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We present

introduction

The aim of our note is to give short proofs of several classical interpolation theorems for derivatives of holomorphic functions in planar domains and bounded analytic functions in the open unit disk D. The main new result though is to prove such an interpolation theorem for the disk algebra A(D). As usual we denote by H(Ω) the set of holomorphic functions on a domain Ω ⊆ C.

Results by Mittag-Leffler and Germay

In a recent paper suitable for classroom-teaching, Steven Krantz gives in [8] a very short proof of Weierstrass's theorem that for every bounded domain Ω in C and every discrete sequence (z n ) of distinct points in Ω there exists a function g meromorphic in Ω and with poles of order p j at z j . He solved the inhomogenous Cauchy-Riemann equation ∂u = v in C, where v := ∞ j=1 a j ∂ϕ j (z)(z -z j ) -p j , and defines g := ∞ j=1 a j ϕ j (z)(z -z j ) -p j -u. Here the ϕ j are chosen so that ϕ j ∈ C ∞ c (C, [0, 1]), ϕ j = 1 in a small neighborhood of z j and such that the support sets supp ϕ j are pairwise disjoint. This gives a smooth function in Ω, as locally, the series actually comprises only one summand. But by choosing |a j | ≤ 2 -j M -1 j tending to 0 very fast, say

M j = max{||q j || ∞ , ||∂q j || ∞ , ||∂q j ||},
with q j (z) := ∂ϕ j (z)(z -z j ) -p j , v becomes a smooth function in C with compact support. So Krantz was able to use the fact that for every smooth function v with compact support in C the equation ∂u = v has a smooth solution in C (which has an easy proof). On the other hand, by using the more general result that for any smooth function v in a arbitrary domain Ω ⊆ C the equation ∂u = v has a smooth solution in Ω, too (see [11, Theorem 5.18]), one can obtain the general version of Mittag-Leffler's theorem, prescribing in particular the residue of g at its poles. Note that Res(g, z j ) = a j in case p j = 1 above. This approach is of course not new (see for instance [2]).

Theorem 2.1 (Mittag-Leffler). Let Ω ⊆ C be a domain. Given any discrete sequence (z n ) of distinct points in Ω and a sequence of polynomials p n ∈ C[z] without constant term, there is a meromorphic function g in Ω that has its poles at the z n and the principal parts p n ( 1 z-zn ); that is,

g(z) = p n 1 z -z n + h n (z),
where h n is meromorphic in Ω and holomorphic in z n . In particular, Res(g, z n ) = p n (0).

Proof. We may assume that (

z n ) is an infinite sequence. Let D(z n , ε n ) be pairwise disjoint open disks . Choose smooth functions φ n ∈ C ∞ c (C) with support contained in D(z n , ε n ) and such that φ n = 1 on D(z n , ε n /2). Then v(z) := ∞ n=1 p n 1 z -z n ∂φ n (z)
is smooth in Ω (note that, locally, this sum has only one summand). Let u be a smooth solution of ∂u = v in Ω (see [11, Theorem 5.18]). Then the function

g(z) := ∞ n=1 p n 1 z -z n φ n (z) -u(z)
is the desired function. Just observe that φ n = 1 and u is holomorphic in D(z n , ε n /2).

As a consequence one obtains the simplest version of the interpolation theorem:

Theorem 2.2 (The Mittag-Leffler Interpolation theorem). Let Ω ⊆ C be a domain. Given any discrete sequence (z n ) of distinct points in Ω and a sequence (w n ) of complex numbers, there is f ∈ H(Ω) with f (z n ) = w n for every n.

Proof. Let B ∈ H(Ω) have a simple zero at each z n and put

B n (z) := B(z)/(z -z n ). Take in Theorem 2.1, p n (z) = w n B n (z n ) z.
Then g has the form

g(z) = ∞ n=1 w n B n (z n ) ϕ n (z) z -z n -u(z). Now let f := gB.
Then f has a holomorphic extension to Ω and f (z n ) = w n for every n.

Next we deal with the more general interpolation theorem involving also derivatives and give a very simple proof. A nice proof, which is based on a general version of the Mittag-Leffler theorem, is given for instance in [15, p. 305] and [START_REF] Remmert | Funktionentheorie II[END_REF]. Note that a first proof seems to go back to Germay [6]. For the special case of bounded multiplicities we developed the following easy proof, solely based on Weierstrass's Nullstellensatz ([15, p. 303, Theorem 15.11] and Theorem 2.2.

As usual, for j ∈ N * = {1, 2, . . . }, f (j) denotes the j-th derivative of f and f (0) := f . We use the Faá di Bruno formula in its form given in [START_REF] Mortini | The Faà di Bruno formula revisited[END_REF] or [11, Appendix 54]: let

M j = {k = (k 1 , . . . , k j ) ∈ (N * ) j , k 1 ≥ k 2 ≥ • • • ≥ k j ≥ 1} be the set of ordered multi-indices in N * . Then for every f, g ∈ C n (R) (2.1) (f • g) (n) (x) = n j=1 f (j) (g(x)) k ∈M j |k|=n C n k g (k) (x) ,
where

C n k = n k i N (k, i)! .
Here

g (k) = g (k 1 ) g (k 2 ) • • • g (k j ) , n k is the multinomial coefficient defined by n k = n! k 1 !k 2 ! . . . k j !
, where |k| andN (k, i) is the number of times the integer i appears in the j-tuple k (i ∈ N * and k ∈ (N * ) j ). Let us note that for j = n there is a single n-tuple k ∈ M n with |k| = n, namely k = (1, . . . , 1), and that for this k, C n k = 1. We will apply this formula, together with the Leibniz rule

:= k 1 + • • • + k j = n,
(ab) (n) = n j=0 n j a (j) b (n-j) ,
to a function of the form

B n h = (z n • B)h.
Theorem 2.3 (Germay). Let Ω ⊆ C be a domain. Given any discrete sequence (z n ) of distinct points in Ω and N + 1 sequences (w

(j)
n ) of complex numbers (j = 0, 1, . . . , N ) there exists F ∈ H(Ω) with

F (j) (z n ) = w (j)
n for every n and j = 0, 1, . . . , N .

Proof. Let f ∈ H(Ω) be a solution to f (z n ) = w (0)
n for every n ∈ N and, as above, let B ∈ H(Ω) have a simple zero at each z n . We claim that there exist h j ∈ H(Ω) such that

F := f + N k=1 h k B k
is a solution to our generalized interpolation problem. We proceed inductively with respect to the order of the derivative. j = 1 We first construct h 1 so that F := f + h 1 B solves the interpolation problem for the first derivative. Since

F = f + h 1 B + h 1 B , evaluation at z n yields w (1) n = f (z n ) + h 1 (z n )B (z n ).
Since the zeros of B are simple, we just have to solve the interpolation problem

h 1 (z n ) = w (1) n -f (z n ) B (z n ) , n ∈ N.
j → j + 1 Suppose now that h 1 , . . . , h j have been determined where j < N . Consider F := F j + B j+1 h j+1 , where F j := f + j k=1 h k B k . As F j is known, evaluation of the (j + 1)-th derivative at z n yields

w (j+1) n = F (j+1) j (z n ) + (B j+1 h j+1 ) (j+1) (z n ). Now, due to the Leibniz rule, (B j+1 h j+1 ) (j+1) (z n ) = (B j+1 ) (j+1) (z n )h j+1 (z n )+0. More- over, Faá di Bruno yields that (B j+1 ) (j+1) (z n ) = (j + 1)!(B ) j+1 (z n ) 1 . Hence h j+1 is given as a solution to the interpolation problem (2.2) h j+1 (z n ) = w (j+1) n -F (j+1) j (z n ) (j + 1)!(B ) j+1 (z n ) .
This concludes the construction of the functions h k , k = 1, . . . , N . The function F := f + N k=1 h k B k now solves all N + 1 interpolation problems. For the j-th derivative, just note that F (j) = f (j) + j k=1 h k B k (j) + (B j+1 g) (j) for some g ∈ H(Ω). Since B j+1 g has a zero of order at least j + 1 at each z n , we are done.

Multiple interpolation in H ∞ (D)

Versions of the next result on multiple interpolation in H ∞ (D) appear in [7, [START_REF] Rosenbaum | Simultaneous interpolation in H2[END_REF][START_REF] Airapetjan | The property of being a base of certain biorthogonal systems in a complex domain[END_REF]3,[START_REF]Département de Mathématiques et Institut Élie Cartan de Lorraine[END_REF][START_REF] Videnskii | Multiple interpolation by Blaschke products[END_REF]17]. See also Nikolski's monograph [START_REF] Nikolski | Treatise on the shift operator Springer[END_REF], presenting the functional analytic viewpoint in terms of unconditional bases and related notions. An axiomatic approach to multiple interpolation problems was given in [17, Section 2]. In the same spirit as before, we now present a very simple proof of the result on interpolating derivatives. For the structure of the interpolating sequences in H ∞ (D) see [5] and [11, Section 27.3.B].

As we could not locate a proof of the following result in the literature, we present the simple argument.

Lemma 3.1. Let f ∈ H ∞ (D). Then for each n ∈ N * , (1 -|z|) n |f (n) (z)| ≤ n!||f || ∞ .
Proof. Let f r (z) := f (rz), 0 < r < 1. Then by the Cauchy integral formula and the fact that the Poisson integral

1 2π T 1 -|z| 2 |ξ -z| 2 |dξ| = 1, (1 -|z|) n |f (n) r (z)| = (1 -|z|) n n! 2πi T f r (ξ) (ξ -z) n+1 dξ ≤ ||f || ∞ n! n! 2π T (1 -|z|) n |ξ -z| n+1 |dξ| = ||f || ∞ n! 1 + |z| 1 2π T 1 -|z| 2 |ξ -z| 2 1 -|z| |ξ -z| ≤1 n-1 |dξ| ≤ ||f || ∞ n!. Now let r → 1.
Theorem 3.2 (Carleson-Katsnelson-Airapetjan-Dzhrbashyan-Videnskii-Vinogradov). Let (z n ) be an interpolating sequence in H ∞ (D) and B the associated Blaschke product. Suppose that for j = 0, . . . , N the N + 1 sequences (w

(j) n ) satisfy σ := max 0≤j≤N sup n (1 -|z n | 2 ) j |w (j) n | < ∞.
Then there is F ∈ H ∞ (D) with

F (j) (z n ) = w (j)
n for every n and j = 0, 1, . . . , N .

Proof. Let f ∈ H ∞ (D) be a solution to f (z n ) = w (0)
n for every n. We claim that there exist h j ∈ H ∞ (D) such that

F := f + N k=1 h k B k
is a solution to our generalized interpolation problem. As above, the functions h k are constructed inductively. We use the fact

that if f ∈ H ∞ with ||f || ∞ ≤ M , then sup z∈D (1 -|z| 2 ) n |f (n) (z)| ≤ 2 n n!M. Since (z n ) is an interpolating sequence, (1 -|z n | 2 )|B (z n )| ≥ δ > 0 (see [11, Theorem 27.35]).
Then the right hand side in (2.2) is bounded: in fact, if

F j := f + j k=1 h k B k , then M j := ||F j || ∞ < ∞, and so |w (j+1) n -F (j+1) j (z n )| (j + 1)!|(B ) j+1 (z n )| = (1 -|z n | 2 ) j+1 w (j+1) n -(1 -|z n | 2 ) j+1 F (j+1) j (z n ) (1 -|z n | 2 ) j+1 |(B ) j+1 (z n )| ≤ σ + 2 N N !M j δ j+1 < ∞.
Hence h j+1 is given as a bounded solution to the interpolation problem

h j+1 (z n ) = w (j+1) n -F (j+1) j (z n ) (j + 1)!(B ) j+1 (z n ) .
We conclude f + j k=1 h k B k + h j+1 B j+1 satisfies the first (j + 2)-interpolation problems. The procedure stops when j + 1 = N .

Multiple interpolation in A(D)

Let D = {z ∈ C : |z| ≤ 1} be the closed unit disk. The following lemma, fundamental to our new theorem, is well known for n = 1 (theory of little Bloch functions). For the readers' convenience, we present an elementary proof, which is a refinement of that for Lemma 3.1.

Lemma 4.1. Let f ∈ A(D). Then, for each n ∈ N * , lim |z|→1 (1 -|z|) n f (n) (z) = 0.
Proof. Case 1 Suppose that f (ξ 0 ) = 0 for some ξ 0 ∈ T. Fix ε > 0 and choose two open disks U and V so that

ξ 0 ∈ U ⊆ U ⊆ V and |f | < ε/(2n!) on V ∩ D.
Then δ := dist(U , T \ V ) > 02 . Let J := T \ V and I = T ∩ V . Then, for each ξ ∈ J and z ∈ U ∩ D we have |ξ -z| ≥ δ. Hence, due to the Cauchy integral formula,

(1 -|z|) n |f (n) (z)| = (1 -|z|) n n! 2πi T f (ξ) (ξ -z) n+1 dξ ≤ ε 2n! n! 1 2π I (1 -|z|) n |ξ -z| n+1 |dξ| + ||f || ∞ n! 1 2π J (1 -|z|) n |ξ -z| n+1 |dξ| = ε /2 1 + |z| 1 2π I 1 -|z| 2 |ξ -z| 2 1 -|z| |ξ -z| ≤1 n-1 |dξ| + ||f || ∞ n! δ n+1 (1 -|z|) n ≤ ε 2 + ||f || ∞ n! δ n+1 (1 -|z|) n ≤ ε whenever z ∈ U ∩ D and 1 -|z| < δ n+1 ||f || ∞ n! ε 2 . Hence lim D z→ξ 0 (1 -|z|) n |f (n) (z)| = 0.
Case 2 If f (ξ 0 ) = 0, consider the function g given by g(z) := f (z) -f (ξ 0 ). Thus we have shown that lim z→ξ (1 -|z|) n f (n) (z) = 0 for every ξ ∈ T. A compactness argument now yields the assertion.

By refining the method in Theorem 3.2 above, we obtain the following (to the best of our knowledge) new result on multiple/simultaneous interpolation in the disk algebra A(D). Let q ∈ C(E, C), w

n := q(z n ), and suppose that in the case where Λ is infinite, the N sequences (w

(j) n ),(j = 1, . . . , N ), satisfy (4.1) lim n→∞ (1 -|z n | 2 ) j |w (j) n | = 0.
Then there is

F ∈ A(D) with F | E = q and F (j) (z n ) = w (j)
n for every n and j = 0, 1, . . . , N . Proof. We first deal with the case where E ∩ D is infinite. Choose according to the A(D)-interpolation theorem ([11, Theorem 27.64]) a solution f ∈ A(D) with f | E = q. Let B be the interpolating Blaschke product with zeros {z n : n ∈ N}. Note that δ :

= inf n (1 -|z n | 2 )|B (z n )| > 0.
We shall prove the existence of functions h j ∈ A(D) with (Λ \ Λ) ∪ (E ∩ T) ⊆ Z(h j ) such that F := f + N j=1 h j B j solves the multiple interpolation problem. Note that h j B j ∈ A(D). Again, we proceed via induction: j = 1 We first construct h 1 so that F := f + h 1 B solves the interpolation problem for the first derivative. Since F = f +h 1 B +h 1 B, we have to solve the interpolation problem

h 1 (z n ) = w (1) n -f (z n ) B (z n ) = (1 -|z n | 2 )w (1) n -(1 -|z n | 2 )f (z n ) (1 -|z n | 2 )B (z n ) =: ω (1) n .
By assumption (4.1) and Lemma 4.1, ω

n → 0. Choose, according to Tietze's theorem, a continuous function q 1 on D such that q 1 (z n ) = ω (1) n and q 1 = 0 on (Λ\Λ) ∪ (E∩T) = E∩T.

Again, by the A(D)-interpolation theorem, there is h 1 ∈ A(D) with h 1 = q 1 on E. Hence φ 1 := f + h 1 B has the property that φ 1 ∈ A(D), φ 1 = q on E and φ 1 (z n ) = w [START_REF] Airapetjan | The property of being a base of certain biorthogonal systems in a complex domain[END_REF] n for all n. j → j + 1 This is a combination of the method here for j = 1 and the appropriate step in the proof of Theorem 2.3 (or 3.2). In the case where E ∩ D is finite, we just replace B by the associated finite Blaschke product.

Theorem 4 . 2 .

 42 Let E ⊆ D be a nonvoid closed set satisfying (i) E ∩ T has one-dimensional Lebesgue measure zero (may be empty) and (ii) Λ := E ∩ D is either finite, empty or an interpolating sequence (z n ) for H ∞ .

Another way to see this formula is in [17, p.

2455].

Note that δ depends on ε.
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