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Based on the axiom of choice we revisit a method to prove in simply connected domains the existence of a holomorphic function with prescribed zeros. 9.6.2022

introduction

Our classroom note is motivated by Steven Krantz's paper [5] in the Math. Magazine where he gave a very short proof of one of Weierstrass's theorems that for every bounded domain Ω and every discrete sequence (z n ) of distinct points in Ω there exists a function g meromorphic in Ω and with poles of order p j at z j . In the sequel, let N = {0, 1, 2, . . . } and N * = N \ {0}.

As we couldn't recap the small modifications claimed there to obtain in a similar way Weierstrass's Nullstellensatz, we developed an approach by deducing the latter from the meromorphic case whenever Ω is simply connected (the reverse procedure is of course trivial; just put g = 1/f ). Only later we were informed that this approach actually was the original one given by Mittag-Leffler and is for instance in [1, p. 248], [3, p. 391], or [4, p. 226].

For an elegant and direct proof of Weierstrass's Nullstellensatz and which is based on infinite products, we refer to Rudin's book [9, p. 303]. A proof using (in the spirit of Krantz's paper [5] ) the ∂-calculus is in [2, p. 228]. That proof is a bit technical as it needs the construction of zero-free smooth extensions, a highly nontrivial fact as, for instance, the function f :

1 2 T ∪ T → C given by f (z) = z if |z| = 1/2 and f (z) = 1 if |z| = 1,
does not have a zero-free continuous extension F to the associated annulus {1/2 ≤ |z| ≤ 1} (see the first author's post [6] or use on |z| = 1 the homotopy H(z, t) = 2F (tz), 1/2 ≤ t ≤ 1, between z and the constant function 2 to get a contradiction to one of the versions of Brouwer's fixed point theorem (see [START_REF] Mortini | Extension Problems and Stable Ranks, a Space Odyssey[END_REF]Remark 13.54 (3), p. 910]).

Our proof of Weierstrass's Nullstellensatz (which uses the version of Mittag-Leffler's theorem 2.2 below for p n (z) = k n z, k n ∈ N * ), first unveils, via the axiom of choice (and that's the new feature), an element G in the infinite topological product C U (=the set of all complex-valued functions on U = Ω \ {z n : n ∈ N * }) and which is related in a special way via integrals to g. Then, by exponentiating G, one obtains the desired holomorphic function with prescribed zeros.

Due to the use of the axiom of choice we do not have to work with "multivalued functions", a difficult to grasp, and usually unprecise, notion for our students. Nor do we have to show the well-definedness of some functions by proving that their values are independent of the choice of the integration paths γ z , rendering the whole much less technical.

How to use the axiom of choice to "construct" a holomorphic function from a meromorphic function

Here is now the precise statement of Weierstrass's result that we are going to prove: Theorem 2.1. Let D ⊆ C be a simply connected domain, k n ∈ N * , and let (z n ) n≥1 be a discrete sequence of distinct points in D. Then there is a function f holomorphic in D having its zeros with multiplicities k n exactly at the points z n .

Note that the assertion actually holds for arbitrary open sets in C (see [9, p. 303] and [1, p. 248]). The proof of Theorem 2.1 is based on this version of Mittag-Leffler's theorem: Theorem 2.2 (Mittag-Leffler). Let Ω ⊆ C be a domain. Given any discrete sequence (z n ) of distinct points in Ω and a sequence of polynomials p n ∈ C[z] without constant term, there is a meromorphic function g in Ω that has its poles at the z n and has the principal parts p n ( 1 z-zn ); that is,

g(z) = p n 1 z -z n + h n (z),
where h n is meromorphic in Ω and holomorphic in z n . In particular,

Res(g, z n ) = p n (0).
For proofs of this, see e.g. [9, p. 273] or the very recent one in [7] (using ∂-calculus). We need the following Lemma.

Lemma 2.3. Let U ⊆ C be a domain and z 0 , z 1 , z ∈ U . Then, given k ∈ N, exp k γ 1 ξ -z 1 dξ = z -z 1 z 0 -z 1 k
for any piecewise C 1 -curve γ : [0, 1] → U avoiding z 1 and joining z 0 with z in U .

Proof. It obviously suffices to prove the case k = 1, since the general case is obtained from this by taking k-powers. Let ψ(t) := γ(t) -z 1 be a C 1 -curve and

h(s) := exp s 0 ψ (t) ψ(t) dt .
Note that ψ = 0. It suffices to show that h(1) = ψ(1)/ψ(0). To see this, first note that h (s)/h(s) = ψ (s)/ψ(s) for 0 ≤ s ≤ 1. Hence (h/ψ) ≡ 0 on [0, 1] and so h = ψ/ψ(0). The proof is easily modified to get the general case of a piecewise C 1 -curve.

For the readers' convenience, let us recall the following notation. The concatenation of two paths

γ j : [0, 1] → C with γ 1 (1) = γ 2 (0) is the new path γ : [0, 1] → C, given by γ(t) = γ 1 (2t) if 0 ≤ t ≤ 1/2 γ 2 (2t -1) if 1/2 ≤ t ≤ 1.
We denote it by γ 1 ⊕ γ 2 .

Proof of Theorem 2.1.

Step 1 Let D ⊆ C be a simply connected domain, (w j ) a discrete sequence of distinct points in D, and let g be meromorphic in D with poles at w j . Fix z 0 ∈ D, z 0 / ∈ {w j : j ∈ N * }. For each z ∈ Ũ := D \ {w j : j ∈ N * }, choose a fixed polygonial arc γ z in Ũ joining z 0 with 1 z and consider for z ∈ Ũ the function

G(z) := γz g(ξ)dξ.
We claim that f := e G is holomorphic in Ũ . In our viewpoint, this is a magic result, because we merely have G ∈ C Ũ , and that G may not be measurable (see Example 2.4). A posteriori, though, we see that Re G = log |f | is continuous on Ũ .

Here is the proof: let u 1 ∈ Ũ and choose a disk

K := D(u 1 , ε) so small that K ⊆ Ũ . Take z ∈ K. Then f (z) -f (u 1 ) z -u 1 = 1 z -u 1 exp γz g(ξ)dξ -exp γu 1 g(ξ)dξ = 1 z -u 1 exp γu 1 g(ξ)dξ exp γ -1 u 1 ⊕γz g(ξ)dξ -1 =: I(z, u 1 )
1 This step needs the axiom of choice: on the set of all polygonial arcs in Ũ which have z 0 as initial point consider the equivalence relation γ 1 ∼ γ 2 if and only if both γ j have a common endpoint. Then from each equivalence class one chooses one member.

Now consider in Ũ the closed curve

γ := γ -1 u 1 ⊕γ z ⊕[z, u 1 ]
with initial/end point u 1 . Note that γ is null-homologous in D (since D is simply connected2 ) and that γ surrounds at most a finite number of poles of g. Then

I(z, u 1 ) = 1 z -u 1 exp γu 1 g(ξ)dξ exp γ g(ξ)dξ exp [u 1 ,z] g(ξ)dξ -1
Now, by the residue theorem ([8, Theorem 4.41]),

(2.1) 1 2πi γ g(ξ)dξ = n(γ, z j ) =:n j Res(g, z j ) = n j k j ∈ Z. Hence 3 exp γ g(ξ)dξ = 1.
We conclude that lim

z→u 1 I(z, u 1 ) = exp γu 1 g(ξ)dξ lim z→u 1 exp [u 1 ,z] g(ξ)dξ -1 z -u 1 = exp γu 1 g(ξ)dξ g(u 1
).

Thus f = e G is holomorphic in Ũ .

Step 2 By choosing g more carefully, we now show that f = e G has a continuous extension to each z n with value 0 and multiplicity k n4 . So, according to Theorem 2.2, choose g to be meromorphic in D with simple poles at z n and k n := Res(g,

z n ) ∈ N * for n ∈ N * . Let U := D \ {z k : k ∈ N * }. Fix z 0 ∈ U .
Using the axiom of choice, we choose for each z ∈ U a fixed polygonial arc γ z in U joining z 0 with z and for each n such an arc γ zn joining z 0 with z n in U ∪ {z n }.

Now on U we have for each

n ∈ N * g(z) = k n z -z n + m n (z),
where m n is meromorphic in D and holomorphic in a disk V (z n ) ⊆ D centered at z n . By the first step, applied this time to D = D, (w j ) = (z 1 , . . . , z n-1 , z n+1 , . . . )

we obtain a function of the form h n (z) := exp γz m n (ξ)dξ that is

holomorphic in Ũ := U ∪ V (z n ) = U ∪ {z n }.
Next, for z ∈ U , let f (z) := exp γz g(ξ)dξ be formed by the same set of paths. Then, by the first step, applied to

D = D, (w j ) = (z n ), f is holomorphic in U .
Hence, by Lemma 2.3, if z ∈ V (z n ), z = z n , then z ∈ U , and so

f (z) = exp γz k n 1 ξ -z n dξ exp γz m n (ξ)dξ = z -z n z 0 -z n kn h n (z).
Since on U we have f = e G for some C-valued function G, f has no zeros on U . Thus the holomorphic extension to D of f is the desired function with zeros of prescribed multiplicity at the points z n .

Here is now the promised example. is non-measurable and discontinuous everywhere, but for which e G is the identity.

Figure 1. Paths construction

Proof. Let V ⊆ C be a Vitali set such that both V and C \ V are dense in C (see [8, p. 211-213] for a "construction" in R). Choose the principal branch of the argument function arg z, where -π ≤ arg z < π and put

G(z) := log |z| + i arg z if z ∈ V log |z| + i arg z + 2πi if z ∈ C \ V .
Now for z ∈ V , |z| = 1, we take as γ z the positive orientated arc on T joining -1 with z, and for z ∈ C \ V we run through the unit circle once in the positive orientated way and then add the positive orientated arc on T joining -1 with z. If 0 = |z| = 1, then we move from -1 to -|z| on the negative real axis and then on the circle |z| = r we move to z similar to the case above (see Figure 1). Then G(z) = γz 1 ξ dξ and e G(z) = z.
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 24 There exists for each z ∈ C, z = 0, a path γ z joining within C * := C \ {0} the point -1 with z such that the function G(z) := γz 1 ξ dξ

This is the only place where we need the assumption on the simply-connectedness.

If we replace in (2.1) the closed path γ by the closed path γ z ⊕ φ -1 z , where φ z is another path connecting z 0 with z, then we actually see that the definition of G is independent of the path chosen that connects z 0 with z.

We think that this is also a magical behaviour since for any function m holomorphic in a domain Ω excepted at some isolated singularities ξ n , the function e m has an essential singularity at ξ n . As explained above, this "magical behaviour" comes from the fact that G may not even by measurable.
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