X , x ∈ D},
respectively. The least and greatest elements, O and I , are the constant functions equal for all x ∈ D to O(x) = −∞
and I(x) = M , respectively. The LIP-additive law 4+ and the LIP-negative law 4− will allow to perform morphological
transformations that are compatible with the human visual system. LMM is based on the adjunct operators of erosion
and dilation which will be introduced as follows. Let f ∈ FM be a function and b ∈ FM a structuring function. Let
δ4+b : FM → FM and ε4+b : FM → FM be both mappings defined by:

δ4
+

b (f)(x) = ∨{f(x− h)4+ b(h), h ∈ D} (7)
ε4

+

b (f)(x) = ∧{f(x+ h)4− b(h), h ∈ D} . (8)

In the case of ambiguous expressions, the following conventions will be used: f(x−h)4+ b(h) = −∞when f(x−h) = −∞
or b(h) = −∞, and f(x+ h)4− b(h) = M when f(x+ h) = M or b(h) = −∞. The following proposition1 and definition
hold.

Proposition 1. The pair of mappings (ε4+b , δ
4+
b ) forms an adjunction, where ε4+b is an erosion and δ4+b is a dilation.

Definition 3. ε4+b is called a logarithmic-erosion and δ4+b a logarithmic-dilation.

As (ε4+b , δ
4+
b ) forms an adjunction, an opening and a closing can be defined by combination of both operators of

logarithmic-erosion ε4+b and logarithmic-dilation δ4+b (see. section 3.1). The operators γ4+b and ϕ4+b defined by

γ4
+

b = δ4
+

b ε
4+
b , (9)

ϕ4
+

b = ε4
+

b δ
4+
b (10)

are an opening and a closing (by adjunction), respectively.

Definition 4. γ4+b is called a logarithmic-opening and ϕ4+b a logarithmic-closing.

Another useful property in MM is that the erosion of a function is equal to the dilation of its negative function, and vice
versa. Such a property is the duality by negative function of both operators and, for LMM, it is established in proposition 2.
The negative function f∗ of f is equal to f∗ = 4− f because we have (f∗)∗ = f [8].

Proposition 2. Let b ∈ FM be the reflected structuring function of b, where ∀x ∈ D, b(x) = b(−x). The logarithmic-erosion ε4+b
and dilation δ4+b are dual by their negative functions:

(δ4
+

b (f∗))∗ = ε4
+

b
(f) and (ε4

+

b (f∗))∗ = δ4
+

b
(f) . (11)

1. The proofs of the propositions 1, 2 and 3 are in the Supplementary Material.
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Fig. 2. In an image f (represented in the LIP-scale), comparison between functional MM and LMM for: (a) the erosions εb(f), ε4
+

b (f), (b) the
dilations δb(f), δ4

+

b (f), (c) the openings γb(f), γ4
+

b (f) and (d) the closings ϕb(f), ϕ4+
b (f). (a) and (b) For both image peaks, the structuring function

b is represented (after an horizontal translation) for the erosions εb(f), ε4
+

b (f) and the dilations δb(f), δ4
+

b (f).

In the unidimensional image of Fig.2, operators of functional MM are compared to those of LMM. A half-disk serves as
structuring function (sf) b. In LMM, the amplitude of the sf changes according to the image values because of the LIP-laws,
4+ or4− , used in (7) and (8). LMM operators are therefore h-operators which are only invariant under horizontal translation
(see section 2.5). However in functional MM, the amplitude of the sf remains the same. This generates t-operators which
are invariant under horizontal and vertical translations. Moreover, in Fig.2b, the logarithmic-dilation δ4+b (f) of f is always
below the upper bound M = 256, whereas the functional dilation δb(f) of f may exceed this bound. Such a property is
due to the LIP-addition law 4+ . In Fig.2a, the negative values of the functional erosion εb(f) have no physical justification,
whereas those of the erosion ε4+b (f) correspond to light intensifiers. In Fig.2c, the difference between the functional opening
γb(f) and the logarithmic-opening γ4+b (f) is greater for the grey-levels close to M than for those close to zero. Indeed, in
LMM, the amplitude of the sf is greater for higher image intensities than for lower intensities because of the non-linearity
of the LIP laws 4+ and 4− .The same observation exists between the functional closing ϕb(f) and the logarithmic-closing
ϕ4+b (f) (Fig.2d).

4.2 Relation with functional Mathematical Morphology

LMM is defined in the lattice FM , whereas MM for functions is defined in the lattice RD . In order to relate LMM to
functional MM, an isomorphism between both lattices is needed. This isomorphism ξ : FM → RD and its inverse
ξ−1 : RD → FM were both defined in [44] by ξ(f) = −M ln (1− f/M) and ξ−1(f) = M(1 − exp (−f/M)). With this
isomorphism ξ, the following proposition can be established.

Proposition 3. Let f ∈ FM be a function and b ∈ FM a structuring function. The logarithmic-dilation δ4+b and the logarithmic-
erosion ε4+b are related to the functional dilation δb, or ⊕b, and erosion εb, or 	b, respectively, by the equations:

δ4
+

b (f) = ξ−1
(
δξ(b)[ξ(f)]

)
= ξ−1 [ξ(f)⊕ ξ(b)]

= M [1− exp (−δb́(f́))], (12)

ε4
+

b (f) = ξ−1
(
εξ(b)[ξ(f)]

)
= ξ−1 [ξ(f)	 ξ(b)]

= M [1− exp (−εb́(f́))], (13)

where f́ : D → R is equal to f́ = − ln (1− f/M).

These relations facilitate the implementation of the LMM operators as those of usual MM already exist in numerous
image analysis software.

4.3 Rank filters
Functional dilations δb and erosions εb are based on supremum and infimum operations. As supremum and infimum are
very sensitive to noise such as speckle [35], they can be replaced by rank filters [36] also named order statistics filters [45],



6

percentile filters or rank order filters. The filter of rank k selects the kth smallest element of a set. It corresponds to the kth

minimum represented by ∧k. Its dual, the kth maximum ∨k selects the kth greatest element of a set. In (3), a kth minimum filter
ζb,k : R→ R can be defined by replacing the infimum ∧ by the the kth minimum ∧k. Similarly, in (2), a kth maximum filter
ϑb,k can be defined with the kth maximum ∨k. If k = 0, the kth minimum filter ζb,0 is equal to the functional erosion εb and
the kth maximum filter ϑb,0 is equal to the functional dilation δb. In LMM, the kth minimum logarithmic filter ζ4+b,k : FM → FM
and the kth maximum logarithmic filter ϑ4+b,k can also be defined by using the kth minimum ∧k and the kth maximum ∨k in
(8) and (7), respectively. The kth minimum and maximum logarithmic filters ζ4+b,k and ϑ4+b,k are also related to the kth minimum
and maximum filters ζb,k and ϑb,k by replacing the erosions, εb and ε4+b , and dilations, δb and δ4+b , by their corresponding
rank filters in (13) and (12).

5 OPERATORS ROBUST TO LIGHTING VARIATIONS

Examples of operators robust to lighting changes caused by variations of the camera exposure-time or of the light intensity
will be given. These lighting changes are modelled by the LIP-addition of a constant.

5.1 Map of LIP-additive Asplund distances
5.1.1 Link with LMM
The functional Asplund metric with the LIP-additive law4+ was defined by Jourlin [17]. Let f and g ∈ FM be two functions.
One of them, e.g. g, is chosen as a probing function and both following numbers are defined: c1 = inf {c, f ≤ c4+ g} and
c2 = sup {c, c4+ g ≤ f}, where c lies within the interval ]−∞,M [ . c1 and c2 are the constants to be LIP-added to the probe
b such that it is in contact with the function f from above or from below, respectively. The LIP-additive Asplund metric
d4+asp is defined by d4+asp(f, g) = c1 4− c2. Importantly, this metric is theoretically invariant under lighting changes modelled
by a LIP-addition of a constant: ∀k ∈]−∞,M [ , d4+asp(f, b) = d4+asp(f 4+ k, b) and d4+asp(f, f 4+ k) = 0 [17].

The map of Asplund distances of a function f of FM by a probe b : Db →]−∞,M [ , where Db is a subset of D, is the
mapping Asp4+b : FM → I . Such a mapping is obtained by computing the distance between the function and the probe
for each point x of the function domain D. It is defined by Asp4+b f(x) = d4+asp(f|Db(x) , b), where f|Db(x) is the restriction of
f to the neighbourhood Db(x) centred on x ∈ D. The map of Asplund distances Asp4+b which was related to MM in [46],
[47], [48], is equal to

Asp4
+

b (f) = c1b(f)4− c2b(f), (14)

where c1b : FM → FM is the map of the least upper bounds (mlub) and c2b : FM → FM is the map of the greatest lower bounds
(mglb). The mlub c1b is a dilation and the mglb c2b is an erosion which are both equal, for all x ∈ D, to:

c1b(f)(x) = inf
h∈Db

{c, f(x+ h) ≤ c4+ b(h)}

= ∨{f(x+ h)4− b(h), h ∈ Db} , (15)
c2b(f)(x) = sup

h∈Db
{c, c4+ b(h) ≤ f(x+ h)}

= ∧{f(x+ h)4− b(h), h ∈ Db} . (16)

By comparing (15) with (7) and (16) with (8), there exists a strong link between the map of Asplund distances and LMM,
as shown in the next proposition2.

Proposition 4. Let f ∈ FM be a function and b ∈ FM be a structuring function, where for all x ∈ Db, Db ⊂ D, b(x) > −∞. The
map of Asplund distances between the function f and the structuring function b is equal to:

Asp4
+

b (f) = δ4
+

4− b(f)4− ε4+b (f). (17)

For the mlub and the mglb of f , c1b(f) and c2b(f), we have:

c1b(f) = δ4
+

4− b(f), (18)

c2b(f) = ε4
+

b (f). (19)

In the case of ambiguous expressions, the following conventions are used: Asp4+b (f)(x) = M when δ4+4− b(f)(x) = M or ε4+b (f)(x) =

−∞, and Asp4+b (f)(x) = 0 when δ4+4− b(f)(x) = ε4+b (f)(x).

As illustrated in Fig.3, the map of Asplund distances consists of a double probing of a function f by the same probe b
from above and from below. The mlub c1b(f) and the mglb c2b(f) correspond to a dilation δ4+4− b(f) and an erosion ε4+b (f)

of the image f , respectively, by their respective structuring functions 4− b or b (Fig.3b). When the probe b is similar to the
image f (according to the Asplund metric), the map of Asplund distances, Asp4+b (f), of the image presents a minimum. In
Fig.3b, both minima of the map of distances correspond to both bumps of the image f (Fig.3a).

2. The proof of proposition 4 is in Supplementary Material.
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Fig. 3. In the LIP-scale, (a) an image f is analysed by a probe b from above and below. (b) The mlub c1b (f), the mglb c2b (f) and the map of
Asplund distances Asp4+b (f) between the image and the probe. Both arrows point towards the minima of the map of Asplund distances.

Fig. 4. In the LIP-scale, comparison between the morphological gradient %B(f), the LIP-morphological gradient %LIPB (f) and the map of Asplund
distances Asp4+b (f) of the image f . The flat structuring element B has the same domain DB as the one of the structuring function b in Fig.3a. Both
arrows point towards the regional minima of the gradients.

5.1.2 Link with the LIP-morphological gradient
Let b0 : D → R be a symmetric and constant structuring element which is defined for all x ∈ Db0 , where Db0 ⊂ D, by
b0(x) = b0 and b0(−x) = b0(x). In the case of a symmetric and constant structuring element b0, the map of LIP-additive
Asplund distances Asp4+b0 is equal to the LIP-morphological gradient %LIPB0

. For all x ∈ D, we have3:

Asp4
+

b0(f)(x) = %LIPB0
(f)(x). (20)

B0 is a flat structuring element with the same domain Db0 as the one of the constant structuring element b0.
When the structuring function b is non flat, the map of LIP-additive Asplund distances Asp4+b is an extension of the

LIP-morphological gradient %LIPB . However, contrary to the morphological gradient, the map of Asplund distances is no more
the norm of a gradient. For example, let Y ⊂ D be a constant (i.e., a flat) zone of a function f and let X = Y 	Db be the
eroded flat zone by the domain Db of the structuring function b. 	 represents the binary erosion [2], [34]. In the eroded flat
zone X , the map of Asplund distances is equal to a constant, whereas a gradient and its norm should be equal to zero. We
have, for all x ∈ X :

Asp4
+

b (f)(x) = bsup 4− binf . (21)

bsup and binf are the supremum and the infimum, respectively, of the structuring function b. In Fig.4, the morphological
gradient %B(f) of the image f and its LIP-morphological gradient %LIPB (f), both with a flat structuring element B, are
compared to the map of Asplund distances Asp4+b (f) with a structuring function b. This structuring function has a bump
shape which was designed to detect the bumps of the image f . For both image bumps, the map of Asplund distances
Asp4+b (f) presents two deep minima with the same dynamic range, whereas the LIP-morphological gradient %LIPB (f) and
the morphological gradient %B(f) have two regional minima which have a lower dynamic range. In addition, the regional
minima of the morphological gradient %B(f) have not the same depth between each others. For the flat zones of the image
f , both gradients %B(f) and %LIPB (f) are equal to zero, whereas the map of Asplund distances Asp4+b (f) is equal to a
positive constant defined by (21).

The map of LIP-additive Asplund distances Asp4+b is therefore the extension of the LIP-morphological gradient %LIPB

for non flat structuring functions. It gives to this gradient the properties of a metric which is robust to lighting variations.
The LIP-morphological gradient is thereby a double probing of an image by a flat structuring element.

5.1.3 Map of Asplund distances with a tolerance to extrema
In the case of discrete images, a map of LIP-additive Asplund distances with a tolerance (to extrema) can be defined as in
[47] and related to Mathematical Morphology as follows4.

3. The proofs of (20) and (21) are in Supplementary Material.
4. The proof of proposition 5 is in Supplementary Material.
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(a) Image, mlub, mglb (b) Map of distances

Fig. 5. (a) fn is an image with a Gaussian white noise, with a standard deviation of 20 grey levels and a density of 0.08. The mlub c1b (f
n) and the

mglb c2b (f
n) (without tolerance) are compared to the mlub c1b,p(f

n) and the mglb c2b,p(f
n) with a tolerance of p = 85%. b is the probe. (b) The

map of Asplund distances Asp4+b (fn) (without tolerance) is compared to the map of Asplund distances with tolerance Asp4+b,p(f
n). The LIP-scale is

used to represent grey-levels.

Proposition 5. Let f ∈ FM be a function defined on a discrete grid, e.g. D ⊂ Zn. Let b ∈ FM be a structuring function, where for
all x ∈ Db, Db ⊂ D, b(x) > −∞. Let (1 − p) be a percentage of points of Db to be discarded. The map of LIP-additive Asplund
distances with a tolerance p between the function f and the structuring function b is equal to:

Asp4
+

b,p(f) = ϑ4
+

4− b,n1
(f)4− ζ4+b,n2

(f). (22)

The number of points to be suppressed, n1 and n2, for the mlub ϑ4+4− b,n1
and for the mglb ζ4+b,n2

are equal to n1 = round(nsuppr/2)

and n2 = nsuppr − n1, respectively, where nsuppr = round[(1− p)#Db] and #Db is the cardinal of Db. For the mlub, c1b,p(f),
and the mglb of f , c2b,p(f), we have:

c1b,p(f) = ϑ4
+

4− b,n1
(f), (23)

c2b,p(f) = ζ4
+

b,n2
(f). (24)

In Fig. 5a, a Gaussian white noise is added to the image f of Fig. 3a in order to obtain a noised image fn. The mlub
c1b(f

n) and the mglb c2b(f
n) of fn (without tolerance) are compared to the mlub c1b,p(f

n) and the mglb c2b,p(f
n) of fn

with a tolerance p. One can notice that these latter are less sensitive to the local extrema caused by peaks of noise. In Fig. 5b,
a similar observation can be made between the map of Asplund distances Asp4+b (fn) (without tolerance) and the map of
Asplund distances of fn with tolerance Asp4+b,p(f

n). This latter map has a similar shape as the map of Asplund distances
Asp4+b (f) of the image f without noise (Fig. 3b).

5.2 A novel operator: the LIP-difference between LIP-erosions
In Fig.6, a probe b was designed to detect a bump (Fig.6a) but not a transition (Fig.6b) in a unidimensional image f .
The probe b is composed of three elements: (i) the left point bl, (ii) the right point br and (iii) a central bump bc with
approximately the same dynamic range as the bump to be detected but with a smaller width. For each point x of the
domain D, the probe is set in contact with the image f from below by LIP-adding a constant c. This latter one is equal to
the value of the mglb, c2bf(x), which has been defined in (16). The LIP-difference is computed between the image f and the
left and right points, bl and br , of the probe, b4+ c2bf(x), which is in contact with the image f . The left and right detectors,
E(bl, f) and E(br, f) : D → ]−∞,M [ , are defined as follows:

E(bl, f)(x) = ∧h∈Db{f(x+ h)4− [bl(h)4+ c2b(f)(x)]}
= ∧h∈Db{f(x+ h)4− bl(h)} 4− c2b(f)(x), (25)

E(br, f)(x) = ∧h∈Db{f(x+ h)4− [br(h)4+ c2b(f)(x)]}
= ∧h∈Db{f(x+ h)4− br(h)} 4− c2b(f)(x). (26)

In the event of a bump similar to the probe, the left and right detectors, E(bl, f) and E(br, f), will have close values
(Fig. 6a), whereas in the event of a transition, one of the detectors will have a value much higher than the other one
(Fig. 6b). Such a property allows to separate bumps (which are similar to the probe) from the transitions. The bump
detector E(b, f) : D → ]−∞,M [ is therefore defined as the point-wise supremum

∨
between the left and right detectors:

E(b, f) =
∨{

E(bl, f), E(br, f)
}
. (27)

As illustrated in Fig. 6c, in the event of a bump, the detector presents a deep minimum, wheareas in the event of a transition,
this minimum disappears. The left and right detectors are related to LMM by the following properties5.

5. The proofs of properties 1, 2 and 3 are in Supplementary Material.
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Fig. 6. In the LIP-scale, an image f is analysed by a probe b from below. The objective is to detect (a) a bump but not (b) a transition. After the
LIP-addition of a constant c to the probe, b4+ c, the left E(bl, f)(x) and right detectors E(br, f)(x) are the LIP-differences between f and the left
element bl of the probe b and its right element br , respectively. (c) Bump detector E(b, f).
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Fig. 7. In the LIP-scale, (a) unidimensional image f and bump detector E(b, f). (b) Image and probe b for two points x1, x2 ∈ D.

Property 1. The left and right detectors, E(bl, f) and E(br, f), are equal to LIP-differences between logarithmic-erosions:

E(bl, f) = ε4
+

bl (f)4− ε4+b (f), (28)

E(br, f) = ε4
+

br (f)4− ε4+b (f). (29)

Property 2. The left and right detectors, E(bl, f) and E(br, f), and the bump detector, E(b, f), are insensitive to the LIP-addition
(or the LIP-subtraction) of any constant c ∈ ]−∞,M [ to (or from) the image f :

E(bl, f 4+ c) = E(bl, f),

E(br, f 4+ c) = E(br, f),

E(b, f 4+ c) = E(b, f).

Fig. 7a illustrates the application of the bump detector to a unidimensional image f . The detector presents two minima
of the same depth, one for each bump of the image. In the image f , the bump amplitudes are related by the LIP-addition
of a constant c which models a change in the image intensity caused by a variation of the light intensity or of the exposure
time of the camera. The bump detector E(b, f) is therefore robust to lighting variations modelled by the LIP-addition of
a constant. Due to the LIP-addition of the image mglb, c2b(f), to the probe b, this latter has an amplitude which changes
according to the image intensity (Fig. 7b).
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(a) Input image (LIP
scale)

(b) Probe b and im-
age surfaces at the
red point

(c) Probe b and im-
age surfaces at the
blue point

(d) LIP-opening by
the probe b

(e) Probe br and im-
age surfaces at the
red point

(f) Probe br and im-
age surfaces at the
blue point

(g) LIP-opening by
the probe br

(h) LMM G4+
b (f) (i) MM Gb(f)

Fig. 8. (a) Selection of two points in the image: the red point is in the curves and the blue point is in the spiral. The image of Fig. 1a is shown in
the LIP scale. Intensities of the probe b and the image f represented as a surface: (b) in the curves, for the red point, and (c) in the spiral, for the
blue point. (d) LIP-opening γ4+b (f) of the image f by the probe b composed of a Gaussian and a ring. Surfaces of the probe br and the image f :
(e) in the curves, for the red point, and (f) in the spiral, for the blue point. (g) LIP-opening γ4+br (f) of the image f by the probe br composed of a
ring. Results (h) of the LMM operator G4+

b (f) and (i) of the classical MM operator Gb(f) = γb(f)− γbr (f). The yellow arrows indicate the contrast
changes caused by the lighting drift.

5.3 Other operators: LIP-differences between LIP-morphological operations
In the same way as in section 5.2, the LIP-difference4− between two operations of LMM can be robust to lighting variations.
For example, Fig. 1f illustrates the robustness to a lighting drift, of the operator G4+b defined by:

G4
+

b (f) = γ4
+

b (f)4− γ4+br (f). (30)

It is equal to the LIP-difference between two logarithmic openings γ4+b and γ4+br by two different probes b and br . b is
a Gaussian-shape probe surrounded by a ring (Fig. 1c) and br is a ring-shape probe. The operator G4+ possesses the
following property.

Property 3. The operator G4+b : D → ]−∞,M [ is insensitive to the LIP-addition of any constant c ∈ ]−∞,M [ to the function
f : D → ]−∞,M [ :

G4
+

b (f 4+ c) = G4
+

b (f).

As the openings are performed by using the probe b defined on a local domain Db ⊂ D, the operator G4+b is locally
(and globally) insensitive to the addition of any constant in this domain Db. Such a local domain Db corresponds to a
sliding window around any pixel x of the image domain D. In Fig. 1a, the image f presents a lighting drift caused by
the LIP-addition of a linear function (i.e. a plane). As a plane (and several other lighting drifts) can be approximated by
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a piecewise constant function, the operator G4+b is robust to such a lighting drift. In addition, the Gaussian shape of the
probe allows to detect the spiral without detecting both close curves. (i) Firstly, the width of the Gaussian at its top is
larger than the width of each one of both curves, but it is smaller than the width of the spiral. When probing the image
f , as the probe b is composed of a Gaussian and a ring, it cannot enter into the curves (Fig. 8b), but it can enter into the
spiral (Fig. 8c). As a consequence, the logarithmic opening γ4+b (f) of f by the Gaussian and ring probe b almost completely
removes both curves but it keeps the spiral (Fig. 8d). (ii) Secondly, the ring probe br is larger than the widths of the spiral
and of both curves. This prevents it from entering into them (Fig. 8e and 8f). The logarithmic opening γ4+br (f) of f by
the ring br strongly attenuates the spiral and removes both curves (Fig. 8g). In the resulting image G4+b (f) (Fig. 1f or 8h),
the LMM operator G4+b extracts the spiral without the lighting drift and strongly attenuates the confounding curves. This
image is obtained by the LIP-difference between both openings, γ4+b (f) (Fig. 8d) and γ4+br (f) (Fig. 8g), of the image f by the
probes b and br , respectively. However, the classical Mathematical Morphology operator Gb(f) = γb(f) − γbr (f) defined
as the difference between the openings γb and γbr (Fig. 8i), does not extract the spiral without keeping contrast changes
caused by the lighting drift. A detection robust to lighting drifts – with a physical cause and modelled by the LIP-addition
law – is therefore not possible by using classical MM operators, whereas it is possible by using LMM operators.

Other operators robust to lighting variations which are modelled by the LIP-additive law, can be defined as the LIP-
difference between LMM operations, e.g.: the LIP-difference between logarithmic-closings or the LIP-difference between
an image and its logarithmic-opening (see (32)).

5.4 Extensions of top-hat operators
Let us focus on the difference, or residue, of an image f by its opening γb(f) or its logarithmic-opening γ4+b (f). Both
operators Rb and R4+b are defined as follows:

Rb(f) = f − γb(f), (31)
R4

+

b (f) = f 4− γ4+b (f). (32)

When b : D → ]−∞,M [ is a flat structuring element denoted by b = B, the operators Rb and R4+b correspond to the
top-hat operators THB(f) = f − γB(f) and TH4+b (f) = f 4− γB(f), respectively. These top-hat operators are presented
in section 2.1. When b is a non-flat structuring function, both operators Rb and R4+b constitute extensions of the top-hat
operators. The operator Rb is named the extended top-hat and the operator R4+b the extended LIP-top-hat. However, only this
latter operator R4+b possesses the following property6.

Property 4. The extended LIP-top-hat, R4+b , is insensitive to the LIP-addition of any constant c ∈ ]−∞,M [ to the function
f : D → ]−∞,M [ : R4+b (f 4+ c) = R4+b (f).

6 EXPERIMENTS AND RESULTS

6.1 Robustness to lighting variations caused by changes in the exposure-time of a camera
6.1.1 Extended top-hats
Let us focus on the extensions of top-hat operators Rb and R4+b defined in section 5.4. Only the extended LIP-top-hat
operator R4+b is insensitive to the LIP-addition of any constant c lying in the interval ]−∞,M [ . As the LIP-addition of a
constant models a change of the camera exposure-time or of the source intensity, the logarithmic operator R4+b is expected
to have a low sensitivity to such changes. In order to verify this assumption, an experiment has been conducted. An image
of the same scene is acquired with two significantly different exposure-times. The scene is composed of a soft toy monster
named “Nessie”, which is put down on a white support. (Fig. 9). The first colour image f (Fig. 9a) is captured with a
sufficient exposure-time of 1/40 s. It is therefore bright and highly-contrasted. Its luminance is denoted by f and it is
represented in the LIP-scale: i.e., the inverted greyscale (Fig. 9c). The second colour image fd (Fig. 9b) is captured with a
too small exposure-time of 1/800 s, which makes it dark and lowly-contrasted. Its luminance is denoted by fd (Fig. 9d).
The extended top-hat operator Rb is computed on both luminance images f and fd. The resulting images are denoted by
Rb(f) (Fig. 9e) and Rb(f

d) (Fig. 9f). It can be noticed that the extended top-hat in the dark image Rb(fd) is much less
contrasted than in the bright image Rb(f). The extended top-hat operator Rb is therefore sensitive to lighting changes
caused by a variation of the camera exposure-time.

The other operator, the extended LIP-top-hat R4+b is then computed on both luminance images f and fd. The resulting
images are denoted by R4+b (f) (Fig. 9g) and R4+b (fd) (Fig. 9h). It can be noticed that both results, R4+b (f) and R4+b (fd), are
similar for the most-contrasted part of the scene (i.e, the foreground): the hat, the mouth of “Nessie”, the letters on its
body, the bottom of its body and the contour of the white support. For the background (i.e. the very low-contrasted parts
of the scene), there exist differences between the results in the bright image R4+b (f) and in the dark image R4+b (fd). They
are due to the noise caused by the acquisition in the lowly-contrasted image fd (Fig. 9b). However, such a noise also exists
in the background of the extended top-hat of the dark image Rb(fd) (Fig. 9f), although it is hidden by some important
amplitudes in Rb(fd). Indeed, when zooming in the background part of Rb(fd) (Fig. 9f) and rescaling its amplitude, the

6. The proof of property 4 is in Supplementary Material.
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(a) Bright image f (1/40 s) (b) Dark image fd (1/800 s)

(c) f , luminance of f (LIP-scale) (d) fd, luminance of fd (LIP-
scale)

(e) MM, Rb(f), extended top-
hat of f

(f) MM, Rb(fd), extended top-
hat of fd.

(g) LMM, R4+
b (f), extended LIP-

top-hat of f
(h) LMM, R4+

b (fd), extended
LIP-top-hat of fd

(i) Probe b (LIP-scale) (j) Zoom in (f)

Fig. 9. Comparison of the robustness to camera exposure-times, between the operators of extended top-hat Rb and extended LIP-top-hat R4+
b . (a)

f and (b) fd: colour images captured with the camera exposure-times of 1/40 s and 1/800 s, respectively. (c) f and (d) fd: luminance images (in
the LIP-greyscale) of the colour images f and fd. (e) Rb(f) and (f) Rb(fd): extended top-hat of f and fd by the structuring function b. (g) R4+

b (f)
and (h) R4+

b (fd): extended LIP-top-hat of f and fd by b. (i) The probe b (in the LIP-scale) is made of a 16-pixel radius hemisphere, whose base is
set at the grey value 127. (j) Zoom in and rescaling of the background ROI of Rb(fd), which is in the red rectangle of (f).

noise can be observed (Fig. 9j). It is similar to the one observed in the extended LIP-top-hat of the dark image R4+b (fd)
(Fig. 9h).

In very low-contrasted parts of a dark image, the extended LIP-top-hat operator R4+b enhances the noise caused by
the acquisition; i.e., when very few photons are captured by the camera sensor. However, in the most contrasted parts,
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(a) fmov,bl (1/13 s)

(b) fsta (1/13 s) (c) fmov,dk (1/160 s)

(d) MM, Ab,p(fsta) (e) MM, Ab,p(fmov,bl)

(f) LMM, Asp4+b,p(fsta) (g) LMM, Asp4+b,p(fmov,bl)

Fig. 10. (a) Colour image fmov,bl of a white disk in rotation and captured with a camera exposure-time of 1/13 s. (b) Colour image fsta of the
same static disk captured with the same camera exposure-time of 1/13 s. The probe function b is delineated in white. (c) Colour image fmov,dk of
the white disk in rotation captured with a camera exposure-time of 1/160 s. (d) In usual MM, equivalent maps of Asplund distances applied to the
luminance of the static disk image, Ab,p(fsta), and (e) to the luminance of the moving disk image, Ab,p(fmov,dk). (f) Maps of LIP-additive Asplund
distances, with a tolerance p, applied to the luminance of the static disk image, Asp4+b,p(fsta), and (g) to the luminance of the moving disk image,
Asp4+b,p(fmov,dk). For each map, the tolerance parameter p is set to 95%.

this extended LIP-top-hat operator R4+b has the same amplitude in the bright image R4+b (f) (Fig. 9g) as in the dark image
R4+b (fd) (Fig. 9h). As a consequence, the extended LIP-top-hat operator R4+b is much more robust than the extended top-hat
operator Rb, to strong lighting variations caused by changes of camera exposure-time.

6.1.2 Map of Asplund distances with a tolerance to extrema
The map of LIP-additive Asplund distances with a tolerance to extrema, Asp4+b,p, defined in (22), is expected to be robust
to strong lighting variations caused by different camera exposure-times. In order to verify this assumption, an experiment
is performed with images of a moving object. In those images, the blur effect caused by the movement can be avoided by
decreasing the camera exposure-time. However, this is done a the detriment of the image contrast. In Fig. 10, a white disk
with patterns is mounted on a turn table of a record player. The patterns include four small coloured disks and confounding
shapes (i.e., the eagles). Firstly, in Fig. 10a, an image fsta of the static white disk is captured with an appropriate camera
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exposure-time of 1/13 s. This makes the image it well-contrasted. Then, the record player is started up at a speed of
45 revolutions/min. With the same camera exposure-time as the one of fsta, a first image fmov,bl is captured (Fig. 10b). It is
correctly contrasted but blurred which makes it useless to detect the coloured disks. In order to suppress the blur effect, the
camera exposure-time is decreased to 1/160 s and a second image fmov,dk is captured (Fig. 10c). This second image is not
blurred but is darker than the image of the static disk fsta (Fig. 10b). In the luminance images, fsta and fmov,dk, of those
two differently contrasted images fsta (Fig. 10b) and fmov,dk (Fig. 10c), the map of LIP-additive Asplund distances with a
tolerance to extrema Asp4+b,p is compared to its equivalent in classical functional MM, Ab,p , defined as follows:

Ab,p(f) = ϑ−b,n1
(f)− ζb,n2

(f). (33)

The parameters n1 and n2 are defined as in proposition 5. In classical MM, the map Ab,p(fsta) of the static disk image
(Fig. 10d) is brighter than the map Ab,p(fmob,dk) of the moving disk image (Fig. 10e). However, in LMM, the maps of
LIP-additive Asplund distances, with a tolerance, and which are applied to the static disk image Asp4+b,p(fsta) (Fig. 10f) and
to the moving disk image Asp4+b,p(fmov,bl) (Fig. 10g) are similarly contrasted. Contrary to the maps in classical MM, the
LMM maps are therefore robust to strong lighting variations caused by different camera exposure-times.

6.2 Robustness to non-uniform lighting variations in images
In order to test the robustness to non-uniform lighting variations of a segmentation task, a LMM approach [49] is compared
to other state-of-the-art methods [50], [51], [52]. The segmentation task consists of extracting vessels in eye fundus images
coming from the test set of the DRIVE dataset [53]. However, the testing set is composed of 20 colour eye fundus images
which are well contrasted and do not present any significant non-uniform lighting variations. As a consequence, such
variations were previously added to those images.

6.2.1 Adding lighting variations to the images
In a colour image f = (fR, fG, fB), where f : D 7→ [0,M [

3, the non-uniform lighting variations are generated by LIP-
adding a same darkening function cdk : D 7→ ]−∞,M [ to each of the three image components: fR, fG and fB . The
darkening function is a 2D increasing function whose origin is located at the centre of the Zone of Interest (ZOI). The ZOI
is assimilated to a circle of radius Ro and centre o = (xo, yo), where o ∈ D ⊂ R2 (Fig. 11a). Let ρ ∈ [0,+∞[ and θ ∈ ]−π, π]
be the polar coordinates of the pixels from the circle centre o. The darkening function cdk is defined by (Fig. 11b):

cdk(ρ, θ) = I0

[
1− exp

( −ρ
Ro/4

)]
.

The intensity value I0 = 230 is chosen so that the image is strongly darkened in its external part. The darkened image
fdk = (fdkR , fdkG , fdkB ) is then defined for each of its components fdki as follows:

fdki = (M − 1)− b(M − 1− fi)4+ cdkc,
where bxc is the floor function of the value x ∈ R+. The floor function allows to save the darkened images in png or tif
format in order to use them with different segmentation methods. Those darken images have a brighter area in their centre
than elsewhere (Fig. 11c).

6.2.2 Vessel segmentation method based on LMM
In [19], [49], a method based on Logarithmic Mathematical Morphology was introduced to segment vessels in eye fundus
images. The colour images f = (fR, fG, fB) are converted to greyscale images in the LIP-scale thanks to the equation
f = M − 1 − (0.299 fR + 0.587 fG + 0.114 fB). In this inverted greyscale, the vessels appear as brighter than their
surroundings. As in section 5.2, a bump detector is defined. It is based on a 2D probe bθ : Dbθ 7→ [0,M [ composed
of 3 parallel segments in the orientation θ and with the same length (Fig. 12a). The probe origin is chosen as one of the
extremities of the central segment bcθ . Its intensity is greater than the one of the left and right segments blθ and brθ (Fig. 12b).
These two segments are equidistant of the central one and the width of the probe is w.

The left and right detectors E(blθ, f) and E(brθ, f) of (25) and (26) are now defined with the kth minimum ∧k, for any
x ∈ D, as follows:

Ek(blθ, f)(x) = ∧kh∈D
bl
θ

{f(x+ h)4− blθ(h)} 4− c̀bθ,k(f)(x)

= ζ4
+

blθ,k
(f)(x)4− c̀bθ,k(f)(x) (34)

Ek(brθ, f)(x) = ∧kh∈Dbr
θ

{f(x+ h)4− brθ(h)} 4− c̀bθ,k(f)(x)

= ζ4
+

brθ,k
(f)(x)4− c̀bθ,k(f)(x). (35)

The map c̀bθ,k(f) is defined as the pointwise infimum
∧

of the maps cbcθ (f), cblθ,k(f) and cbrθ,k(f) for each segment bcθ , blθ
and brθ of the probe :

c̀bθ,k(f) =
∧{

cbcθ (f),
∧

[cblθ,k(f), cbrθ,k(f)]
}

=
∧{

ε4
+

bcθ
(f),

∧
[ζ4

+

blθ,k
(f), ζ4

+

brθ,k
(f)]

}
.
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Fig. 11. (a) Colour eye fundus image f , its ZOI and the polar coordinates (ρ, θ). (b) Surface of the darkening function cdk in the LIP-greyscale.
(c) Darkened image fdk.
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Fig. 12. (a) 2D probe b with an orientation θ and a width w. (b) The central segment bcθ has a higher intensity than both others ones blθ and brθ .

As the central segment bcθ must fully enter into the vessel relief, the infimum must be extracted and therefore in
the previous equation, the map cbcθ (f) = ∧{f(x + h) 4− bcθ(h), h ∈ bcθ} = ε4+bcθ

(f) is used (see (16) and (19)). However,
in order to reduce the effects of noise for the left and right segments, blθ and brθ , the maps with the kth minimum,
cblθ,k(f) = ∧k{f(x + h) 4− blθ(h), h ∈ blθ} = ζ4+

blθ,k
(f) and cbrθ,k(f) = ζ4+brθ,k

(f), are used (see (24)). As in (27), the bump

detector map in orientation θ, Ek(bθ, f), is defined by:

Ek(bθ, f) =
∨
{Ek(blθ, f), Ek(brθ, f)}. (36)

The bump detector map is expressed as the point-wise infimum of the maps Ek(bθ, f) in all the orientations θ ∈ Θ:

Ek(b, f) =
∧
{Ek(bθ, f) | θ ∈ Θ}. (37)

As the vessel detection is a multi-scale problem, I different probes, {bi}i∈[[1...I]], of width {wi}i and length {li}i will be
used. The bump detector maps Ek(bi, f) for the probes bi are then combined by point-wise infimum:

ekb (f) =
∧
{Ek(bi, f) | i ∈ [[1 . . . I]]}. (38)

In the map of vesselness ekb (f) (Fig. 13a), the vessels appear as valleys. They are extracted by a threshold such that 12 % of
the ZOI area are considered as vessels (Fig. 13b). I = 3 probes with 18 orientations θ between 0° and 360° are chosen. The
width w of the probe was chosen in order to be slightly greater than the largest vessel diameter. All the parameters and the
experiments used to estimate them are given in [49]. Similarly to property 2, the following property holds7.

7. The proof of property 5 is in Supplementary Material
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(a) ekb (f) (b) Segmentation

Fig. 13. (a) Map of vesselness ekb (f). (b) Vessel segmentation.

TABLE 1
Comparison of the segmentation methods on the test DRIVE dataset with initial and darkened images. Average values over the images are given
for the Area Under ROC Curve (AUC), Accuracy (Acc), Sensitivity (Se) and Specificity (Sp). Relative difference (in absolute value) between the

AUC for the initial and the dark images (R. Diff).

Method Images AUC Acc Se Sp R. Diff.

LMM initial 0.9425 0.9624 0.7354 0.9845
2.41%dark 0.9197 0.9547 0.6664 0.9826

FR-UNet initial 0.9889 0.9705 0.8356 0.9837
8.48%dark 0.9051 0.9405 0.3683 0.9954

SGL initial 0.9882 0.9704 0.8376 0.9834
27.95%dark 0.7120 0.9218 0.1269 0.9982

RV-GAN initial 0.9864 0.9650 0.6373 0.9967
31.56%dark 0.6751 0.9124 0.0000 1.0000

Property 5. The left and right detectors, Ek(blθ, f) (34) and Ek(brθ, f) (35), the bump detectors, Ek(bθ, f) (36) and Ek(b, f) (37),
and the map of vesselness ekb (f) (38) are insensitive to the LIP-addition (or the LIP-subtraction) of any constant c ∈ ]−∞,M [ to (or
from) an image f :

Ek(blθ, f 4+ c) = Ek(blθ, f),

Ek(brθ, f 4+ c) = Ek(brθ, f),

Ek(bθ, f 4+ c) = Ek(bθ, f),

Ek(b, f 4+ c) = Ek(b, f),

ekb (f 4+ c) = ekb (f).

The map of vesselness ekb (f) is therefore robust to uniform variations of light intensity or of camera exposure-time in
an image f . Indeed, such variations are modelled by the LIP-addition (or the LIP-subtraction) of a constant c ∈ ]−∞,M [ .
The vessel segmentation by this LMM approach is therefore robust to such uniform lighting variations.

6.2.3 Comparison of the LMM approach with other methods
The robustness to non-uniform lighting variations will be tested for the previous approach and state-of-the-art approaches.
As explained in section 6.2.1, a non-uniform lighting variation was generated by LIP-adding to the images a function
cdk : D 7→ ]−∞,M [ which varies across the domain D, in place of a constant c. The 20 test images of the dataset were
darkened.

For comparison purposes, the three best methods of vessel segmentation were selected in the DRIVE dataset using the
ranking given in [54]. They are named FR-UNet [50], RV-GAN [51] and SGL (Study Group Learning) [52] and are based
on Deep Learning architectures. FR-UNET is based on a multi-resolution U-Net architecture [55]. RV-GAN is composed of
a multi-scale Generative Adversarial Network [56]. SGL is based on a U-Net consisting of an image enhancement module
and a segmentation module. Those three methods have been tested on the test set using the pre-trained weights given
by their authors. In table 1, the performance of each method was evaluated by several indicators for the initial and the
darkened images of the test set. The indicators are the mean values over the test set of the Area Under ROC Curve (AUC),
Accuracy (Acc), Sensitivity (Se) and Specificity (Sp). Each indicator was computed for each image and the mean value was
taken over the test set. The same groundtruth coming from the DRIVE dataset was used. The same program in MATLAB®

language was used to estimate those indicators.
The relative difference between the AUC for the initial images and the darkened ones has been computed. The LMM

approach obtains the smallest relative difference between AUC with 2.41 %. This is better than the other methods: FR-UNet
(8.48 %), SGL (27.95 %) and RV-GAN (31.56 %). In Fig. 14, one can notice that the LMM segmentations are much more
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(a) LMM, ini. (b) LMM, dark

(c) FR-UNet, ini. (d) FR-UNet, dark

(e) SGL, ini. (f) SGL, dark

(g) RV-GAN, ini. (h) RV-GAN, dark

Fig. 14. Segmentation comparison with the groundtruth. Black pixels are true positives, white pixels are true negatives, cyan pixels are false
positives and red pixels are false negatives. (a) and (b) LMM segmentations for the initial f and dark fdk images of Fig. 11. (c) and (d) FR-UNet
segmentations. (e) and (f) SGL segmentations. (g) and (h) RV-GAN segmentations.

similar between the initial test image (Fig. 14a) and its darkened version (Fig. 14b) than the segmentations with the other
approaches. Indeed, in the initial images, the FR-UNet (Fig. 14c), the SGL (Fig. 14e) and the RV-GAN (Fig. 14g) methods
obtains good segmentation results. However, in the darken image, the FR-UNet (Fig. 14d) and the SGL (Fig. 14f) methods
only segment the vessels in the brightest part located in the image centre. The RV-GAN approach does not segment the
vessels (Fig. 14h).

As a consequence, the LMM approach has a better robustness to non-uniform lighting variations than the other state-
of-the-art approaches. This is caused by the LIP-differences between LMM operations (see (34) and (35)) which are used in
this approach.

7 CONCLUSION

A new framework named Logarithmic Mathematical Morphology (LMM) has been presented. It allows to define Mathematical
Morphology operations for images and functions with a upper bound value M by using the Logarithmic Image Processing
(LIP) vector space and its additive law 4+ . The sum f 4+ b between two functions f and b with an upper bound value
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M is smaller than this upper bound value. The amplitude of the second function, namely the structuring function, varies
according to the intensity of the function f and in a way which is physically justified. Such a physical property comes
from the LIP model which is defined thanks to the transmittance law and which is coherent with the human vision. The
new framework, namely the LMM, allows the definition of morphological operators which are robust to lighting variations
modelled by the LIP-additive law4+ . Those variations correspond to a change of light intensity or of camera exposure-time.
Experiments have shown that those operators are robust to such uniform lighting variations and perform better than usual
morphological operations defined with the usual additive law +. With non-uniform lighting variations, a LMM approach
for vessel segmentation in eye-fundus images is more robust than three state-of-the-art methods based on deep-learning,
namely FR-UNet, SGL and RVGAN. LMM framework paves the way for the definition of morphological operators and
neural nets [20] allowing a robust analysis of images acquired in uncontrolled lighting variations. Such variations occur in
numerous practical applications (outdoor scenes, industry, medicine, remote-sensing, etc.)
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