Amel Mammar
email: amel.mammar@telecom-sudparis.eu

Michael Leuschel
email: michael.leuschel@uni-duesseldorf.de

Modeling and Verifying an Arrival Manager using Event-B ⋆

Keywords: System modeling, Event-B method, Refinement, Verification

The present paper describes an Event-B model of the Arrival MANager system (called AMAN), the case study provided by the ABZ'23 conference. The goal of this safety critical interactive system is to schedule the arrival times of aircraft at airports. This system includes two parts: an autonomous part which predicts the arrival time of an aircraft from external sources (flight plan information, radar and weather information, etc.) and an interface part that permits to the Air Traffic Controller (ATCo) to submit requests to AMAN like changes regarding the arrival times of aircraft. To formally model and verify this critical system, we use a correct-by-construction approach with the Event-B formal method and its refinement process. We mainly consider functional features of the case study; all proof obligations have been discharged using the provers of the Rodin platform under which we carried out our development. To help users understand how AMAN works and its main functionalities, a visualisation of the Event-B models was achieved using the VisB component of ProB. Our models have been validated using ProB by applying scenarios related to different functional aspects of the system.

Introduction

In this paper, we introduce a formal model of the Arrival MANager system (called AMAN). This system has been provided as a case study in the context of the ABZ'23 conference. The main objective of the AMAN system is to help the Air Traffic Controller (ATCo) manage the arrival of aircraft approaching the considered airport by providing it with an arrival sequence. To predict the arrival times of aircraft, AMAN uses external sources like flight plan data, radar data, weather information, etc. The process of calculation of concrete arrival times itself is out of the scope of this paper, only its output is considered.

The AMAN system works in collaboration with the ATCo who can suggest some modifications on the arrival sequence to the AMAN. The ATCo can also block periods of time (for as runway cleaning for instance) notifying the AMAN that these time slots are no longer available; any predicated arrival corresponding to these slots must be thus moved. The ATCo also has the possibility to put an already predicted aircraft on hold, informing the AMAN that this latter must be removed from the arrival sequence. Finally, the interface permits to the ATCo to focus on specific aircraft that are predicted to land within the next minutes (between 15 and 45) by selecting a zoom level. In that case, only these related aircraft are displayed within the interface.

The present paper describes the formal modeling of the AMAN system using the Event-B formal method with its refinement technique that permits to master the complexity of a system by gradually introducing its different elements and characteristics. Building a formal model of such a system permits to verify the expected properties including the safety ones.

The rest of this paper is structured as follows. After a brief description of the Event-B method provided in the next section, Section 3 presents our modelling strategy. Then, Section 4 describes our model in more details. The validation and verification of our model are discussed in Section 5 along with a visualisation of the model using the VisB component of ProB. Section 6 compares our specification with an other model developed by a team of the Düsseldorf University. Finally, Section 7 concludes the paper.

Event-B Method

Introduced by J-R.Abrial as a successor of the B method [START_REF] Abrial | The B-book -assigning programs to meanings[END_REF], the formal Event-B method [START_REF] Abrial | Modeling in Event-B[END_REF] provides mathematical notations and concepts to develop correct-bydesign discrete systems. A system, developed by Event-B, is composed of a set of components, each of which can either be a context or a machine. Contexts describe the static part of the system and may contain constants and sets (userdefined types) together with axioms that specify their properties. A machine models the dynamic part in terms of variables and a number of events. The type of these variables and the properties that must be satisfied whatever the evolution of the system are specified as invariants using first-order logic and arithmetic.

Event-B allows for an incremental development of a system thanks to the refinement concept where machines are related by a refinement relation (refines) whereas the contexts are linked by an extension link (extends). A refined machine can introduce new variables, new events and/or new properties along with guard strengthening and nondeterminism reduction. A new event introduced in a model M ′ , which refines a model M , is considered to refine a skip event of M . Therefore, this new event cannot modify a variable of M . As a result, any event that needs to modify a variable v must be defined in the same model where v is first introduced.

The Event-B method is supported by the Rodin platform [START_REF] Consortium | [END_REF] that includes editors, provers and several other plugins for various tasks like animation and model checking with ProB [START_REF] Leuschel | From Animation to Data Validation: The ProB Constraint Solver 10 Years On[END_REF]. All these facilities and characteristics of the Event-B method and its support tool were useful for formal modeling and verifying the AMAN system. We have especially used ProB for the following purposes: (i) animating the built models with exhibiting the problematic behaviors that violate the invariant prior to the hard/long proof phase, (ii) validating the specification by simulating some scenarios in order to be sure that we have built the right system, (iii) building a visualisation of the models using its VisB component.

Modelling Strategy

Control Abstraction

In this paper, we use the concepts described by Parnas and Madey in [START_REF] Parnas | Functional Documents for Computer Systems[END_REF]. The AMAN system can be considered as a control system that reads information from the environment elements using sensors and uses a set of actuators to transmit the adequate orders to these elements.

A sensor measures the value of an environment element m, called a monitored variable (e.g., the desired arrival time of an aircraft, radar information), and provides this measure (e.g., the desired hour/minute) to the software controller as an input variable i. The objective of the commands, called output variable o sent to the actuators, is to modify the value of some characteristics of the environment, call a controlled variable c. Variables m and c are called environment variables. Variables i and o are called controller variables. Finally, a controller has its own internal state variables to perform computations. In this case study, we use Event-B state variables to represent both environment and controller variables. We model neither sensor/actuator failures nor their delays.

A well-known architecture of a control system is a control loop that reads all input variables at once, at a given moment, and then computes all output variables in the same iteration. But, it can be also viewed as a continuous system that can be interrupted by any change in the environment represented by a new value sent by a sensor. In this paper, we adopt an hybrid view: each 10 seconds, the AMAN reads various sensor inputs and makes a new prediction to display. Moreover, the AMAN instantaneously reacts to some ATCo's requests by updating the display. From the Event-B point of view, we define one event for each input corresponding to the ATCo's interaction and an additional event display representing the calculation and the display of a new prediction performed by the AMAN.

Modeling Structure

The Event-B specification presented in this paper is iteratively built using refinement. It is composed of 8 levels (8 machines and 2 contexts) and defines and uses a theory to deal with, among others, sequences, the absolute value, etc. Context C1 mainly defines the following constants: Labels to represent the aircraft, Hours, Minutes and Seconds to denote the possible values of these time units, zoomLevels representing the possible values for the zoom level. Context C1 is seen by the machine M1 that defines, among others, an event for determining and displaying the arrival times of aircraft and an event for selecting the zoom level. This machine is refined by the machine M2 that models the holding of an aircraft. Machines M3 and M4 respectively introduce the moving of a scheduled aircraft to change its arrival time and the blocking of time slots by the ATCo. Machine M5 represents the request of an aircraft for landing. Machine M6 models the interaction between the ATCo and the AMAN using the mouse. This machine sees the context C2 that defines some constants to describe a mouse in terms of its possible states (clicked, released) and also the different elements on which a mouse can click. Machine M7 models the historical functions that permit to the AMAN to provide the ATCo with the previous predictions. Finally, the machine M8 specifies the stop of the AMAN for failure for instance.

Roughly speaking, the structure of the developed Event-B specification is built as follows: the outputs (prediction and display of the arrival times) of the system are modeled first in the machine M1, then the inputs are modelled in a second step (Machines M2-M7). The inputs mainly correspond to the ATCo's interactions with the AMAN. Finally, the last level M8 model the failure of the AMAN.

Modeling Temporal Properties

Some effects of the ATCo's actions are not instantaneous and need a display update to be performed by the AMAN while calculating a new prediction. An example of such requirement is: "an aircraft put on hold must be removed, after a while, from the landing sequence". This requirement can be specified using an LTL formula but unfortunately Event-B does not include a native support the expression of LTL formula as part of the specification even if the ProB modelchecker can be used for that purpose by checking the LTL formulas on the Event-B specification, but it does not terminate for our model since the size of the state space to analyse is too large. Another option we considered is the use of the proof-based approach for temporal formulas proposed in [START_REF] Mammar | Proof-based verification approaches for dynamic properties: application to the information system domain[END_REF]. This approach would generate a large number of proof obligations for our model: one proof obligation per event. Therefore, we expressed such properties as invariants by adding extra variables that store the last moment at which the modifications are performed and specified that when the time progresses beyond this moment, the modifications become effective. For instance, to express the above requirement as an invariant, we have defined a variable holdT ime that is updated to be equal to the current time each time an aircraft is put on hold. Then, the requirement is expressed as follows:

inv1: ∀ hl. hl ∈ holdLabels ⇒ (holdTime(hl)=curTimeSec(curTimeS, curTimeM,curTimeH) ⇔ hl ∈ dom(arrivalM))
where holdLabels denotes the set of aircraft put on hold, dom(arrivalM) is the set of scheduled aircraft and currentTimeSec represents the current time in terms of seconds which is calculated from the current second (rep. minute, hour) curTimeS (resp. curTimeM, curTimeH) . The invariant inv1 specifies that a held label hl remains in arrival sequence (hl ∈ dom(arrivalM)) iff the time at which it is held is equal to the current time, that is, the AMAN does not process this label yet (since time has not elapsed).

Formalisation of the Requirements

Table 1 shows where and how the requirements listed in [START_REF] Palanque | AMAN Case Study[END_REF] are specified in our Event-B models. As one can remark, depending on the kind of the requirement, this later is specified as an invariant, a guard, an elementary variable (like the variable mouseState), an event with specific guards, etc. Requirements Req22 and Req23 for instance cannot be easily expressed as an invariant since it would require to introduce at least three additional variables: (i) a variable mouseStateP to store the previous state of the mouse, (ii) a variable mousePositionP to store the previous position of the mouse and (iii) a variable isEnabled to know whether the hold button is enabled or not. In that case, the invariant would be expressed as follows:

mouseStateP =clicked ∧ mousePositionP =hold mouseState=released ∧ mousePosition=hold ⇒ isEnabled = TRUE
We did not chose this option because these additional variables make the specification more complex; we have to manage their updates by each event. Finally, let us note that some requirements (Requirements Req17, Req18 and Req20) are not covered because they are related to the interface appearance and not to the system functionalities.

In addition to the requirements listed in Table 1, we have specified some additional properties that we consider of the good sense. For instance, we have specified that the requests are dealt with according to the FIFO strategy (First In First Out) to ensure fairness. More details are given in the next section.

Model Details

In this section, we give a brief description of some key levels of the Event-B modeling of the AMAN. The complete archive of the Event-B project is available in [START_REF] Mammar | Modeling and Verifying an Arrival Manager using Event-B[END_REF]. Our modeling makes the assumption that the AMAN predictions are done for a single day, that is, no aircraft is planed for the next day. Machine M6 Guard grd3 of the event holdLabel Req23 Table 1. Cross-reference between the components of our model and the requirements of [START_REF] Palanque | AMAN Case Study[END_REF]

Machine M1

Machine M1 models the prediction of the arrival times of aircraft (called labels in the rest of the paper) and its display on the screen. This machine defines the following invariants to characterise the possible arrival times of a set of labels where curTimeMin gives the time in terms of minutes:

inv1: arrivalM ∈ labels → Minutes ∧ arrivalH ∈ dom(arrivalM) → Hours inv2: ∀ l. l ∈ dom(arrivalM) ⇒ curTimeMin(arrivalM (l), arrivalH (l)) ≥ curTimeMin(curTimeM,curTimeH) inv3: ∀ l1, l2. l1 ∈ dom(arrivalH) ∧ l2 ∈ dom(arrivalH) ∧ l1 ̸ = l2 ⇒ abs(curTimeMin(arrivalM (l1), arrivalH (l1)), curT imeM in(arrivalM (l2), arrivalH(l2))) ≥ sep inv4: zoomLevel ∈ zoomLevels ∧ diplayedLabels ⊆ dom(arrivalH) inv5: diplayedLabels =(l. l ∈ dom(arrivalM) ∧ curTimeMin(arrivalM (l), arrivalH (l)) ≤ curTimeMin(curTimeM, curTimeH) + zoomLevel | {l})
Invariant inv2 states that the arrival time of an aircraft is later than the current time while inv3 ensures the security of passengers by separating the labels by at least sep minutes. Finally, the invariants inv4 and inv5 specify the set of labels displayed on the screen according to their arrival times and the selected zoom zoomLevel. Variable zoomLevel is an integer (between 15 and 45) that defines the display window of the labels: a label is displayed if its arrival time falls into this windows (inv5) . We have chosen to model the zoom functionality and the calculation of the label arrival times in the same level because both modify the variable diplayedLabels. As stated in Section 2, all events modifying a variables must be specified in the same machine where the variable is defined.

An other option would be to define the variables diplayedLabels and zoomLevel in an other refinement level. We did not choose this option because it adds an additional refinement level while including them in M1 does not add any complexity. Machine M1 also defines the event display as follows:

Event display = any landingLabs, labsToDisp, labsSch, arr, ns, nm, nh where grd1: landingLabs = (l.l ∈ dom(arrivalM where ns (resp. nm, mh) denotes the second (resp. minute, hour) unit of the current time plus 10 seconds. Roughly speaking, this event starts by calculating the set of labels that have already landed (Guard grd1), then it makes a prediction for a subset labsSch of others existing labels (Guards grd2 and grd3) by ensuring that the labels are separated by at least sep minutes (Guard grd4). Finally, it calculates the set of the labels to display according to their arrival times and the selected zoom (Guard grd5). Let us remark that the guard grd3 specifies that the predictions are made for the next 3 hours. We put this hypothesis in order to improve the ProB performance and make the animation of the models possible. According to the case study authors, such an assumption is very reasonable and is not a limitation of the model.

)∧ curT imeM in(nm, nh) > curT imeM in(arrivalM (l), arrivalH(l)) | {l}) grd2: labsSch ⊆ labels\landingLabs grd3: arr ∈ labsSch → curT imeM in(nm, nh)..curT imeM in(nm, nh)+180 grd4: ∀l1, l2. l1 ∈ dom(arr)∧l2 ∈ dom(arr)∧l1 ̸ = l2 ⇒

Machine M2

Machine M2 models labels put on hold. For that purpose, the following invariants are defined. Invariant inv1 types the introduced variables holdLabels and holdTime. Invariant inv2 states that the moment at which a label is put on hold must be before the current time. Finally, the invariant inv3 states that the holded labels remain in the landing sequence (hl ∈ dom(arrivalM))) while the AMAN does not make a new prediction and remove them.

inv1: holdLabels ⊆ labels ∧ holdTime ∈ holdLabels → N inv2: ∀ hl. hl ∈ holdLabels ⇒ holdTime(hl) ≤ curTimeSec(curTimeS, curTimeM, curTimeH) inv3: ∀ hl. hl ∈ holdLabels ⇒ (holdTime(hl)=curTimeSec(curTimeS,curTimeM, curTimeH) ⇔ hl ∈ dom(arrivalM))
Machine M2 defines an event holdLabel that permits to put on hold a displayed label l by adding it to holdLabels and updating holdTime to set the holding time of l to the current time.

Event holdLabel = any l where grd1: l ∈ dom(arrivalM) \ holdLabels then act1: holdLabels := holdLabels ∪ {l } act2: holdTime(l) := curTimeSec(curTimeS, curTimeM, curTimeH) end Event display is refined by adding the guard (labsSch ∩ holdLabels=∅) in order to maintain the invariant inv3 by removing the held labels from the arrival sequence.

Machine M3

Machine M3 models the request of the ATCo that would like to change the arrival time of a label by defining the following invariants. Invariant inv1 states that only scheduled labels, which are not put on hold, can be moved and new arrival times are suggested by the ATCo (Invariant inv2). Invariants inv3 and inv4 model the requirement Req5 to avoid overlapping labels. Finally, the invariant inv5 specifies that a label that would land in the next ten seconds cannot be moved.

inv1: movedLabels ⊆ dom(arrivalM) \ holdLabels inv2: newArrivalM ∈ movedLabels → Minutes ∧ newArrivalH ∈ movedLabels → Hours inv3: ∀ x, y. x ∈ dom(newArrivalM) ∧ y ∈ dom(newArrivalM) ∧ x ̸ = y ⇒ curTimeMin(newArrivalH (x), newArrivalM (x)) ̸ = curTimeMin(newArrivalH (y), newArrivalM(y)) inv4: ∀ x, y. x ∈ dom(newArrivalM) ∧ y ∈ dom(arrivalM) ∧ x ̸ = y ⇒ curTimeMin(newArrivalH (x), newArrivalM (x)) ̸ = curTimeMin(arrivalH (y), arrivalM (y)) inv5: ∀ l. l ∈ movedLabels ⇒ curTimeSec(0,arrivalM (l),arrivalH (l))> curTimeSec(curTimeS, curTimeM, curTimeH)+ step
As stated in the requirement document, a moving request might be rejected by the AMAN if it would require a speed up of the aircraft beyond the capacity of the aircraft. To model such a requirement, we added the following guards to the event display that specify that the labels that cannot be moved must keep their original arrival times (guard grd2), whereas others are moved to the new ones (guard grd3). Function canBeMoved permits to abstract from the details and calculations made by the AMAN to decide whether a label can be moved or not. Such details can be introduced later by refining this function. As the requirement document does not give enough information about this point, we kept the function canBeMoved in its abstract form.

grd1: canBeMoved ∈ movedLabels → BOOL grd2: canBeMoved -1 [{TRUE}] ◁ arr = (λ x. x ∈ canBeMoved -1 [{TRUE}] | curTimeMin (newArrivalM (x),newArrivalH (x))) grd3: canBeMoved -1 [{FALSE}] ◁ arr = (λ x. x ∈ canBeMoved -1 [{FALSE}] | curTimeMin (arrivalM (x),arrivalH (x)))
Machine M3 is refined by the machine M4 to model the blocked slots. As its Event-B modeling is very similar to that of held labels, this paper does not give more details about the machine M4.

Machine M5

The machine M5 models the flights approaching an airport as an injective sequence of requests submitted to the AMAN (Invariants inv1 and inv2). For that purpose, we have specified a theory to define the sequence data strucutre along with its associated operations like inserting/deleting elements.

inv1: requests ∈ seq (labels \ (dom(arrivalM) ∪ holdLabels))

inv2: ∀ x, y. x ∈ dom (requests) ∧ y ∈ dom (requests) ∧ x ̸ = y ⇒ requests(x) ̸ = requests(y)
Machine M5 also defines an event to add/delete requests. Moreover, we have added the following guards to the event display: the guard grd1 states that the AMAN should predict arrival times for the labels having made requests and the already scheduled labels that are not made on hold or landed. The guard grd2 specifies the FIFO strategy for requests processing. Guard grd3 states that the requests are scheduled after any label scheduled in the past unless it has been moved by the ATCo.

grd1: labsSch=(ran(requests) ∪ dom(arrivalM)) \ (landingLabs ∪ holdLabels) grd2: ∀ x, y. x ∈ dom(requests) ∧ y ∈ dom(requests) ∧ x > y ⇒ arr (requests(x))>arr (requests(y)) grd3: ∀ l1, l2. l1 ∈ (dom(arrivalM) ∩ dom(arr

)) \ canBeMoved -1 [{TRUE}] ∧ l2 ∈ ran(requests) ⇒ arr (l2)> arr (l1)
It is worth noting that including the guard grd2 in this machine does not yet permit to verify that requests processing is fair. Indeed, an invariant modeling this property must be added to the specification. As such a property depends the two consecutive states of the system, we postpone its specification to the level M7 where historical variables are defined (see Section 4.6).

Machine M6

This machine models the interactions of the ATCo with the AMAN using the mouse. Context C1 is extended by the context C2 that defines the sets Elements as a partition of Labels, the button hold the slide-bar for changing the zoom and nothing to model the mouse that clicks on any other zone of the interface. A set representing the possible states of the mouse is also defined: ax1: partition(mouseStates, {released }, {clicked }) ax2: partition(Elements, Labels, {nothing}, {hold }, {zoom})

In the machine M6, we introduced two additional variables clickedElement and se-lectedElement to respectively denote the element the mouse clicks on or selects. Both variables belong to ((diplayedLabels∪ {nothing, hold, zoom}) \ holdLabels). We also describe a set of events to model the behavior of the mouse like clicking on or selecting an element. Event holdLabel is refined by: Event holdLabel = refines holdLabel where grd1: selectedElement ∈ dom(arrivalM) \ holdLabels grd2: selectedElement / ∈ movedLabels grd3: mousePosition=hold ∧ mouseState=clicked with l: l =selectedElement then act1: holdLabels := holdLabels ∪ {selectedElement} act2: holdTime(selectedElement) := . . . act3: selectedElement := nothing act4: clickedElement := nothing act5: mouseState := released end

The refinement of the event holdLabel states that the label l to hold denotes the label selected by the mouse (the with clause). To put the selected label on hold, the guard grd3 specifies that the mouse must be in the state clicked and positioned on the hold button.

Machine M7

As stated before, in the machine M5, we have added a guard to the event display to specify that the requests must be dealt with according to the FIFO strategy. However, it lacks an invariant that permits to verify that such a requirement is correctly modelled. As this requirement is dynamic, it is modeling required adding variables that store the previous states of requests as follows:

inv1: requests_T ∈ (k. k ∈ N ∧ step × k ≤ curTimeSec(curTimeS, curTimeM, curTimeH) | {step × k }) → seq(Labels) inv2: requests_T (curTimeSec(curTimeS, curTimeM, curTimeH))=requests inv3: requests_H_T ∈ (k. k ∈ N ∧ step × k ≤ curTimeSec(curTimeS, curTimeM, curTimeH) | {step × k }) → seq(Labels) inv4: ∀ a, b• a ∈ N ∧ a + step → b ∈ requests_H_T ⇒ a → b ∈ requests_T
-Variable requests_T stores the requests received by the AMAN during the current cycle (the last ten seconds). This is expressed by the invariant inv2. -Variable requests_H_T permits to store the requests received by the AMAN during the previous cycle. This is expressed by the invariant inv4.

Even if the variable requests_T may seem redundant with the variable requests, but it is required because the variable requests is made empty, by the event display, at end of a cycle. The FIFO strategy is specified by the following invariant:

∀ l1, l2. l1 ∈ ran(requests_H_T (curTimeSec(curTimeS, curTimeM, curTimeH))) ∧ l2 ∈ ran(requests_H_T (curTimeSec(curTimeS, curTimeM, curTimeH))) ∧ (requests_H_T (curTimeSec(curTimeS, curTimeM, curTimeH))) -1 (l1) < (requests_H_T (curTimeSec(curTimeS, curTimeM, curTimeH))) -1 (l1) ⇒ curTimeMin(arrivalM (l1),arrivalH (l1)) < curTimeMin(arrivalM (l2),arrivalH (l2))
In the same manner, we have added historical variables to store the sets of labels put on hold or moved during a given cycle. Such variables allows us to answer requirements Req9-Req13 but also to specify the dynamic properties that depend on current and previous values of variables. It is in this machine that we have expressed that an already scheduled label l is not moved unless requested by the ATCo or its slot becomes blocked or an other label is scheduled too close to l (less than 3 minutes). This property ensures that a label is not unnecessarily moved.

Validation and Verification

To verify the correctness of our models and ensure that we built the right system, we have proceeded into three steps detailed hereafter.

Model Checking of the Specification

As one can remark, some refinement levels contain invariants that depend on several variables. In that case, it becomes quite difficult to find the right specification (guards/actions) the first time. The ProB model checker has proven very useful in finding actions/guards to add to some events in order to establish these invariants. Basically, before performing the proof that may be tedious, we used the ProB model checker to exhibit some possible scenarios that violate the invariant. A scenario is a sequence of events that, starting from a valid initial state of the machine, leads to a state that violates the related invariant. Analysing such scenarios helps us to correct the specification by adding guards/actions to some events but also sometimes to revise the invariants. For this particular case study, the use of ProB helps us find the invariants corresponding to the following dynamic properties but also the guard and the actions to add to the event display: AMAN should remove (resp. reschedule) the labels made on hold (resp. moved) by the ATCo during the last 10 seconds. Model checking/animation with ProB also helped us in specifying the historical states of the system (Machine M7).

Proof of the Specification

Even if ProB does not find any scenario that violates the invariant, this does not mean that the models are correct. Indeed, ProB works with a timeout that may prevent us from finding complex scenarios with more events. Therefore, this step aims at verifying that each event does preserve the invariant and that the guard of each refined event is stronger than that of the abstract one. These proof obligations are automatically generated by Rodin. Figure 1 provides the proof statistics of the case study: 349 proof obligations have been generated, of which 35% (124) were automatically proved by the various provers. The interactive proof of the remaining proof obligations took about one week since they are more complex (in particular those that depend on the historical variables) and require several inference steps and need the use of external provers (like the Mono Lemma prover, Dis-prove with ProB and STM provers). During an interactive proof, users ask the internal prover to follow specific steps to discharge a proof obligation. A step proof consists in applying a deductive rule, adding a new hypothesis that is in turn proved or calling external provers. The external Mono Lemma prover ha been very useful for arithmetic formulas, even if we had to add the following theorem on the modular operator:

∀ x, y. x ∈ N ∧ y ∈ N ⇒ x = x mod y + x ÷ y × y
It is worth noting that performing interactive proofs does not decrease the confidence of the models since the proofs are discharged under the Rodin platform by enriching the prover only by theorems that are proved as well.

Validation with Scenarios

Defining and playing scenarios on a specification permit to verify whether we have built models that behave as expected. Unfortunately, the requirement document does not provide any scenario that would help us in such a task. Therefore, we have defined our own scenarios based on our understanding of the system. Basically, we have defined a validation scenario for each AMAN functionality and ATCo interaction. Using the animation capability of ProB, we have checked, among others, the following behaviours:

moving a label l1 to a slot that does not respect the 3 minutes separation with an other label l2: in that case, the AMAN also moves l2 and its neighbours to maintain this security requirement. -putting a label on hold results in removing it from the landing sequence: such an effect is not instantaneous; it performed by the AMAN in the next processing cycle. selecting a zoom level does display only the labels that are scheduled in the corresponding slot (next (current time + zoom) minutes). Contrary to the previous scenarios, the effect of this ATCo action is instantaneous.

Visualisation

A Visualisation of the model was achieved using the VisB [15] component of ProB.

The visualisation uses a SVG graphics file and a JSON glue file. The latter contains a mapping between the B model and the graphics file. We reused the SVG file developed for another model Event-B model [START_REF] Stock | Modeling and analysis of a safety-critical interactive system through VOs[END_REF] (cf. below), and adapted the JSON glue file for the model of this article. VisB files also contain an optional header of local definitions; we also used these to mimic variables from the other Event-B model. For example, the definitions header contains this entry, mimicking a boolean variable from [START_REF] Stock | Modeling and analysis of a safety-critical interactive system through VOs[END_REF]: { "name": "no_airplane_is_selected", "value": "bool(selectedElement=nothing)" }, This VisB item uses that definition to set the visibility attribute of the hold button (visible in Figure 2). { "id": "bt_hold", "attr": "visibility", "value":"IF no_airplane_is_selected=TRUE THEN \"hidden\" ELSE \"visible\" END" },

The VisB file also associates the event holdLabel with the hold button; i.e., it is executed when the button is clicked. The hold button itself is defined in the SVG file accompanying the VisB file: <rect id="bt_hold" fill="black" width="120" height="30" x="650" y="500"/> Another interesting aspect is that validation traces can be exported to standalone HTML files using ProB. These traces can be reused to step through the traces and inspect the visualisation and the variable values, without access to either ProB, Rodin or the Event-B model. We used those HTML trace files as a means of (email) exchange between ourselves, e.g., to point out and discuss tricky aspects of the models. (Some of these traces will be uploaded to [START_REF] Mammar | Modeling and Verifying an Arrival Manager using Event-B[END_REF] for reference.)

Discussion

In a companion paper [START_REF] Stock | Modeling and analysis of a safety-critical interactive system through VOs[END_REF] an Event-B model was developed independently. 3 The models have very different refinement strategies, as can be guessed from looking at Figure 3. Our most abstract model (on the top left in Fig. 3) already has four events and the concepts of labels and zooming, while the most abstract model of [START_REF] Stock | Modeling and analysis of a safety-critical interactive system through VOs[END_REF] has just one event and zooming is only added in machine M4. The models also have a quite different set of variables (M8 of our model has 30 variables, the comparable M9 of [START_REF] Stock | Modeling and analysis of a safety-critical interactive system through VOs[END_REF] has 17 variables). Still, as seen above, we were able to reuse its VisB visualisation for our model.

Our development models the current time (as three variables for hours, minutes and seconds), which increases during execution (of the autonomous AMAN event display). This is better for simulation, but more tricky for model checking as the full state space is automatically infinite (unless we restrict model checking to a particular time interval). In the companion model we normalize the current time to 0; in other words, all times are relative to the current time (cf. [START_REF] Rehm | Proved Development of the Real-Time Properties of the IEEE 1394 Root Contention Protocol with the Event B Method[END_REF] or [START_REF] Lamport | Real-time model checking is really simple[END_REF]). In addition, the other model only models time as relative minutes, abstracting away both hours and seconds. The use of relative time makes state space finite, but for deeper levels it is too large without other restrictions as well (we have 2 45 values already just for blocking time slots).

In this article, we have used the theory plugin [START_REF] Butler | Practical theory extension in Event-B. In: Theories of Programming and Formal Methods -Essays Dedicated to Jifeng He on the Occasion of His 70th Birthday[END_REF] to deal with sequences and with differences in time expressed in minutes, hours and seconds. The theory also contains an absolute value function, which is encoded in a context in [START_REF] Stock | Modeling and analysis of a safety-critical interactive system through VOs[END_REF] (which is possible, as the function is not polymorphic). The sequence operations were encoded "by hand" in [START_REF] Stock | Modeling and analysis of a safety-critical interactive system through VOs[END_REF] using relational operators.

In this model, we have also two special elements nothing and hold, while the other model only has airplane elements and encodes the special values via sets. E.g., selectedElement=nothing corresponds to selectedAirplane = ∅ in [START_REF] Stock | Modeling and analysis of a safety-critical interactive system through VOs[END_REF]. The set encoding requires an additional invariant card(selectedAirplane) ≤ 1 in [START_REF] Stock | Modeling and analysis of a safety-critical interactive system through VOs[END_REF]. On the one hand, this makes it easier to adapt the model to allow selecting multiple airplanes later, but on the other hand induces a few more well-definedness POs (due to the use of card), which were surprisingly tedious to discharge. We did not notice any fundamental differences otherwise.

Conclusion

In this paper, we presented an Event-B formal model of the Arrival MANager system (called AMAN), the case study provided in the ABZ2023 conference. Our specification takes most requirements into account and defines additional ones that are considered of the common sense like a fair processing of landing requests. Compared to previous case studies proposed in the ABZ conferences, this present case study contains less invariants (65 invariants) but most of them are dynamic and require thus the introduction of several auxiliary variables to store the previous system state (Machine M7). This implies the definition of additional invariants to relate the before and current value of each variable. These additional invariants produce a great number of proof obligations since we have to establish that each event maintains these invariants. For this particular case study, the expression of invariants that depend on the previous state proved to be difficult since variables are interrelated: at the instant t, the arrival times of aircraft depend on the moved labels, requests and aircraft put on hold during the last 10 seconds (at the instant (t-step)). The use of ProB helped us in defining the correct expression of these invariants by model checking invariants and simulating some scenarios to validate/fix them. The user-friendly graphical visualisation makes the validation phase easier.

Compared to the previous ABZ case studies [START_REF] Mammar | An event-b model of an automotive adaptive exterior light system[END_REF][START_REF] Mammar | Modeling a landing gear system in event-b[END_REF], the present case study is timedependent. Indeed, its main objective is to assign arrival times to aircraft; this is why we introduced timed aspect from the first specification level along with the event display that makes the time evolve.

As future work, we plan to study and model how AMAN can decide whether a label can be moved or not. For this purpose, we can make the assumption that an arrival time interval is associated with each label. In that case, AMAN would allow the moving of a label iff it remains within its associated interval. Unfortunately, we fell short of time to deeply investigate this solution. Future improvements also include exploring the use of decomposition plugins available in Rodin for structuring the built models into smaller and thus more manageable units. We can see the system as a set of independent parts (each of them corresponding to a single ATCo interaction) and the AMAN as a root part that uses their information to calculate a new prediction.

 abs(arr(l1), arr(l2)) ≥ sep grd5: toDisp = (l. l ∈ dom(arr) arr(l) ≤ curT imeM in(nm, nh) + zoomLevel | {l}) grd6: . . . then act1: diplayedLabels := toDisp act2: arrivalM := (λll ∈ dom(arr) | arr(l) mod 60) act3: arrivalH := (λll ∈ dom(arr) | arr(l) ÷ 60) act4: curT imeS := ns act5: curT imeM := nm act6: curT imeH := nh end

Fig. 1 .

 1 Fig. 1. Rodin proof statistics of the case study

Fig. 2 .

 2 Fig. 2. Visualising the state of the model (M8) using ProB and VisB

Fig. 3 .

 3 Fig.3. The event refinement hierarchies of our model (top) and of the companion model[START_REF] Stock | Modeling and analysis of a safety-critical interactive system through VOs[END_REF] bottom (generated by ProB)

⋆ This work was supported by the ANR projet DISCCONT

The model of this paper was developed by the first author; the second author only intervened in the validation and verification, not in the writing of this model.

Acknowledgements We would like to thank Fabian Vu for developing the VisB visualisation of the companion model.