Article Dans Une Revue Genome Research Année : 2023

Inferring and comparing metabolism across heterogeneous sets of annotated genomes using AuCoMe

Résumé

Comparative analysis of genome-scale metabolic networks (GSMNs) may yield important information on the biology, evolution, and adaptation of species. However, it is impeded by the high heterogeneity of the quality and completeness of structural and functional genome annotations, which may bias the results of such comparisons. To address this issue, we developed AuCoMe, a pipeline to automatically reconstruct homogeneous GSMNs from a heterogeneous set of annotated genomes without discarding available manual annotations. We tested AuCoMe with three data sets, one bacterial, one fungal, and one algal, and showed that it successfully reduces technical biases while capturing the metabolic specificities of each organism. Our results also point out shared and divergent metabolic traits among evolutionarily distant algae, underlining the potential of AuCoMe to accelerate the broad exploration of metabolic evolution across the tree of life.
Fichier principal
Vignette du fichier
Belcour2023.pdf (3.05 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Licence

Dates et versions

hal-04192851 , version 1 (15-09-2022)
hal-04192851 , version 2 (02-05-2023)
hal-04192851 , version 3 (31-08-2023)

Licence

Identifiants

Citer

Arnaud Belcour, Jeanne Got, Méziane Aite, Ludovic Delage, Jonas Collén, et al.. Inferring and comparing metabolism across heterogeneous sets of annotated genomes using AuCoMe. Genome Research, 2023, 33, pp.972 - 987. ⟨10.1101/gr.277056.122⟩. ⟨hal-04192851v3⟩
374 Consultations
172 Téléchargements

Altmetric

Partager

More