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Abstract14

Comparative analysis of Genome-Scale Metabolic Networks (GSMNs) may yield important infor-15

mation on the biology, evolution, and adaptation of species. However, it is impeded by the high16
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heterogeneity of the quality and completeness of structural and functional genome annotations,17

which may bias the results of such comparisons. To address this issue, we developed AuCoMe –18

a pipeline to automatically reconstruct homogeneous GSMNs from a heterogeneous set of anno-19

tated genomes without discarding available manual annotations. We tested AuCoMe with three20

datasets, one bacterial, one fungal, and one algal, and demonstrated that it successfully reduces21

technical biases while capturing the metabolic specificities of each organism. Our results also point22

out shared metabolic traits and divergence points among evolutionarily distant algae, underlining23

the potential of AuCoMe to accelerate the broad exploration of metabolic evolution across the tree24

of life.25
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Introduction26

The comparison of genomic data gave rise to today’s view of the three domains of life: bacteria,27

archaea, and eukaryotes, being divided into several supergroups (Burki et al., 2020). The evolution28

of the organisms within these lineages is linked to their ability to adapt to their environment and,29

therefore, to the plasticity of their metabolic responses. In this context, the analysis of Genome-30

Scale Metabolic Networks (GSMNs) constitutes a powerful approach, both for graph-based and31

metadata comparison and, when compatible, for flux-based approaches (Gu et al., 2019). The32

number of sequences available in public databases is continuously rising, as illustrated by the Gen-33

Bank database, which grew by 74.30% for Whole Genome Shotgun data in 2019 compared to 201834

(Sayers et al., 2019). GSMN reconstruction is theoretically possible for any genome and has already35

been used to explore evolutionary questions. Metabolic relationships in 975 organisms from the36

three domains of life showed that these domains were well-separated Schulz and Almaas (2020).37

Using GSMN reconstruction in bacteria, metabolic and phylogenetic distances between Escherichia38

coli and Shigella strains could be explained by the parasitic lifestyle of the latter (Vieira et al.,39

2011). Another GSMN-based study of 301 genomes from the human gut microbiota identified40

marginal metabolic differences at the microbiota family level but significant metabolic differences41

between closely related species (Bauer et al., 2015). Analysis of fungal GSMNs additionally demon-42

strated correlation between metabolic distances and the phylogeny of Penicillium species, even if43

no connection was found between the metabolic distances and the species habitat (Prigent et al.,44

2018). In brown algae, the GSMNs of Saccharina japonica and Cladosiphon okamuranus (Nègre45

et al., 2019) were compared to the GSMN of Ectocarpus siliculosus revealing that heterogeneity of46

genome annotations may have a stronger impact on GSMNs than genuine biological differences.47

For most GSMN analyses, some limitations still need to be addressed (Bernstein et al., 2021).48

When comparing different GSMNs, two main biases concern the variable quality of genome anno-49

tations and the multitude of reconstruction approaches. A variety of methods exists to perform50

structural (gene structure prediction) and functional (association of functions to genes) annota-51

tion steps (Yandell and Ence, 2012) and the method choice has previously been shown to have52
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direct effects on the reconstructed GSMNs (Karimi et al., 2021). Similarly, numerous methods53

for GSMN reconstruction have been developed, e.g. Pathway Tools (Karp et al., 2019), RAVEN54

(Wang et al., 2018), merlin (Dias et al., 2015; Capela et al., 2022), KBase (Arkin et al., 2018),55

ModelSEED (Devoid et al., 2013), AuReMe (Aite et al., 2018), AutoKEGGRec (Karlsen et al.,56

2018), CarVeMe (Machado et al., 2018), and gapseq (Zimmermann et al., 2021). They rely on57

one or several metabolic databases such as MetaCyc (Caspi et al., 2020), KEGG (Kanehisa and58

Goto, 2000; Kanehisa et al., 2017), ModelSEED (Seaver et al., 2021) or BiGG (King et al., 2016).59

Despite efforts in the direction of database reconciliation (Moretti et al., 2021), the heterogeneity60

of metabolic databases requires time-consuming matching of their respective identifiers and may61

thus impede the comparison of the GSMNs.62

One strategy to resolve the issue of GSMN comparison is to work directly on GSMNs. A first63

method is the reconstruction annotation jamboree (Thiele and Palsson, 2010), a community effort to64

curate pathway discrepancies by examining reactions, Gene-Protein-Reaction (GPR) associations,65

and metabolites in GSMNs in order to create a consensus GSMN for an organism. This is relevant66

for organisms for which multiple GSMNs exist, in order to establish a reference one. This strategy67

was successfully applied to Salmonella typhimurium LT2 (Thiele et al., 2011) as well as Saccha-68

romyces cerevisiae (Herrg̊ard et al., 2008), and later multiple organisms to create a panmetabolism69

of 33 fungi (Correia and Mahadevan, 2020). Although platforms now facilitate such community70

efforts (Cottret et al., 2018), these methods are costly in terms of the manpower involved.71

A second strategy to resolve GSMN comparison issues is to adapt the GSMN reconstruction72

method. This strategy aims at reducing annotation biases through the reconstruction of GSMNs73

from homogeneously annotated genomes using the same method and database, possibly followed74

by the propagation of annotations with sequence alignments (Vieira et al., 2011; Prigent et al.,75

2018). This strategy was pushed forward and automatized in the tool CoReCo, which enabled76

the reconstruction of gap-less metabolic networks from several non-annotated genomes (Pitkänen77

et al., 2014; Castillo et al., 2016). The main limitation of such approaches is that the re-annotation78

of the genomes supplants the previous genome annotation.79
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Annotations of genomes in databases also reflect the expertise of scientists. Their quality and80

precision, ranging from structural features, such as accuracy of intron-exon boundaries or func-81

tional inferences, like the assignation to a specific catalytic activity based on previous biochemical82

evidence, highly depend on the amount of curation effort done after the initial automated steps.83

Such valuable information is lost during a systematic re-annotation step. For a reliable interpre-84

tation of data, expert annotations therefore ought to be preserved while automatically inferring85

metabolic networks from any type of genomic resource. In this article, we introduce a new method,86

AuCoMe (Automated Comparison of Metabolism) that creates a set of homogenized GSMNs from87

heterogeneously-annotated genomes. This enables a less biased functional comparison of the net-88

works and the determination of metabolic distances using the presence/absence of reactions. Our89

objective was to develop an efficient and robust approach, which does not depend on the quality90

of the initial annotations and is able to aggregate heterogeneous information in both prokaryote91

and eukaryote datasets. AuCoMe combines metabolic network reconstruction, propagation, and92

verification of annotations. The method automatizes the strategy of transferring information from93

the annotations of the genomes and complements this information transfer with local searches of94

missing structural annotations. AuCoMe was applied to three heterogeneous datasets composed of95

fungal, algal, and bacterial genomes. Our results demonstrate that AuCoMe succeeds at propagat-96

ing missing reactions to degraded metabolic networks while capturing the metabolic specificities97

of organisms despite profound differences in the quality of genome annotations. This provides a98

knowledge base for the comparison of metabolisms between different organisms.99

Results100

A tool for homogenizing metabolism inference101

AuCoMe is a Python package that aims to build homogeneous metabolic networks and pan-102

metabolisms starting from genomes with heterogeneous functional and structural annotations. Au-103

CoMe propagates annotation information among organisms through a four-step pipeline (Fig. 1).104

The AuCoMe pipeline was tested on three datasets composed of genomes that offer different105
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levels of phylogenetic diversity. The bacterial dataset includes 29 genomes belonging to different106

species of Escherichia and closely related Shigella, the fungal dataset (74 fungal genomes and 3 out-107

group genomes) covers a range of different phyla within this kingdom, and finally the algal dataset108

(36 algal genomes and 4 outgroup genomes) exhibits the highest phylogenetic diversity including109

eukaryotes from the supergroups SAR (Stramenopiles, Alveolata and Rhizaria), Haptophyta, Cryp-110

tophyta, and Archaeplastidia. For all species included in the three datasets, we used annotated111

genomes publicly available (see Supplemental Tables S1, S2, S3). Run times of AuCoMe on a112

cluster were 7 hours (10 CPUs), 25 hours (40 CPUs), and 45 hours (40 CPUs) for the bacterial,113

fungal, and algal datasets, respectively. Details for individual steps are reported in Supplemental114

file, section 2.115

In the first step, the draft reconstruction step, draft metabolic networks are automatically in-116

ferred from the original annotations (especially Gene Ontology (GO) terms and Enzyme Commis-117

sion (EC) numbers) using Pathway Tools (Fig. 1A). Only reactions supported by gene associations118

or spontaneous reactions were kept in the draft metabolic networks (see Methods). The GSMNs119

reconstructed at this step from the three datasets exhibit highly heterogeneous reactions (Fig. 2A120

and blue bars in Fig. 2 B, C, D, see also Supplemental Fig. S1, S2, and S3). Notably in the121

fungal dataset, no reactions were inferred from annotations in seven species, and 12 draft GSMNs122

contained less than ten reactions. For the latter, their respective genome annotations included no123

EC number, and eleven did not include any GO term.124

Similar observations were also made, although to a lesser extent, for the algal genome dataset,125

with seven genomes having more than 2,000 reactions and seven genomes less than 500 reactions.126

At this step, high heterogeneity in the number of reactions can be attributed mainly to differences in127

the quality and quantity of the functional annotations provided, precluding biologically meaningful128

comparisons of the GSMNs obtained at the draft reconstruction step. Those initial results from129

Pathway Tools are a good proxy for the quality of initial genome annotations.130

The resulting GSMNs and their proteomes were then subjected to comparative genomic analyses131

in the orthology propagation step. During this process, GPR associations are propagated across132
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GSMNs according to orthology relations established using OrthoFinder (Fig. 1B). A robustness133

filter (see Methods) then selects the robust GPR relationships among all propagated associations.134

After this step, we observed an homogenization of the number of reactions in the datasets (orange135

bars in Fig. 2, Supplemental Fig. S1, S2, and S3). The fungal dataset exhibits an outlier at this step;136

the GSMN of Encephalitozoon cuniculi contained only 681 reactions compared to over thousand137

reactions in the other fungal GSMNs. This is consistent with this species being a microsporidian138

parasite with a strong genome and gene compaction (Grisdale et al., 2013). In all datasets, among139

the reactions propagated by orthology, a few hundred were removed because they did not fulfill the140

robustness score criterion (see Methods).141

A third step (the structural verification) consists in checking for the presence of additional142

GPR associations by finding missing structural annotations in all genomes (Fig. 1C). Compared143

to the orthology propagation, the structural verification step had a smaller impact on the size144

of the final networks (green bars in Fig. 2, Supplemental Fig. S1, S2, and S3). Ninety-five145

percent of the GSMNs received less than 28 reactions during this step, and the maximum was146

209. In the bacterial dataset, the six Shigella received more reactions at this step compared to147

the other strains (on average 76.2 vs. 7.4). After a manual examination, a majority of these148

reactions were associated with pseudogenes. For the fungal dataset, AuCoMe added 209 reactions149

for Saccharomyces kudriavzevii. These reactions were associated with 192 sequences recovered150

during the structural step. For all of these sequences, we found corresponding transcripts in a151

published transcriptome dataset (Blevins et al., 2021). As for the algal dataset, 86 reactions were152

added for Ectocarpus subulatus. We validated the presence of 59 out of 65 genes (83 out of 86153

reactions) by associating them with existing transcripts. The remaining six genes (three reactions)154

corresponded to plastid sequences that had remained in the nuclear genome assembly. In both155

fungal and algal datasets, the structural completion step was, therefore, able to recover sequences156

likely to correspond to functional genes.157

Finally, the spontaneous completion step (Fig. 1D) adds spontaneous reactions to each metabolic158

network if these reactions complete BioCyc pathways (red bars in Fig. 2, Supplemental Fig. S1,159

7



S2, and S3). For the fungal dataset, this step added between two and 23 spontaneous reactions,160

leading to two to 27 additional MetaCyc pathways that achieved a completion rate equal to 100%.161

For the algae, the same step added between 4 and 36 spontaneous reactions yielding two to 31162

additional pathways. The fewer reactions were inferred at the draft reconstruction step, the more163

spontaneous reactions were added to complete pathways (Pearson R = -0.83 and -0.84 for the fungal164

and algal datasets, respectively). The addition of these spontaneous reactions to the ones predicted165

by Pathway Tools (only other step predicting this type of reactions) lead to the prediction of less166

than a hundred spontaneous reactions per GSMN.167

When looking at the size of the final networks, overall, in the three datasets, the final GSMNs168

were of similar size after applying AuCoMe regardless of the quantity and quality of their corre-169

sponding genome annotations. In the bacterial dataset (Fig. 2B and Supplemental Fig. S1) the170

networks of Shigella strains comprised fewer reactions than the rest (average of 2,148 reactions vs.171

2,294, Wilcoxon rank-sum test W = 138, P = 2e-4). This is consistent with the results of Vieira172

et al. (2011). On the other hand, E. coli K–12 MG1655 stood out with 2,568 reactions compared173

to 2,047 to 2,342 for the other strains. This can be explained by the curation on this strain and174

the fact that reactions propagated from E. coli K–12 MG1655 to the other strains were frequently175

supported by only one gene predicted at the draft reconstruction step, and were removed after the176

orthology propagation (see Methods).177

Validation of AuCoMe predictions178

To estimate the quality of the predictions made by AuCoMe, experiments were performed.179

In the first experiment, we compared the GSMNs created by AuCoMe to those created by180

CarveMe, ModelSEED and gapseq on the bacterial dataset (Supplemental Fig. S4). On this181

dataset, AuCoMe performed well regarding the recovery of EC numbers, although, it does not182

reconstruct the largest GSMNs, limiting the inference of reactions to those associated with genes.183

The ECs inferred by the different tools for E. coli K–12 MG1655 were compared with a reference184

containing ECs from EoCyc, KEGG, BiGG and ModelSEED associated with E. coli K–12 MG1655185
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(Supplemental Fig. S5). In this comparison, AuCoMe predicted the highest number of true positives186

(Supplemental Fig. S6).187

Then, a second comparison on the eukaryotes was performed with AuCoMe, gapseq find module188

and ModelSEED on 5 fungal genomes. Results on the eukaryotic genomes showed that AuCoMe189

predicts the most EC numbers, reactions, and pathways in species distant from the model ones190

(Supplemental Table S5 and Figure S7). A comparison with metabolic pathways contained in191

YeastCyc for the genome of Saccharomyces cerevisiae S288C was done to estimate the quality192

of the predicted pathways. AuCoMe predicted a high number of pathways with low completion193

rate not found in YeastCyc (Supplemental Figure S8). For pathways with completion rate above194

70%, AuCoMe and gapseq exhibited similar performance (Supplemental Fig. S9). Although these195

experiments should be confirmed by an exhaustive comparative study, these results suggest that196

AuCoMe is suitable for the study of the metabolism of multiple eukaryotic genomes by predicting197

robust gene-reactions associations.198

The third evaluation of the reliability of the reconstruction process was performed on the final199

algal dataset. We manually examined 100 random GPR associations across the metabolic networks200

generated by AuCoMe: 50 reactions that were predicted to be present and 50 reactions that were201

predicted to be absent (see methods). Not counting spontaneous reactions, manual annotations202

and automatic predictions corresponded in 86% of all cases (42/49) for the reactions predicted to203

be present and in 91% (40/44) for the reactions predicted to be absent (see Supplemental Tables204

S6 and S7). These data underline the robustness of the AuCoMe pipeline.205

For the fourth verification, we extracted the EC numbers of all reactions of the fungal and the206

algal dataset GSMNs for which GPR associations were only predicted by orthology. For each EC207

number, we extracted the associated protein sequence and used DeepEC (Ryu et al., 2019) to infer208

EC numbers and compared them to the EC numbers linked to the reaction by the pipeline. An209

enrichment of sequences confirmed by DeepEC is observed in robust GPR associations compared210

to those discarded by the filter: 26% vs. 4.8 % in the fungal dataset and 13.6% vs. 1.4% in211

the algal dataset (see Supplemental Fig S10). This confirms that the robustness filter removed212
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predominantly poorly supported reactions.213

In the fifth experiment, thirty-two datasets were formed, each containing the 29 bacterial E.214

coli and Shigella strains studied in Vieira et al. (2011), among them a replicate of the E. coli K–12215

MG1655 genome degraded to a variable extent in its functional and/or structural annotations216

(see Methods and Supplemental Table S4). The manually-curated EcoCyc database (Karp et al.,217

2018a) was used to check the reliability of the GSMN reconstructed for each corresponding degraded218

genome. For each of the 32 datasets, F-measures were computed at each AuCoMe step according to219

comparisons of the reconstructed GSMN with the gold-standard EcoCyc database (see Methods).220

Fig. 3A illustrates the number of reactions predicted by AuCoMe for the E. coli K–12 MG1655221

GSMN in each of the 32 synthetic bacterial datasets to assess the importance of each step in the222

homogenization of the GSMN sizes. Fig. 3B represents the F-measure for the corresponding dataset.223

As expected, the more the genomes were degraded, the lower the F-measures were. The orthology224

propagation alleviated this degradation for functionally degraded genomes (dataset labeled 1 to 10).225

And the structural verification step compensated the loss of annotation in structurally degraded226

genomes (datasets labeled 22 to 31). With both types of degradation (datasets 11 to 21), the227

combination of the two steps recovered lost reactions.228

Notably, even when 100% of the E. coli K–12 MG1655 functional and structural annotations229

are degraded, the information from the other 28 non-altered genomes enabled the recovery of 2,244230

reactions (Fig. 3A, dataset 31) and a F-measure of 0.60. Altogether, these results demonstrate that,231

by taking advantage of the annotations present in the other genomes of the considered dataset, Au-232

CoMe builds GSMNs with reactions even for genomes completely missing functional and structural233

annotations.234

Exploration of Calvin cycle and pigment pathways in algae235

The accuracy of the annotation transfer procedure by AuCoMe was further assessed using two236

pathways where there where clear biological expectations in the algal dataset. The Calvin cycle237

is a biochemical pathway present in photosynthetic organisms to fix CO2 into three-carbon sugars238
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composed of 13 reactions (MetaCyc identifier: CALVIN-PWY, Fig. 4).239

The three main AuCoMe steps are required to obtain a homogeneous view of this pathway in all240

organisms. The draft reconstruction (blue) and the orthology propagation (orange) steps provide241

most of the reactions. The robustness criterion (grey) applied during the orthology propagation step242

removed a GPR association with the reaction RIBULOSE-BISPHOSPHATE-CARBOXYLASE-243

RXN for the non-photosynthetic fungus Neurospora crassa. The structural verification step added244

one reaction (RIBULP3EPIM-RXN) for Porphyra umbilicalis (green square in Fig. 4). The G3P245

dehydrogenase reaction (1.2.1.13-RXN) had to be added manually in brown algae, diatoms and246

haptophytes because the canonical plastidial gene has been replaced by a cytosolic paralog (Liaud247

et al., 1997). Similarly, the EC number associated with the reaction SEDOBISALDOL-RXN was248

incomplete (only three digits) in the MetaCyc version used and not found in the 40 GSMNs, and249

therefore manually added to the 40 GSMNs (GPR associations are indicated in yellow in Fig. 4,250

for details, see Supplementary data).251

A similar analysis was performed on pathways producing phycobilins in five brown algae (Sup-252

plemental Fig S11). As for the Calvin cycle, reactions in the pathways were added during draft253

reconstruction, orthology propagation and spontaneous completion. The finding of those path-254

ways in brown algae may appear contradictory with the loss of associated phycobiliproteins during255

evolution (Bhattacharya et al., 2004). However, the retention of enzymes related to phycobilin256

biosynthesis is linked with their cooption from a role as photosynthetic pigments to a function of257

signaling within photoreceptors (Rockwell and Lagarias, 2017).258

Both of these analyses highlight the potential of AuCoMe to help understand metabolism and259

its evolution in a group of non-model organisms by predicting candidate GPRs and pathways.260

AuCoMe GSMNs are consistent with species phylogeny261

To further assess the predictions of AuCoMe and to explore biological features, we clustered the262

GSMNs of the algal dataset after the draft reconstruction as well as at the end of the pipeline263

by using the presence or absence of reactions in the GSMNs (see Fig. 5A). We compared these264
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clusterings with a phylogeny compiled from Strassert et al. (2021). The initial GSMNs produced265

from the annotations exhibited low consistency with the phylogenetic relationships. Even well-266

established phylogenetic groups like red algae or brown algae were not recovered. At this step, the267

principal factor leading to the repartition of points in the MDS was the heterogeneity of genome268

annotations. An ANOSIM test supports this as it was not able to differentiate the main phylogenetic269

groups (R=0, P-value=0.45). However, in the MDS made from the GSMNs after the final step270

of AuCoMe, we observed a clear separation between the known phylogenetic groups, supported271

by an ANOSIM test (R=0.811, P-value=1e-04). This is also visible in the dendrograms clustering272

the GSMNs generated by the complete AuCoMe pipeline, which was broadly consistent with the273

reference species phylogeny (Fig. 5B). There were only three higher order inconsistencies concerning274

C. paradoxa, for which the genome version deposited in GenBank fully lacked expert annotations275

(Price et al., 2012), G. theta, which belongs to Cryptophytes, for which the phylogenetic position276

is controversial (Strassert et al., 2021), and N. gaditana, which was the only representative of277

eustigmatophycean stramenopiles. The two other stramenopile groups, diatoms and brown algae,278

were represented by multiple species which likely minimizes errors linked with peculiarities of a279

single genome. There were also some minor inconsistencies in intra-group relationships, in green280

algae, diatoms, brown algae, and opisthokonts.281

An illustration of the efficiency of AuCoMe was the de novo reconstruction of the GSMN of282

the glaucophyte C. paradoxa. For the reconstruction of this GSMN, we used the initially published283

genome sequence, which contained only two functionally-annotated genes (Price et al., 2012). The284

draft reconstruction by AuCoMe enabled us to retrieve 1,675 GPRs, a number within the same285

range as the other species from the dataset. Accordingly, C. paradoxa branched at the basis of286

the dendrogram after the draft reconstruction step, whereas it moved to the archeplastids after287

the orthology propagation step. Even if the grouping of C. paradoxa within archeplastids with288

the streptophytes Chara braunii and Klebsormidium nitens does not reflect the phylogenetic rela-289

tionships, this shows that AuCoMe is a reasonable proxy for handling nearly unannotated genome290

sequences.291
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By exploring cluster of reactions shared in phylogenetic groups (as shown in Supplemental Fig292

S12), results of AuCoMe could pave the way to the identification of gene candidates for enzymatic293

reactions. We analyzed a cluster of fourteen reactions present in Cladosiphon okamuranus and294

Saccharina japonica but absent in other brown algae (see Supplemental Table S8). Among those295

fourteen reactions, twelve were enzymatic reactions assigned based on annotations, but orthology296

propagation in the AuCoMe pipeline identified only a subset of the potential orthologs (see Sup-297

plemental Table S9). A focus was made on the o-aminophenol oxidases. Comparative genomics298

analysis using sequences from additional BLASTP searches showed that potential homologs were299

present for the other brown algae (see Supplemental Fig. S13). The o-aminophenol oxidase family300

proteins present in the genome of E. siliculosus are predicted to be cytoplasmic, extracellular, or to301

target the membrane (see Supplemental Table S10), suggesting different roles depending on their302

subcellular localization. In this case, AuCoMe, with the support of more focused analyses, led to303

the identification of numerous candidate o-aminophenol oxidases in stramenopiles.304

By exploring the group of stramenopiles in the final GSMN dendrogram (Fig. 5B), we noticed305

that it grouped with the small unicellular alga G. theta, which belongs to the cryptophytes, usually306

grouping with the archeplastids or the haptophytes. Its plastid is derived from a secondary en-307

dosymbiosis event with a red alga (Curtis et al., 2012). The phylogenetic position of cryptophytes308

is unclear, but they have been suggested to be phylogenetically separate from haptophytes closer309

to the green algae lineage (Burki et al., 2012). To further examine the position of G. theta in310

our metabolic trees, we analyzed the presence/absence matrix of metabolic reactions to determine311

which of them most clearly linked G. theta to each of the three groups in question (stramenopiles,312

archeplastids, haptophytes). To this means we focused on reactions that distinguished at least two313

of these groups, i.e. that were present in at least 80% of the networks of at least one group, and314

absent from at least one other group (Supplemental Table S11). A total of 216 reactions met this315

criterion, 109 of which were found in G. theta and 107 were absent. We found that the network of316

G. theta shared the presence or absence of a similar number of distinctive reactions with all three317

groups: 120 with stramenopiles, 112 with haptophytes, and 101 with archeplastids.318
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Next, we examined the metabolic pathways represented by the reactions that associated G. theta319

with the three groups, focusing on pathways that were more than 50% complete. The metabolic320

networks showed, for instance, that G. theta, (i) like haptophytes in our dataset, possess parts of321

the mitochondrial L-carnitine shuttle pathway, (ii) like the stramenopiles, comprises the complete322

pathway of glycine betaine synthesis, and, (iii) like terrestrial plants, can synthesize carnosine. We323

also manually examined the genes associated with these reactions, and found that in all cases,324

their sequences differed strongly from other sequences in the database, and could not be clearly325

associated with either archeplastids, stramenopiles, or haptophytes (see Supplemental Table S12).326

These examples underline the fact that cryptophytes diverged from the other lineages early327

in the history of eukaryotes and support the hypothesis that the metabolic capacities of extant328

cryptophytes might reflect adaptation to their specific environment more clearly than their ancient329

evolutionary history.330

Discussion331

Numerous sequencing projects and available annotation approaches generate heterogeneously an-332

notated data. There is currently a need to homogenize annotations to make them comparable for333

wider scale studies. In this work we introduced a method to automatically homogenize functional334

predictions across heterogeneously-annotated genomes for large-scale metabolism comparisons be-335

tween species across the tree of life. We illustrated how the tool can be applied both to prokaryotes336

and eukaryotes, even with high levels of annotation degradation.337

Accounting for existing annotations in the inference of homogenized GSMNs338

Automatic inference of single species GSMNs is now routinely achieved, especially for prokaryotic339

species, and is often systematically performed for multiple genomes. With such data at hand,340

one may compare the predicted metabolism among related species from a given clade and subse-341

quently identify metabolic specificities or putative functional interactions in microbial communities342

(Machado et al., 2018; Frioux et al., 2018). Such applications require consistent genome quality and343
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similar data treatment (genome annotation, metabolic network reconstruction) to minimize biases344

in predictions. However, ensuring the latter is complex for eukaryotic genomes, as their enzymatic345

functions are difficult to characterize automatically and they often need expert annotation. More-346

over, annotation efforts can greatly vary between genomes, resulting in heterogeneous annotation347

and metabolic prediction quality. As the automatization of both (meta)genome reconstruction and348

annotation is now routinely applied, it is likely that efforts toward manual annotation will decline.349

However, we believe the need to manually curate annotations will remain (Karimi et al., 2021). In350

addition, AuCoMe could also be used to homogenize annotations in several genome versions of the351

same species, or to reconcile several annotations performed on the same genome.352

We have shown above that the performance of AuCoMe is superior to or on par with other com-353

monly used reconstruction pipelines, notably GapSeq, ModelSEED, and CarveMe. The originality354

of our metabolic inference method resides in the possibility to account for, and preserve, avail-355

able expert genome annotations. Not considering the genome annotations performed by specialists356

may lead to the omission of unique metabolic functions that are not well described in reference357

databases. On the other hand, comparing metabolic networks built from well-curated annotations358

to those built from poorly or automatically-annotated genomes will result in biases. In such cases,359

real metabolic differences between species cannot be distinguished from missing annotations in360

some genomes. AuCoMe constitutes a solution to such challenges through the propagation of ex-361

pert annotations to less characterized genomes in the process of metabolic network reconstruction.362

By accounting for possibly missing functional but also structural annotations in the input genomes,363

the resulting metabolic networks are homogeneous and can therefore be directly compared in both364

prokaryotes and eukaryotes.365

Method limitations and improvements366

AuCoMe incorporates several strategies to optimize the method’s selectivity and sensitivity. To-367

gether these strategies collectively achieve comparable GSMN reconstruction with two objectives:368

having comparisons as homogeneous as possible given the initial heterogeneity and incompleteness369
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of databases, and thus identifying errors that can be corrected during further analysis.370

A first limitation is illustrated by the comparison of AuCoMe reconstructions to the EcoCyc371

database considered as ground truth in our experiment. We observed that the GSMN automatically372

reconstructed from the reference genome substantially differs from the database. Extensive and373

systematic manual curation has been performed on this database since its creation in 1998 and we374

hypothesize that these efforts have not been all translated in the E. coli K–12 MG1655 annotations.375

As a result, several reactions were systematically missing from the automatic inferences provided376

by AuCoMe. This example illustrates the role of curation in producing high quality models. The377

homogenization of metabolic inference proposed by AuCoMe does not aim at replacing this step378

but rather enable an unbiased metabolic comparison between species.379

Running AuCoMe on the bacterial dataset highlighted the impact of a single highly-annotated380

genome on metabolic inference. This dataset included a single well-annotated reference genome381

of the E. coli K–12 MG1655 strain, which caused a number of reactions initially propagated by382

orthology from the E. coli K–12 MG1655 genome to others to be discarded by the AuCoMe fil-383

ter. Reasoning on ortholog clusters, the filter implies that several congruent genome sources are384

mandatory to confidently achieve an annotation propagation. While the relevance of the filter was385

demonstrated on the algal dataset by avoiding the propagation of annotations related to photo-386

synthesis to non-photosynthetic organisms, it may be too stringent in some applications. Several387

improvements of the filtering approach could be devised. For example, the structural annotation388

step could be improved: the annotation of pseudogenes in Shigella species would have been avoided389

by considering the annotations as pseudogenes available for the identified loci. More generally, in390

addition to the difficulties of automatically estimating protein homology, the link between orthol-391

ogy and conservation of function is still a matter of active investigation and methodological debate392

(Stamboulian et al., 2020; Begum et al., 2021).393

Finally, we want to emphasize that our attempts to limit the inference of false positive reactions394

also directed the choice of method for the initial draft metabolic inference. We used Pathway395

Tools because of its several advantages such as the capacity to work with eukaryotic genomes, the396
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suitability for parallel computing (Belcour et al., 2020a), and the possibility to limit gap-filling of397

metabolic networks. However, metabolic pathway completion performed by Pathway Tools does398

not systematically extend to ensuring the production of biomass. Pathway Tools was therefore399

adapted to our objective of avoiding to go beyond the strict interpretation of genome annotations.400

This goal was fulfilled, as attested by the benchmark shown in Supplemental Fig. S4 which confirms401

that AuCoMe GSMNs have by design no reaction lacking gene association.402

A typical use for genome-scale metabolic networks is their simulation, generally with flux-based403

approaches. As AuCoMe performs an homogenization step on GSMNs but does not provide de-novo404

annotation, using AuCoMe without further curation might lead to missing reactions in organisms.405

In addition, the complexity of eukaryotes and their strong dependency on their environment makes406

it difficult to provide a flux-based simulation-ready gap-filled model that would minimize the risk407

of adding false positives. For further simulation studies, GSMNs built with AuCoMe therefore408

still need to be gap-filled and curated (Karp et al., 2018b; Latendresse and Karp, 2018). However,409

regarding the reactions that are present in at least one GSMN reconstructed by AuCoMe, the tool410

ensures that their absence in other organisms is true. In that sense, AuCoMe reduces the need for411

curation.412

Biological insights on the comparison of metabolic networks across species413

Evolution414

Our examples of the Calvin cycle and phycobiliprotein synthesis demonstrate that, once all steps415

of the AuCoMe pipeline have been executed, the predicted metabolic capacities of the analyzed416

genomes reflect the biological knowledge we have of the corresponding organisms. Our approach,417

therefore, enables GSMNs to be compared in the light of evolutionary biology. The metabolic418

dendrograms calculated from final AuCoMe reconstruction are mostly consistent with reference419

species phylogeny. Indeed, numerous studies have shown that comparing GSMNs by computing a420

metabolic distance and arranging them into a dendrogram allows clustering organisms into groups421

close to the ones known by phylogenetic analysis. However, the position of species inside these422
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groups is often different from the one of the phylogenetic groups (Vieira et al., 2011; Bauer et al.,423

2015; Prigent et al., 2018; Schulz and Almaas, 2020). It furthermore gives support to the hypothesis424

of a metabolic clock based on the congruence between molecular and metabolomic divergence in425

phytoplankton (Marcellin-Gros et al., 2020). The difference observed in the tanglegram (Fig. 5B)426

between phylogeny and metabolic distances could be further explored. One possibility could be to427

look at different similarity measures for the clustering. In this work, the Jaccard distance has been428

used but other measures could be used. For example, if we consider an absence of a reaction in429

two organisms as a similarity (to represent the loss of a function) then other measures could be430

envisaged such as the Simple Matching Coefficient. This also opens the perspective of inferring431

ancestral metabolic networks to better understand the dynamics of character evolution across time432

(Psomopoulos et al., 2020).433

Adaptation434

The second aim of reconstructing comparable GSMNs is to determine to what extent metabolic435

changes are the result of or the prerequisite for adaptation. In our study, we made a first attempt436

at this question regarding the cryptophyte Guillardia theta. This species has several potentially437

plesiomorphic metabolic traits in common with other marine lineages, that may constitute adap-438

tations to their shared marine environment. Glycine-betaine, for instance, is known to be an439

osmoregulator or osmoprotectant in green plants (Di Martino et al., 2003), and carnosine has been440

proposed to function as an antioxidant in red algae (Tamura et al., 1998). Regarding carnitine, its441

physiological significance in photosynthetic organisms is still largely unknown, but antioxidant and442

osmolyte properties along with signaling functions have also been suggested (Jacques et al., 2018).443

However, for now, all of this remains purely hypothetical. To dig deeper into such questions in the444

future, we need to be able to distinguish changes that simply result from random processes such445

as metabolic drift (Belcour et al., 2020b) from changes that have an adaptive value. Currently, we446

envision two approaches that will help with this distinction. The first approach will be to further447

increase the number of species and lineages included in order to identify adaptive patterns, for448
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example to among organisms occupying similar ecologcial niches. In phylogenomics, wide taxon449

sampling is recognized as one of the key features for reliable comparisons (Young and Gillung,450

2020), whereas pairwise genomic comparisons across species are generally viewed as problematic451

(Dunn et al., 2018). Given that, as demonstrated above, phylogenetic signals in metabolism are452

stronger than the adaptive signals we can expect, this approach would also benefit from the devel-453

opment or adaptation of statistical models that could help detect signals of adaptation in an overall454

noisy dataset. Such models exist, for instance, to detect selective signatures in the evolution of455

protein-coding gene (Shapiro and Alm, 2008), but to our knowledge, have not been developed for456

metabolic networks or presence/absence signatures of genes. The second related strategy consists457

in focusing on phylogenetically closely related species that have only recently diverged and adapted458

to different environments. In such cases, we anticipate that the relative importance of drift along459

with the noise from the phylogenetic signal will be reduced due to the short evolutionary time since460

the separation. With such datasets, we may be able to reduce the level of replication required to461

find biologically relevant metabolic adaptations. The range of questions that could be addressed462

with the appropriate dataset is long and includes metabolic adaptations to different environments463

(Xu et al., 2020), food sources and domestication (Giannakou et al., 2020), multicellularity (Cock464

et al., 2010), or even life-history transitions to endophytism (Bernard et al., 2019).465

Interactions466

Lastly, we anticipate that AuCoMe will provide new opportunities to study metabolic interactions467

between symbiotic organisms. For example, the tentative o-aminophenol oxidase activities pointed468

out by AuCoMe in brown algae could be involved in the protection against pathogen attacks at469

the cell surface. Indeed, a molecular oxygen-scavenging function in the chloroplast (Constabel470

et al., 1995) and a defense role (Gand́ıa-Herrero et al., 2005) have been suggested for these enzymes471

in terrestrial plants. An o-Aminophenol Oxidase Streptomyces griseus is known to be involved472

in the grixazone biosynthesis, i.e. an antibiotic (Suzuki et al., 2006). Similarly, brown algal o-473

aminophenol oxidases or tyrosinases might be involved in the production of specific antibiotics.474
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The o-aminophenol oxidase enzymes resemble laccases or tyrosinases. They can be involved in475

catechol or pigment production by oxidation (Le Roes-Hill et al., 2009). Numerous references have476

also shown that tyrosinases are efficiently inhibited by some phlorotannins, antioxidant compounds477

specific to the brown algae (Kang et al., 2004; Manandhar et al., 2019) suggesting there might be478

a regulation of polyphenol oxidation in certain conditions.479

In the same vein, metabolic complementarity has previously been used to predict potentially480

beneficial metabolic interaction between a host and its associated microbiome (Frioux et al., 2018),481

and to successfully predict metabolic traits of the communities (Burgunter-Delamare et al., 2020).482

These studies have, so far, examined large numbers of symbionts (all sequenced and annotated with483

identical pipelines), but usually consider one specific host whose metabolic network was manually484

curated. With AuCoMe, these previous efforts could be expanded to incorporate a range of different485

hosts with their associated microbiota, thus facilitating the identification of common patterns in486

host-symbiont metabolic complementarity as well as their differences in these complementarities487

across different species and lineages. Just as for the question of adaptation, we believe this new488

scale of comparisons enabled by tools such as AuCoMe, will enable researchers to move from the489

study of specific examples to the identification of general trends, thus approaching the biologically490

most relevant evolutionary constraints.491

Methods492

Genomes and models493

The bacterial dataset includes the 29 bacterial Escherichia coli and Shigella strains studied in494

(Vieira et al., 2011), downloaded from public databases (see Supplemental Table S1).495

The fungal dataset includes 74 fungal genomes which were selected according to Wang et al.496

(2009) as representative of the fungal diversity, together with 3 outgroup genomes: Caenorhabdi-497

tis elegans, Drosophila melanogaster, and Monosiga brevicollis. All proteomes and genomes were498

downloaded from the NCBI Assembly Database (Kitts et al., 2016). See Supplemental Table S2.499

The algal dataset contains 36 algal genomes selected to represent a wide diversity of photosyn-500
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thetic eukaryotes and downloaded from public databases. The dataset includes 16 Viridiplantae501

(green algae), 5 Phaeophyceae (brown algae), 5 Rhodophyceae (red algae), 4 diatoms, 3 hap-502

tophytes, 1 cryptophyte (Guillardia theta), 1 Eustigmatophyceae (Nannochloropsis gaditana), 1503

Glaucophyceae (Cyanophora paradoxa). The genomes of C. elegans (Witting et al., 2018), Muco504

circinelloides (Vongsangnak et al., 2016), N. crassa (Dreyfuss et al., 2013), and S. cerevisiae (Lu505

et al., 2019) were selected as outgroup genomes (see Supplemental Table S3).506

Each annotated genome of the datasets was curated manually in order to make it compati-507

ble with Pathway Tools v23.5. Curated genomes are available at https://zenodo.org/record/508

7752449#.ZBhOpiOZN-E.509

AuCoMe, a method to reconstruct genome-scale metabolic networks homoge-510

nized across related species511

AuCoMe is a Python package implementing a pipeline whose steps are described in Fig. 1. The512

method aims at producing homogenized genome scale metabolic networks (GSMNs) for a set of513

heterogeneously-annotated genomes containing closely related or outlier species of a taxonomic514

group. AuCoMe takes as input GenBank files containing the genome sequences, the structural515

annotation of the genomes (gene and protein locations), the functional annotations (especially with516

GO terms and EC numbers) and the protein sequences. The output of AuCoMe is a set of GSMNs,517

provided in SBML and PADMET formats (Hucka et al., 2018; Aite et al., 2018). AuCoMe also518

produces a global report describing the sets of reactions added at all steps of the pipeline. The519

global panmetabolism, which is the complete family of metabolic reactions included in at least one520

GSMN of the set of genomes, is described in a tabulated file.521

At the initialization step the command aucome init creates a template folder in which the522

user puts the input GenBank files.523

The aucome reconstruction command runs the draft reconstruction step, which consists524

in reconstructing draft GSMNs according to the set of available genome annotations. During this525

step, the pipeline first checks the input GenBank files using Biopython (Cock et al., 2009). Then526

21

https://zenodo.org/record/7752449#.ZBhOpiOZN-E
https://zenodo.org/record/7752449#.ZBhOpiOZN-E
https://zenodo.org/record/7752449#.ZBhOpiOZN-E


using the mpwt package (Belcour et al., 2020a), AuCoMe launches parallel processes of the Patho-527

Logic algorithm of Pathway Tools (Karp et al., 2019). Pathway Tools creates Pathway/Genome528

Databases (PGDB) for all genomes. The resulting PGDBs are converted into PADMET and SBML529

files (Hucka et al., 2003, 2018) using the PADMet package (Aite et al., 2018). During this con-530

version, pathway hole reactions (reactions predicted by Pathway Tools for which no enzymes were531

detected in the genomes) are removed as they are not associated with a gene and are not sponta-532

neous reactions. For example, in Fig. 1A, the draft reconstruction step generates 6 GPRs in total533

for the 3 considered genomes.534

The aucome orthology command runs the orthology propagation step, which complements535

the previous GSMNs with GPRs associations whose genes are predicted to be orthologs to genes536

from GPR relations of other GSMNs of the dataset (Fig. 1B). To that purpose, the pipeline relies537

on OrthoFinder (Emms and Kelly, 2015, 2019) for the inference of orthologs defined as clusters538

of homologous proteins shared across species. For each pair of orthologous genes shared between539

two species, the pipeline checks whether one of the genes is associated with an existing GPR540

association. If so, a putative GPR association with the orthologous gene is added to the GSMN. At541

the end of the analysis of all genomes, a robustness score is calculated for assessing the confidence542

of each putative GPR association based on the number of annotated GPRs associations between543

the orthologs (see below). Non-robust GPR associations are not integrated in the final GSMNs. In544

the example shown in Fig. 1B, applying the robustness criteria leads to generating a putative new545

GPR association in the GSMN 2 (see the green orthogroup). In this example, the pipeline does546

not validate the GPR association related to the blue orthogroup because of insufficient annotation547

support.548

The aucome structural command runs the structural verification step to identify GPRs549

associated with missing structural annotations of the input genomes. This pipeline step comple-550

ments GSMNs with GPR associations from other GSMNs according to protein-against-genome551

alignment criteria. This enables the identification of reactions which are associated with gene se-552

quences absent from the initial structural annotations of the input genomes. A pairwise comparison553
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of the reactions in the GSMNs produced during the previous step is performed (Fig. 1C). In this554

comparison, if a reaction is missing in an organism, a structural verification will be performed.555

For each protein sequence associated with a GPR relation in a GSMN, a TBLASTN (Altschul556

et al., 1990; Camacho et al., 2009) with Biopython (Cock et al., 2009) is performed against the557

other genome. If a match (evalue<1e-20) is found, the gene prediction tool Exonerate (Slater and558

Birney, 2005) is run on the region linked to the best match (region +- 10 KB). If Exonerate finds559

a match, then the reaction associated with the protein sequence is added. In Fig. 1C, one reaction560

is added to the GSMN 2.561

The command aucome spontaneous runs the spontaneous completion step to fill metabolic562

pathways with spontaneous reactions, in order to complement each GSMN obtained after the563

structural-completion step with spontaneous reactions. For each pathway of the MetaCyc database564

(Caspi et al., 2020) that was incomplete in a GSMN, AuCoMe checks whether adding spontaneous565

reactions could complete the pathway. When this is the case, the spontaneous reaction is added to566

the GSMN. In Fig. 1D, two spontaneous reactions are added to the GSMN 1 and GSMN 3. Then567

the final PADMET and SBML files are created for each studied organism.568

Robustness criteria for GPR association predicted by orthology569

The robustness score of GPR associations of the pan-metabolic network after the orthology propa-570

gation was defined as illustrated in Algorithm 1 and detailed in the following. We denote by org(g)571

the organism of a gene g. For every pair of genes g1, g2 of two different organisms, we denote572

orth(g1, g2) = 1 if the genes are predicted to be orthologs. We denote by association(r, g) = 1573

a GPR association between a reaction r and a gene g which is predicted by the AuCoMe al-574

gorithm. When the gene-association is predicted by the draft reconstruction step, we denote575

annot type(r, g) = 1 (and zero otherwise). When the gene-association is predicted according to576

orthology criteria, we denote ortho type(r, g) = 1 (and zero otherwise).577

Let us consider now a reaction r of the pan-metabolic network. We denote by N org(r) the578

number of organisms for which the reaction r has been associated with a GPR relationship with579
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any gene g: N org(r) = #{org(g), association(r, g) = 1} (L2, Alg. 1). For every gene g with580

annot type(r, g) = 1, we denote by N prop(r, g) the number of organisms different from org(g) the581

GPR association between r and g has been propagated to according to an orthology relation with the582

gene g N prop(r, g) = #{org(g1), ∃g1 s.t. org(g1) 6= org(g), orth(g, g1) = 1, association(r, g1) =583

1}. The GPR association between r and g is considered robust: robust(r, g) = 1 as long as584

annot type(r, g) = 1.585

The robustness assessment of a GPR between r and g propagated by orthology (L7, Alg. 1)586

distinguishes two scenarios. In the first scenario g belongs to an orthology cluster which is supported587

by at least two annotations. Formally this means that there exist two genes g1 to g2, both orthologs588

to g, such that annot type(r, g1)= 1 and annot type(r, g2)= 1. The presence of these genes leads589

us to consider g robustly associated with r (L8-9, Alg. 1).590

In the second scenario the GPR association between r and g was propagated from a unique591

gene g1 with annot type(r, g1) = 1 in the orthology cluster (L11, Alg. 1). For these genes our592

strategy is to be as stringent as possible and we introduce a robustness criterion to reduce the risk593

of propagating false-positive reactions. The GPR association is considered robust if the number594

of organisms to which the reaction is propagated according to the annotation of g1 remains low595

with respect to the total number of considered organisms. More precisely, robust(r, g) = 1 if596

N prop(r, g1) ≤ drobust func(N org(r) − 1) × (N org(r) − 1)e (L12-13, Alg. 1). The robustness597

function robust func(t)(x) = min(1, 1x max(dt xe, d 5xe)) was chosen such that it is 1 for low values598

of N org, and then decreases to a threshold value (by default t = 0.05) for large values of N org599

(see a plot in Supplemental Fig S14).600

Altogether, the robustness criterion removes orthology predictions for GPR associations that601

are supported by a unique gene annotation and propagated to a large number of organisms. A toy602

example of the application of the algorithm is detailed in Supplemental Methods Section and Fig603

S15).604
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Algorithm 1 Robustness criterion algorithm
1: for r in panmetabolism do
2: N org(r)← #{org(g), ∃g1 s.t. association(r, g) = 1} . Number of organisms with GPRs relations to r
3: for all genes g s.t. annot type(r, g) = 1 do
4: robust(r, g) = 1
5: N prop(r, g)← #{org(g1), ∃g1 s.t. org(g1) 6= org(g), orth(g, g1) = 1, association(r, g1) = 1}. . Number

of organisms to which the GPR has been propagated to
6: end for
7: for all genes g s.t. annot type(r; g) = 0 and orth type(r; g) = 1 do . Only other way to add the reaction
8: if ∃ g1, g2 s.t. orth(g, g1) = orth(g, g2) = 1 and annot type(r, g1) = annot type(r, g2) = 1 then
9: robust(r, g) = 1 . At least two annotations support the GPR relation
10: else . Prevent the propagation of an isolated annotation to too many organisms
11: g1 ← unique gene s.t. orth(g, g1) = 1 and annot type(r; g1) = 1
12: if N prop(r, g1) ≤ robust func(N org(r)− 1)× (N org(r)− 1) then
13: robust(r, g) = 1
14: else
15: robust(r, g) = 0
16: end if
17: end if
18: end for
19: end for

Validation of AuCoMe predictions605

A first experiment was performed on the bacterial dataset, for which we reconstructed the metabolic606

networks (29 bacteria containing strains of Escherichia coli) using CarveMe 1.5.1 (Machado et al.,607

2018) with default parameters, gapseq 1.2 (Zimmermann et al., 2021) with default parameters608

and ModelSEED with Kbase. For the latter, we first imported the genomes and annotated them609

with ’Bulk Annotate Genomes/Assemblies with RASTtk - v1.073’ (Aziz et al., 2008; Overbeek610

et al., 2014; Brettin et al., 2015) and then reconstructed the models with ’Build Multiple Metabolic611

Models’ 2.0.0 (Henry et al., 2010). We compared the ECs predicted by these methods to the612

ones contained in a reference EC catalog for E. coli K–12 MG1655 created from 4 databases613

(KEGG, EcoCyc, ModelSEED and BiGG). For more information on the reference EC catalog, see614

Supplmentary file (section Methods).615

A second comparison was made on the eukaryotes and especially the fungal dataset (using five616

organisms: Laccaria bicolor, Neurospora crassa, Rhizopus oryzae, Saccharomyces cerevisiae S288C617

and Schizosaccharomyces pombe). We used Kbase (Arkin et al., 2018) and gapseq 1.2 (Zimmermann618

et al., 2021). The genomes were imported into Kbase and the metabolic networks were reconstructed619

with ’Build Fungal Model’ 1.0.0 (with gap-filling). We also used gapseq to predict the metabolic620

25



pathways present in an organism using its find module associated with the option ’-t Fungi’. We621

did not use CarveMe as it has been developed for Bacteria or Archaea (Capela et al., 2022). We622

compared the completion rate of metabolic pathways predicted by AuCoMe and gapseq. Then for623

Saccharomyces cerevisiae S288C, we used the reference network YeastCyc to estimate the quality624

of the pathways predicted by both gapseq and AuCoMe.625

In a third evaluation, one hundred random GPR associations were randomly selected and ex-626

amined across the metabolic networks generated by AuCoMe for the algal dataset. Among them,627

50 reactions that were predicted to be present and 50 reactions that were predicted to be absent in628

the metabolic networks. Regarding the former, their first associated gene was manually annotated629

based on reciprocal BLAST searches against UniProt (Bateman et al., 2021) and the presence630

of conserved domains and the result of this manual annotation was compared to the predicted631

metabolic reaction. For absent reactions, we searched for characterized proteins known to catalyze632

the reaction in question, and then performed reciprocal BLASTP searches with the corresponding633

algal proteome.634

A fourth experiment was performed to analyse the results of the orthology propagation and the635

robustness filter. DeepEC (version 0.4.0) (Ryu et al., 2019) was applied both to fungal and algal636

protein sequences. This tool predicts EC numbers for protein sequences. We extracted the EC637

numbers of reactions for which at least one GPR association was predicted according to orthology638

propagation for all reactions of the fungal and the algal datasets. For each EC number, we extracted639

the protein sequences associated with the considered reaction in the GSMNs, and we used DeepEC640

to infer an EC number for these proteins. Then we compared the EC number found by DeepEC641

(if found) to the EC number linked to the reaction by the pipeline.642

Finally, the complementarity between the orthology propagation step (second step) and the643

structural verification step (third step) was assessed using the E. coli K–12 MG1655 genome mod-644

ified to generate replicates with randomly degraded annotations associated with GPR of the non645

degraded E. coli K–12 MG1655 GSMN. Two degradation types were simulated, (i) a degradation646

of the functional annotations of the genes, where all the annotations like GO Terms, EC numbers,647
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gene names, etc. associated with a reaction were removed, and (ii) a degradation of the struc-648

tural annotation of the genes, where gene positions and functional annotations were removed from649

the genome annotations. A third type of replicate was considered including the degradation of650

both structural and functional annotations. Replicates with increasing percentages of degraded651

annotations were generated for each of the three types of degradation. Details on the degradation652

algorithm are shown in the Supplementary file (section Methods). Furthermore the taxonomic ID653

associated with the E. coli K–12 MG1655 genome was degraded to cellular organism, to focus on654

the impact of genome annotations on GSMN reconstructions by AuCoMe, rather than on the effect655

of the automatic completion by the EcoCyc source performed by Pathway Tools when analyzing656

E. coli K–12 MG1655 . Each degraded replicate was associated with the 28 other E. coli and657

Shigella genomes, generating 31 synthetic bacterial datasets, plus the dataset with non-degraded658

E. coli K–12 MG1655 genome, which was called dataset 0. Their characteristics are detailed in659

Supplemental Table S4. For each E. coli K–12 MG1655 replicate in a dataset, AuCoMe produced660

a GSMN, which was compared to EcoCyc, considered as ground truth (Karp et al., 2002, 2018a;661

Keseler et al., 2021). For more information on the computation of the F-measure, see Supplemental662

file (section Methods).663

Phylogenetic analysis of the brown algal o-aminophenol oxidases664

A dataset of 193 protein sequences was constructed using the closest homologs of the S. japonica665

o-aminophenol oxidase (SJ09941) in brown algae and extended to more distant sequences present666

in other organisms. Sequences were submitted to NGPhylogeny.fr via the ”A la carte” (Lemoine667

et al., 2019) pipeline. The alignment was carried out by MAFFT (Katoh and Standley, 2013)668

using default parameters and automatically cleaned with trimAl (Capella-Gutiérrez et al., 2009)669

to obtain 372 informative positions. Then a maximum likelihood phylogenetic reconstruction was670

carried out using default parameters of the PhyML-SMS tool (Guindon et al., 2010; Lefort et al.,671

2017) allowing the best substitution model selection. Bootstrap analysis (Lemoine et al., 2018)672

with 100 replicates was used to provide estimates for the phylogenetic tree topology. The Newick673
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file (Junier and Zdobnov, 2010) was further formatted by MEGA v10.1.1 (Tamura et al., 2021) to674

obtain the simplified dendrogram (see Supplemental Fig. S13).675

Supplemental Files and Software availability676

Supplemental Files677

Supplemental File The supplemental file contains the description of the datasets, additional678

details on the results on running times of the AuCoMe pipeline, the three panels of B, C, D, of679

Fig. 2, a detailed comparison with gapseq, ModelSEED and CarveMe on bacterial and fungal680

datasets (if it is feasible). It also includes information about validation of filtering steps and GPR681

associations, validation of EC numbers with deep-learning approaches, and two relevant biological682

analyses: to two pathways, to the consistency between AuCoMe GSMNs and species phylogeny.683

Moreover, it contains methodological details on the robustness criteria applied to a toy example,684

on the comparison to EcoCyc, and on the degradation of E. coli K–12 MG1655 genome to generate685

32 synthetic datasets. It also includes a description of the Zenodo archive.686

Additional file The associated archive contains analyses (all tabulated files used to create the687

figures and results of the paper), the datasets on which AuCoMe was run: the bacterial, fungal,688

and algal datasets, and the 32 synthetic datasets, which contain an E. coli K–12 MG1655 genome689

to which various degradations were applied, together with 28 other bacterial genomes. It contains690

a version of AuCoMe, PADMet source code, and the scripts used to run some figures. It is available691

at https://zenodo.org/record/7752449#.ZBhOpiOZN-E.692

Software availability693

AuCoMe is a Python package under GPL-3.0 license, available through the Python Package Index694

at https://pypi.org/project/aucome. The source code and the complete documentation are695

freely available at https://github.com/AuReMe/aucome and as a supplementary zip file.696

Running AuCoMe on the datasets studied in the paper required as dependencies BLAST v2.6.0697
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(Altschul et al., 1990), Diamond v0.9.35 (Buchfink et al., 2015), Exonerate v2.2.0 (Slater and698

Birney, 2005), FastME v2.1.15 (Lefort et al., 2015), MCL (Enright et al., 2002), MMseqs2 v11-699

e1a1c (Steinegger and Söding, 2017), OrthoFinder v2.3.3 (Emms and Kelly, 2015, 2019), Pathway700

Tools v23.5 (Karp et al., 2019). The following Python packages are needed to install AuCoMe:701

Matplotlib, mpwt v0.6.3 (Belcour et al., 2020a), padmet v5.0.1 (Aite et al., 2018), rpy2 v3.0.5,702

seaborn, supervenn, and tzlocal. The pvclust R package is also required.703

A docker or a singularity container can be created and enriched according to the dockerfile704

available on https://github.com/AuReMe/aucome/blob/master/recipes/Dockerfile.705
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Nègre D, Aite M, Belcour A, Frioux C, Brillet-Guéguen L, Liu X, Bordron P, Godfroy O, Lipinska944

AP, Leblanc C, et al.. 2019. Genome–scale metabolic networks shed light on the carotenoid945

biosynthesis pathway in the brown algae Saccharina japonica and Cladosiphon okamuranus.946

Antioxidants 8: 564. DOI:10.3390/antiox8110564.947

Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB,948

Simpson GL, Solymos P, et al.. 2020. vegan: Community ecology package.949

Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T, Edwards RA, Gerdes S, Parrello950

B, Shukla M, et al.. 2014. The SEED and the rapid annotation of microbial genomes using951

subsystems technology (RAST). Nucleic Acids Research 42: D206–214.952

Pitkänen E, Jouhten P, Hou J, Syed MF, Blomberg P, Kludas J, Oja M, Holm L, Pent-953
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Figure Legends1033

Figure 1 Reconstruction and homogenization of metabolisms with AuCoMe. Starting1034

from a dataset of partially structurally- and functionally-annotated genomes, AuCoMe’s pipeline1035
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performs the following four steps. A. Draft reconstruction. The reconstruction of draft genome-1036

scale metabolic networks (GSMNs) is performed using Pathway Tools in a parallel implementation.1037

B. Orthology propagation. OrthoFinder predicts orthologs by aligning protein sequences of1038

all genomes. The robustness of orthology relationships is evaluated (see Methods), and GPRs of1039

robust orthologs are propagated. C. Structural verification. The absence of a GPR in genomes1040

is verified through pairwise alignments of the GPR-associated sequence to all genomes where it is1041

missing. If the GPR-associated sequence is identified in other genomes, the gene is annotated, and1042

the GPR is propagated. D. Spontaneous completion. Missing spontaneous reactions enabling1043

the completion of metabolic pathways are added to the GSMNs. GSMN: Genome-scale metabolic1044

network. OG: orthologs. GPR: Gene-protein-reaction relationship. Outlines around GPR or1045

reactions indicate that the GPR or reaction is newly added during the corresponding step.1046

Figure 2 Application of the AuCoMe pipeline to the bacterial, fungal and algal1047

datasets of genomes. The summary table (A.) depicts the number of reactions identified for1048

each species at each step of the AuCoMe pipeline: reactions recovered by the draft reconstruc-1049

tion step (blue), unreliable reactions predicted by orthology propagation and removed by the filter1050

(gray), robust reactions predicted by orthology propagation that passed the filter (orange), addi-1051

tional reactions predicted by the structural verification step (green), and spontaneous completion1052

(red). The final metabolic networks encompass all these reactions except the non-reliable ones.1053

Panels B., C., D. illustrate the results for each genome of the three datasets. The panmetabolism1054

of each dataset (all the reactions occurring in any of the organisms after the final step of Au-1055

CoMe) is presented in brown in B, C and D. Organisms with gray labels are outgroups. See also1056

Supplemental Fig. S1, S2, and S3.1057

Figure 3 Efficiency of AuCoMe on degraded genome assemblies. (A) Number of1058

reactions in E. coli K–12 MG1655 degraded networks after application of AuCoMe to1059

32 synthetic bacterial datasets. Each dataset consists of the genome of E. coli K–12 MG16551060

to which degradation of the functional and/or structural annotations was applied, together with 281061

43



bacterial genomes. Each vertical bar corresponds to the result on the E. coli K–12 MG1655 within1062

a synthetic dataset, with the percentages of degraded annotations indicated below. The dataset1063

labelled 0 was not subject to degradation of the E. coli K–12 MG1655 annotations. Three types1064

of degradation have been performed: functional annotation degradation only (left side, datasets1065

labelled 1 to 10), structural annotation degradation only (right side, datasets labelled 22 to 31)1066

and both degradation types (middle, dataset labelled 11 to 21). The colored bars depict the1067

number of reactions added to the degraded network at the different steps of the method (the1068

blue, orange, green, grey and red color legends are as described in the figure 2). The table shown1069

as axis indicates the dataset number and the percentage of functional or structural annotation1070

impacted by the degradation for the corresponding column in both subfigures. (B) F-measures1071

after comparison of the GSMNs recovered for each E. coli K–12 MG1655 genome1072

replicates with a gold-standard network. Reactions inferred by each AuCoMe step for each1073

replicate were compared to the gold-standard EcoCyc GSMN, allowing for the computation of F-1074

measures. F-measures obtained after the draft reconstruction step, the orthology propagation step,1075

or the structural verification step are shown as blue circles, orange triangles, and green crosses,1076

respectively. The hashed rectangle from F-measure 0.79 to 1 highlights the values of F-measure,1077

which are unreachable because 1019 reactions in EcoCyc were not present in the panmetabolism of1078

the 29 non-degraded bacteria.1079

Figure 4 AuCoMe results on the Calvin cycle pathway in the algal dataset. AuCoMe1080

was applied to the dataset of 36 algae and 4 outgroup species (columns). Each row represents a1081

MetaCyc reaction of the pathway, the table shows whether it is predicted by AuCoMe: blue - draft1082

reconstruction, orange - robust reactions predicted by orthology propagation that passed the filter,1083

green - structural verification, and gray - non-robust reactions predicted by orthology propagation1084

and removed by the filter, black - not predicted, yellow - manually added because the MetaCyc1085

database 23.5 does not contain a reference gene-reaction association for this reaction.1086

Figure 5 AuCoMe as a tool to improve taxonomic consistency of GSMNs. A. MDS1087

44



plot for GSMNs calculated with the AuCoMe draft reconstruction step or after all AuCoMe steps.1088

In both cases, ANOSIM values are indicated below (MDS and ANOSIM were computed using the1089

vegan package (Oksanen et al., 2020)). B. Tanglegram evaluating the taxonomic consistency of1090

AuCoMe dendrograms based on metabolic distances using the pvclust package (Suzuki and Shi-1091

modaira, 2006) with the Jaccard distance (right side) in comparison with reference phylogeny (left1092

side), compiled from Strassert et al. (2021). Full lines join species for which the position in the1093

AuCoMe dendrogram is consistent with the reference phylogeny. Dotted lines join species for which1094

the metabolic dendrogram and the reference phylogeny diverge. A/C: Archeplastids/Cryptophytes,1095

A: Archeplastids, R: Rodophytes, Gr: Green algae, M: Mamiellales, Chla: Chlamydomonadales,1096

Sph: Sphaeropleales, T: Trebouxiophyceae, Chlo: Chlorellaceae, St: Streptophytes, Gl: Glauco-1097

phytes, C: Cryptophytes, H: Haptophytes, I: Isochrysida, D: Diatoms, S: Stramenopiles, B: Brown1098

algae, E: Ectocarpales, Ec: Ectocarpaceae, Ch: Chordariaceae, Op: Opistochonts, F: Fungi , As:1099

Ascomycetes.1100
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Figure 1: Reconstruction and homogenization of metabolisms with AuCoMe.
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Figure 4: AuCoMe results on the Calvin cycle pathway in the algal dataset.
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Figure 5: AuCoMe as a tool to improve taxonomic consistency of GSMNs.
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