
Astronomy
&Astrophysics

A&A, 678, A157 (2023)
https://doi.org/10.1051/0004-6361/202346488
© The Authors 2023

Gammapy: A Python package for gamma-ray astronomy
Axel Donath1 , Régis Terrier2 , Quentin Remy3 , Atreyee Sinha4 , Cosimo Nigro5 , Fabio Pintore6 ,

Bruno Khélifi2 , Laura Olivera-Nieto3 , Jose Enrique Ruiz7 , Kai Brügge8,9, Maximilian Linhoff9 ,
Jose Luis Contreras4, Fabio Acero10, Arnau Aguasca-Cabot11,12,13,14 , David Berge15,16, Pooja Bhattacharjee17 ,

Johannes Buchner18 , Catherine Boisson19 , David Carreto Fidalgo20, Andrew Chen21,
Mathieu de Bony de Lavergne17 , José Vinícius de Miranda Cardoso22, Christoph Deil3, Matthias Füßling23,

Stefan Funk24, Luca Giunti2 , Jim Hinton3, Léa Jouvin25, Johannes King26,3, Julien Lefaucheur27,2,
Marianne Lemoine-Goumard28 , Jean-Philippe Lenain29 , Rubén López-Coto7 , Lars Mohrmann3 ,

Daniel Morcuende4 , Sebastian Panny32 , Maxime Regeard2, Lab Saha4, Hubert Siejkowski30 ,
Aneta Siemiginowska1, Brigitta M. Sipőcz31 , Tim Unbehaun24 , Christopher van Eldik24,

Thomas Vuillaume17 , and Roberta Zanin23

(Affiliations can be found after the references)

Received 23 March 2023 / Accepted 7 July 2023

ABSTRACT

Context. Traditionally, TeV-γ-ray astronomy has been conducted by experiments employing proprietary data and analysis software.
However, the next generation of γ-ray instruments, such as the Cherenkov Telescope Array Observatory (CTAO), will be operated
as open observatories. Alongside the data, they will also make the associated software tools available to a wider community. This
necessity prompted the development of open, high-level, astronomical software customized for high-energy astrophysics.
Aims. In this article, we present Gammapy, an open-source Python package for the analysis of astronomical γ-ray data, and illus-
trate the functionalities of its first long-term-support release, version 1.0. Built on the modern Python scientific ecosystem, Gammapy
provides a uniform platform for reducing and modeling data from different γ-ray instruments for many analysis scenarios. Gammapy
complies with several well-established data conventions in high-energy astrophysics, providing serialized data products that are inter-
operable with other software packages.
Methods. Starting from event lists and instrument response functions, Gammapy provides functionalities to reduce these data by bin-
ning them in energy and sky coordinates. Several techniques for background estimation are implemented in the package to handle the
residual hadronic background affecting γ-ray instruments. After the data are binned, the flux and morphology of one or more γ-ray
sources can be estimated using Poisson maximum likelihood fitting and assuming a variety of spectral, temporal, and spatial models.
Estimation of flux points, likelihood profiles, and light curves is also supported.
Results. After describing the structure of the package, we show, using publicly available gamma-ray data, the capabilities of Gammapy
in multiple traditional and novel γ-ray analysis scenarios, such as spectral and spectro-morphological modeling and estimations of a
spectral energy distribution and a light curve. Its flexibility and its power are displayed in a final multi-instrument example, where
datasets from different instruments, at different stages of data reduction, are simultaneously fitted with an astrophysical flux model.

Key words. methods: statistical – astroparticle physics – methods: data analysis – gamma rays: general

1. Introduction

Modern astronomy offers the possibility to observe and study
astrophysical sources across all wavelengths. The γ-ray range of
the electromagnetic spectrum provides us with insights into the
most energetic processes in the Universe such as those acceler-
ating particles in the surroundings of black holes or remnants of
supernova explosions.

In general, γ-ray astronomy relies on the detection of individ-
ual photon events and reconstruction of their incident direction
as well as energy. As in other branches of astronomy, this can be
achieved by satellite as well as ground-based γ-ray instruments.
Space-borne instruments such as the Fermi Large Area Tele-
scope (LAT) rely on the pair-conversion effect to detect γ-rays
and track the positron-electron pairs created in the detector to
reconstruct the incident direction of the incoming γ-ray. The
energy of the photon is estimated using a calorimeter at the

bottom of the instrument. The energy range of instruments such
as Fermi-LAT (Atwood et al. 2009), referred to as “high energy”
(HE), goes approximately from tens of Megaelectronvolts to
hundreds of Gigaelectronvolts.

Ground-based instruments, instead, use Earth’s atmosphere
as a particle detector, relying on the effect that cosmic γ-rays
interacting in the atmosphere create large cascades of secondary
particles, so called “air showers”, that can be observed from the
ground. Ground-based γ-ray astronomy relies on the observation
of these extensive air showers to estimate the primary γ-ray pho-
tons’ incident direction and energy. These instruments operate
in the so-called “very high energy” (VHE) regime, covering the
energy range from a few tens of Gigaelectronvolts up to Peta-
electronvolts. There are two main categories of ground-based
instruments.

First there are imaging atmospheric Cherenkov telescopes
(IACTs), which obtain images of the atmospheric showers by

A157, page 1 of 23
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0),

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
This article is published in open access under the Subscribe to Open model. Subscribe to A&A to support open access publication.

https://www.aanda.org
https://doi.org/10.1051/0004-6361/202346488
https://orcid.org/0000-0003-4568-7005
https://orcid.org/0000-0002-8219-4667
https://orcid.org/0000-0002-8815-6530
https://orcid.org/0000-0002-9238-7163
https://orcid.org/0000-0001-8375-1907
https://orcid.org/0000-0002-3869-2925
https://orcid.org/0000-0001-6876-5577
https://orcid.org/0000-0002-9105-0518
https://orcid.org/0000-0003-3274-4445
https://orcid.org/0000-0001-7993-8189
https://orcid.org/0000-0001-8816-4920
https://orcid.org/0000-0002-0258-3831
https://orcid.org/0000-0003-0426-6634
https://orcid.org/0000-0001-5893-1797
https://orcid.org/0000-0002-4650-1666
https://orcid.org/0000-0002-3395-3647
https://orcid.org/0000-0002-4462-3686
https://orcid.org/0000-0001-7284-9220
https://orcid.org/0000-0002-3882-9477
https://orcid.org/0000-0002-9667-8654
https://orcid.org/0000-0001-9400-0922
https://orcid.org/0000-0001-5770-3805
https://orcid.org/0000-0003-1673-2145
https://orcid.org/0000-0002-3713-6337
https://orcid.org/0000-0002-7378-4024
https://orcid.org/0000-0002-5686-2078
https://www.edpsciences.org/en/
https://creativecommons.org/licenses/by/4.0
https://www.aanda.org/subscribe-to-open-faqs
mailto:subscribers@edpsciences.org

Donath, A., et al.: A&A, 678, A157 (2023)

detecting the Cherenkov radiation emitted by charged particles
in the cascade and they use these images to reconstruct the
properties of the incident particle. Those instruments have a lim-
ited field of view (FoV) and duty cycle, but good energy and
angular resolution.

Second there are water Cherenkov detectors (WCDs), that
detect particles directly from the tail of the shower when it
reaches the ground. These instruments have a very large FoV,
and large duty-cycle, but a higher energy threshold and lower
signal-to-noise ratios compared to IACTs (de Naurois & Mazin
2015).

While Fermi-LAT data and analysis tools have been pub-
lic since the early years of the project (Atwood et al. 2009),
ground-based γ-ray astronomy has been historically conducted
through experiments operated by independent collaborations,
each relying on their own proprietary data and analysis software
developed as part of the instrument. While this model has been
successful so far, it does not permit data from several instruments
to be combined easily. This lack of interoperability currently lim-
its the full exploitation of the available γ-ray data, especially in
light of the fact that different instruments often have complemen-
tary sky coverages, and the various detection techniques have
complementary properties in terms of the energy range covered,
duty cycle, and spatial resolution.

The Cherenkov Telescope Array Observatory (CTAO) will
be the first ground-based γ-ray instrument to be operated as
an open observatory. Its high-level data1 will be shared pub-
licly after some proprietary period, along with the software
required to analyze them. The adoption of an open and stan-
dardized γ-ray data format, besides being a necessity for future
observatories such as CTA, will be extremely beneficial to the
current generation of instruments, eventually allowing their data
legacies to be exploited even beyond the end of their scientific
operations.

The usage of a common data format is facilitated by the
remarkable similarity of the data reduction workflow of all
γ-ray telescopes. After data calibration, shower events are recon-
structed and a gamma-hadron separation is applied to reject
cosmic-ray-initiated showers and build lists of γ-ray-like events.
The latter can then be used, taking into account the observation-
specific instrument response functions (IRFs), to derive scien-
tific results, such as spectra, sky maps, or light curves. Once the
data is reduced to a list of events with reconstructed physical
properties of the primary particle, the information is independent
of the data-reduction process, and, eventually, of the detec-
tion technique. This implies, for example, that high-level data
from IACTs and WCDs can be represented with the same data
model. The efforts to create a common format usable by var-
ious instruments converged in the so-called data formats for
γ-ray astronomy initiative (Deil et al. 2017; Nigro et al. 2021),
abbreviated to gamma-astro-data-formats (GADF). This
community-driven initiative proposes prototypical specifications
to produce files based on the flexible image transport system
(FITS) format (Pence et al. 2010) encapsulating this high-level
information. This is realized by storing a list of γ-ray-like events
with their reconstructed and observed quantities such as energy,
incident direction and arrival time, and a parameterization of the
IRFs associated with the event list data.

In the past decade, Python has become extremely popu-
lar as a scientific programming language, in particular in the

1 The lowest reduction level of data published by CTA will be recon-
structed event lists and corresponding instrument response functions.

field of data sciences. This success is mostly attributed to the
simple and easy to learn syntax, the ability to act as a “glue”
language between different programming languages, and last
but not least the rich ecosystem of packages and its open and
supportive community (Momcheva & Tollerud 2015). In the sub-
field of computational astronomy, the Astropy project (Astropy
Collaboration 2013) was created in 2012 to build a community-
developed core Python package for astronomy. It offers basic
functionalities that astronomers of many fields need, such as
representing and transforming astronomical coordinates, manip-
ulating physical quantities including units, as well as reading and
writing FITS files.

The Gammapy project was started following the model of
Astropy, with the objective of building a common software
library for γ-ray data analysis (Donath et al. 2015). The core of
the idea is illustrated in Fig. 1. The various γ-ray instruments
can export their data to a common format (GADF) and then
combine and analyze them using a common software library.
The Gammapy package is an independent community-developed
software project. It has been selected to be the core library for
the science analysis tools of CTA, but it also involves contribu-
tors associated with other instruments. The Gammapy package is
built on the scientific Python ecosystem: it uses Numpy (Harris
et al. 2020) for ND data structures, Scipy (Virtanen et al. 2020)
for numerical algorithms, Astropy (Astropy Collaboration 2013)
for astronomy-specific functionality, iminuit (Dembinski et al.
2020) for numerical minimization, and Matplotlib (Hunter 2007)
for visualization.

With the public availability of the GADF format specifica-
tions and the Gammapy package, some experiments have started
to make limited subsets of their γ-ray data publicly available
for testing and validating Gammapy. For example, the H.E.S.S.
Collaboration released a limited test dataset (about 50 h of obser-
vations taken between 2004 and 2008) based on the GADF for-
mat (H.E.S.S. Collaboration 2018a) for data level 3 (DL3) γ-ray
data. This data release served as a basis for validation of open
analysis tools, including Gammapy (see e.g., Mohrmann et al.
2019). Two observations of the Crab nebula have been released
by the MAGIC Collaboration (MAGIC Collaboration 2016).
Using these public data from Fermi-LAT, H.E.S.S., MAGIC, and
additional observations provided by FACT and VERITAS, the
authors of Nigro et al. (2019) presented a combined analysis of
γ-ray data from different instruments for the first time. Later the
HAWC Collaboration also released a limited test dataset of the
Crab Nebula, which was used to validate the Gammapy package
in Albert et al. (2022).

The increased availability of public data that followed the
definition of a common data format, and the development of
Gammapy as a community-driven open software, led the way
toward a more open science in the VHE γ-ray astronomy domain.
The adoption of Gammapy as science tools strengthens the com-
mitment of the future CTA Observatory to the findable, acces-
sible, interoperable, and reusable (FAIR) principles (Wilkinson
et al. 2016; Barker et al. 2022) that define the key requirements
for open science.

In this article, we describe the general structure of the
Gammapy package, its main concepts, and organizational struc-
ture. We start in Sect. 3.3.3 with a general overview of the data
analysis workflow in VHE γ-ray astronomy. Then we show how
this workflow is reflected in the structure of the Gammapy pack-
age in Sect. 3, while also describing the various sub-packages
it contains. Section 4 presents a number of applications, while
Sect. 5 finally discusses the project organization.

A157, page 2 of 23

Donath, A., et al.: A&A, 678, A157 (2023)

Pointing γ-ray Observatories

All-sky γ-ray Observatories

Common
data format

γπGADF

Sky Maps

Spectra

Lightcurves
1 TeV

Fig. 1. Core idea and relation of Gammapy to different γ-ray instruments and the gamma astro data format (GADF). The top left shows the
group of current and future pointing instruments based on the imaging atmospheric Cherenkov technique (IACT). This includes instruments such
as the Cherenkov telescope array observatory (CTAO), the high energy stereoscopic system (H.E.S.S.), the major atmospheric gamma imaging
Cherenkov telescopes (MAGIC), and the very energetic radiation imaging telescope array system (VERITAS). The lower left shows the group of
all-sky instruments such as the Fermi large area telescope (Fermi-LAT) and the high altitude water Cherenkov observatory (HAWC). The calibrated
data of all those instruments can be converted and stored into the common GADF data format, which Gammapy can read. The Gammapy package
is a community-developed project that provides a common interface to the data and analysis of all these γ-ray instruments, allowing users to
easily combine data from different instruments and perform joint analyses. Gammapy is built on the scientific Python ecosystem, and the required
dependencies are shown below the Gammapy logo.

2. Gamma-ray data analysis

The data analysis process in γ-ray astronomy is usually split
into two stages. The first one deals with the data processing
from detector measurement, calibration, event reconstruction
and selection to yield a list of reconstructed γ-ray event can-
didates. This part of the data reduction sequence, sometimes
referred to as low-level analysis, is usually very specific to a
given observation technique and even to a given instrument.

The second stage, referred to as high-level analysis, deals
with the extraction of physical quantities related to γ-ray sources
and the production of high-level science products such as spec-
tra, light curves and catalogs. The core of the analysis consists in
predicting the result of an observation by modeling the flux dis-
tribution of an astrophysical object and pass it through a model
of the instrument. The methods applied here are more generic
and are broadly shared across the field. The similarity in the
high-level analysis conceptionally also allow for easily combin-
ing data from multiple instruments. This part of the data analysis
is supported by Gammapy.

2.1. DL3: events and instrument response functions

An overview of the typical steps in the high level analysis is
shown in the upper row of Fig. 2. The high level analysis starts
at the DL3 data level, where γ-ray data is represented as lists
of γ-ray-like events and their corresponding IRFs R and ends
at the DL5/6 data level, where the physically relevant quantities

such as fluxes, spectra and light curves of sources have been
derived. DL3 data are typically bundled into individual obser-
vations, corresponding to stable periods of data acquisition.
For IACT instruments, for which the GADF data model and
Gammapy were initially conceived, this duration is typically
tobs = 15−30 min. Each observation is assigned a unique integer
ID for reference. The event list is just a simple table with one
event per row and the measured event properties as columns.
These properties for example, include reconstructed incident
direction and energy, arrival time and reconstruction quality.

A common assumption for the instrument response is that it
can be simplified as the product of three independent functions:

R(p, E|ptrue, Etrue) = Aeff(ptrue, Etrue)
· PS F(p|ptrue, Etrue)
· Edisp(E|ptrue, Etrue)

, (1)

where
– Aeff(ptrue, Etrue) is the effective collection area of the detec-

tor. It is the product of the detector collection area times its
detection efficiency at true energy Etrue and position ptrue.

– PS F(p|ptrue, Etrue) is the point spread function (PSF). It
gives the probability density of measuring a direction p when
the true direction is ptrue and the true energy is Etrue. γ-ray
instruments typically consider radial symmetry of the PSF. With
this assumption the probability density PS F(∆p|ptrue, Etrue) only
depends on the angular separation between true and recon-
structed direction defined by ∆p = ptrue − p.

A157, page 3 of 23

Donath, A., et al.: A&A, 678, A157 (2023)

Data
Reduction

Modeling &
Fitting

γπγπ
.analysis

γπγπ
.data

DataStore
Observations
Observation
GTI

γπγπ
.irf

PSF
EnergyDispersion
EffectiveArea

γπγπ
.makers

MapDatasetMaker
SafeMaskMaker
FoVBackgroundMaker
RingBackgroundMaker
etc.

γπγπ
.maps

WcsNDMap
HpxNDMap
etc.

γπγπ
.datasets

Datasets
MapDataset
MapDatasetOnOff
etc.

γπγπ
.estimators

FluxPointsEstimator
TSMapEstimator
etc.

γπγπ
.modeling

Fit, Models, SkyModel
FoVBackgroundModel
etc.

DL3 DL4 DL5/6
γ-like events Binned data Science products

YAML

Sky Maps

Spectra

Lightcurves
1 TeV

Name
SNR
PWN
GRB

Flux
1e-12
1e-11
1e-10

Size
1 deg

0.2 deg
0 deg

Source Catalogs

Fig. 2. Gammapy sub-package structure and data analysis workflow. The top row defines the different levels of data reduction, from lists of
γ-ray-like events on the left (DL3), to high-level scientific products (DL5) on the right. The direction of the data flow is illustrated with the gray
arrows. The gray folder icons represent the different sub-packages in Gammapy and names given as the corresponding Python code suffix, e.g.,
gammapy.data. Below each icon there is a list of the most important objects defined in the sub-package. The light gray folder icons show the
sub-packages for the most fundamental data structures such as maps and IRFs. The bottom of the figure shows the high-level analysis sub-module
with its dependency on the YAML file format.

– Edisp(E|ptrue, Etrue) is the energy dispersion. It gives the
probability to reconstruct the photon at energy E when the true
energy is Etrue and the true position ptrue. γ-ray instruments
consider Edisp(µ|ptrue, Etrue), the probability density of the event
migration, µ = E

Etrue
.

In addition to the instrument characteristics described above,
there is also the instrumental background, that results from
hadronic events being misclassified as γ-ray events. These events
constitute a uniform background to the γ-ray events. For Fermi-
LAT the residual hadronic background is very small (<1%)
because of its veto layer and can often be neglected. For IACTs
and WCDs in contrast, the background can account for a very
large part (>95%) of the events and must be treated accordingly
in the analysis. As the background is very specific to the instru-
ment, Gammapy typically relies on the background models pro-
vided with the DL3 data. The background usually only depends
on the reconstructed event position and energy Bkg(p, E). How-
ever in general all IRFs depend on the geometrical parameters of
the detector, such as location of an event in the FoV or the eleva-
tion angle of the incoming direction of the event. Consequently
IRFs might be parameterized as functions of detector specific
coordinates as well.

The first step in γ-ray data analysis is the selection and
extraction of a subset of observations based on their metadata
including information such as pointing direction, observation
time and observation conditions. All functionality related to rep-
resentation, access and selection of DL3 data is available in the
gammapy.data and gammapy.irf sub-packages.

2.2. From DL3 to DL4: data reduction

The next step of the analysis is the data reduction, where all
observation events and instrument responses are filled into or
projected onto a common physical coordinate system, defined by
a map geometry. The definition of the map geometry typically
consists of a spectral dimension defined by a binned energy axis
and of spatial dimensions, which either define a spherical pro-
jection from celestial coordinates to a pixelized image space or a
single region on the sky.

After all data have been projected onto the same geometry,
it is typically required to improve the residual hadronic back-
ground estimate. As residual hadronic background models can
be subject to significant systematic uncertainties, these models
can be improved by taking into account actual data from regions

A157, page 4 of 23

Donath, A., et al.: A&A, 678, A157 (2023)

without known γ-ray sources. This includes methods such as the
ring or the FoV background normalization techniques or back-
ground measurements performed for example within reflected
regions (Berge et al. 2007).

Data measured at the FoV or energy boundaries of the instru-
ment are typically associated with a systematic uncertainty in
the IRF. For this reason this part of the data is often excluded
from subsequent analysis by defining regions of “safe” data in
the spatial as well as energy dimension. All the code related to
reduce the DL3 data to binned data structures is contained in the
gammapy.makers sub-package.

2.3. DL4: binned data structures

The counts data and the reduced IRFs in the form of maps
are bundled into datasets that represent the fourth data level
(DL4). These reduced datasets can be written to disk, in a for-
mat specific to Gammapy to allow users to read them back at any
time later for modeling and fitting. Different variations of such
datasets support different analysis methods and fit statistics. The
datasets can be used to perform a joint-likelihood fit, allowing
one to combine different measurements from different observa-
tions, but also from different instruments or event classes. They
can also be used for binned simulation as well as event sampling
to simulate DL3 events data.

Binned maps and datasets, which represent a collec-
tion of binned maps, are defined in the gammapy.maps and
gammapy.datasets sub-packages, respectively.

2.4. From DL4 to DL5/6: modeling and fitting

The next step is then typically to model the datasets using binned
Poisson maximum likelihood fitting. Assuming Poisson statistics
per bin the log-likelihood of an observation is given by the Cash
statistics (Cash 1979):

C = 2
K∑

i=0

NPred,i − NObs,i log NPred,i (2)

where the expected number of events for the observation is
given by forward folding a source model through the instrument
response:

NPred(p, E; θ̂) dp dE =Edisp ~
[
PS F ~

(
Aeff · tobs · Φ(θ̂)

)]
.

+ Bkg(p, E) · tobs
(3)

The equation includes the IRF components described in the
previous section, as well as an analytical model to describe the
intensity of the radiation from γ-ray sources as a function of the
energy, Etrue, and of the position in the FoV, ptrue:

Φ(ptrue, Etrue; θ̂), [Φ] = TeV−1 cm−2 s−1, (4)

where θ̂ is a set of model parameters that can be adjusted in a fit.
Observations can be either modeled individually, or in a

joint likelihood analysis. In the latter case the total (joint)
log-likelihood is given by the sum of the log-likelihoods per
observation L =

∑
i = 0MC〉 for M observations. Other fit statis-

tics such as WStat (Arnaud et al. 2023), where the background is
estimated from an independent measurement or a simple χ2 for
flux points are also often used and are supported by Gammapy
as well. Models can be simple analytical models or more com-
plex ones from radiation mechanisms of accelerated particle
populations such as inverse Compton or π0 decay.

Independently or subsequently to the global modeling, the
data can be regrouped to compute flux points, light curves and
flux maps as well as significance maps in different energy bands.

Parametric models and all the functionality related
to fitting is implemented in gammapy.modeling and
gammapy.estimators, where the latter is used to com-
pute higher level science products such as flux and significance
maps, light curves or flux points.

3. Gammapy package

3.1. Overview

The Gammapy package is structured into multiple sub-packages.
Figure 2 also shows the overview of the different sub-packages
and their relation to each other. The definition of the content
of the different sub-packages follows mostly the stages of the
data reduction workflow described in the previous section. Sub-
packages either contain structures representing data at different
reduction levels or algorithms to transition between these dif-
ferent levels. In the following sections, we will introduce all
sub-packages and their functionalities in more detail. In the
online documentation we also provide an overview of all the
Gammapy sub-packages2.

3.2. gammapy.data

The gammapy.data sub-package implements the functionality
to select, read, and represent DL3 γ-ray data in memory. It pro-
vides the main user interface to access the lowest data level.
Gammapy currently only supports data that is compliant with
v0.2 and v0.3 of the GADF data format.

A typical usage example is shown in Fig. 3. First a
DataStore object is created from the path of the data directory.
The directory contains an observation as well as a FITS HDU3

index file which assigns the correct data and IRF FITS files
and HDUs to the given observation ID. The DataStore object
gathers a collection of observations and provides ancillary files
containing information about the telescope observation mode
and the content of the data unit of each file. The DataStore
allows for selecting a list of observations based on specific filters.

The DL3 level data represented by the Observation class
consist of two types of elements: first, the list of γ-ray events
which is represented by the EventList class. Second, a set of
associated IRFs, providing the response of the system, typically
factorized in independent components as described in Sect. 3.3.
The separate handling of event lists and IRFs additionally allows
for data from non-IACT γ-ray instruments to be read. For exam-
ple, to read Fermi-LAT data, the user can read separately their
event list (already compliant with the GADF specifications) and
then find the appropriate IRF classes representing the response
functions provided by Fermi-LAT, see example in Sect. 4.4.

3.3. gammapy.irf

The gammapy.irf sub-package contains all classes and func-
tionalities to handle IRFs in a variety of functional forms.
Usually, IRFs store instrument properties in the form of multi-
dimensional tables, with quantities expressed in terms of energy
(true or reconstructed), off-axis angles or cartesian detector coor-
dinates. The main quantities stored in the common γ-ray IRFs

2 https://docs.gammapy.org/1.0/user-guide/package.html
3 Header Data Unit.

A157, page 5 of 23

https://docs.gammapy.org/1.0/user-guide/package.html

Donath, A., et al.: A&A, 678, A157 (2023)

from gammapy.data import DataStore

data_store = DataStore.from_dir(
base_dir="$GAMMAPY_DATA/hess-dl3-dr1"

)

obs_ids = [23523, 23526, 23559, 23592]

observations = data_store.get_observations(
obs_id=obs_ids, skip_missing=True

)

for obs in observations:
print(f"Observation id: {obs.obs_id}")
print(f"N events: {len(obs.events.table)}")
print(f"Max. area: {obs.aeff.quantity.max()}")

Fig. 3. Using gammapy.data to access DL3 level data with a
DataStore object. Individual observations can be accessed by their
unique integer observation id number. The actual events and instrument
response functions can be accessed as attributes on the Observation
object, such as .events or .aeff for the effective area information.
The output of the code example is shown in Fig. A.1.

are the effective area, energy dispersion, PSF and background
rate. The gammapy.irf sub-package can open and access spe-
cific IRF extensions, interpolate and evaluate the quantities of
interest on both energy and spatial axes, convert their format or
units, plot or write them into output files. In the following, we
list the main classes of the sub-package:

3.3.1. Effective area

Gammapy provides the class EffectiveAreaTable2D to man-
age the effective area, which is usually defined in terms of
true energy and offset angle. The class functionalities offer the
possibility to read from files or to create it from scratch. The
EffectiveAreaTable2D class can also convert, interpolate,
write, and evaluate the effective area for a given energy and
offset angle, or even plot the multidimensional effective area
table.

3.3.2. Point spread function

Gammapy allows users to treat different kinds of PSFs, in
particular, parametric multidimensional Gaussian distributions
(EnergyDependentMultiGaussPSF) or King profile functions
(PSFKing). The EnergyDependentMultiGaussPSF class is
able to handle up to three Gaussians, defined in terms of ampli-
tudes and sigma given for each true energy and offset angle
bin. The general ParametricPSF class allows users to create
a custom PSF with a parametric representation different from
Gaussian(s) or King profile(s). The generic PSF3D class stores
a radial symmetric profile of a PSF to represent nonparamet-
ric shapes, again depending on true energy and offset from the
pointing position.

To handle the change of the PSF with the observational offset
during the analysis the PSFMap class is used. It stores the radial
profile of the PSF depending on the true energy and position on
the sky. During the modeling step in the analysis, the PSF profile
for each model component is looked up at its current position
and converted into a 3D convolution kernel which is used for the
prediction of counts from that model component.

3.3.3. Energy dispersion

For IACTs, the energy resolution and bias, sometimes called
energy dispersion, is typically parameterized in terms of the
so-called migration parameter µ. The distribution of the migra-
tion parameter is given at each offset angle and true energy.
The main subclasses are the EnergyDispersion2D which is
designed to handle the raw instrument description, and the
EDispKernelMap, which contains an energy dispersion matrix
per sky position, that is, a 4D sky map where each position is
associated with an energy dispersion matrix. The energy dis-
persion matrix is a representation of the energy resolution as a
function of the true energy only and implemented in Gammapy
by the subclass EDispKernel.

3.3.4. Instrumental background

The instrumental background rate can be represented as either
a 2D data structure named Background2D or a 3D one named
Background3D. The background rate is stored as a differen-
tial count rate, normalized per solid angle and energy interval
at different reconstructed energies and position in the FoV. In
the Background2D case, the background is expected to follow a
radially symmetric shape and changes only with the offset angle
from FoV center. In the Background3D case, the background is
allowed to vary with longitude and latitude of a tangential FoV
coordinates system.

Some example IRFs read from public data files and plot-
ted with Gammapy are shown in Fig. 4. More information on
gammapy.irf can be found in the online documentation4.

3.4. gammapy.maps

The gammapy.maps sub-package provides classes that represent
data structures associated with a set of coordinates or a region
on a sphere. In addition it allows one to handle an arbitrary num-
ber of nonspatial data dimensions, such as time or energy. It is
organized around three types of structures: geometries, sky maps
and map axes, which inherit from the base classes Geom, Map and
MapAxis respectively.

The geometry object defines the pixelization scheme and
map boundaries. It also provides methods to transform between
sky and pixel coordinates. Maps consist of a geometry instance
defining the coordinate system together with a Numpy array
containing the associated data. All map classes support a basic
set of arithmetic and boolean operations with unit support,
up and downsampling along extra axes, interpolation, resam-
pling of extra axes, interactive visualization in notebooks and
interpolation onto different geometries.

The MapAxis class provides a uniform application program-
ming interface (API) for axes representing bins on any physical
quantity, such as energy or angular offset. Map axes can have
physical units attached to them, as well as define nonlinearly
spaced bins. The special case of time is covered by the dedicated
TimeMapAxis, which allows time bins to be noncontiguous,
as it is often the case with observational times. The generic
class LabelMapAxis allows the creation of axes for non-numeric
entries.

To handle the spatial dimension the sub-package exposes a
uniform API for the FITS World Coordinate System (WCS),
the HEALPix pixelization and region-based data structure (see
Fig. 5). This allows users to perform the same higher level
4 https://docs.gammapy.org/1.0/user-guide/irf/index.
html#irf

A157, page 6 of 23

https://docs.gammapy.org/1.0/user-guide/irf/index.html#irf
https://docs.gammapy.org/1.0/user-guide/irf/index.html#irf

Donath, A., et al.: A&A, 678, A157 (2023)

10 2 10 1 100 101 102

True Energy / TeV

10 1

100

101

102

103

104

105

106

Ef
fe

ct
iv

e
Ar

ea
 /

m
2

H.E.S.S.CTAO North

CTAO South

Fermi-LAT

MAGIC

HAWC

Effective Area

10 2 10 1 100 101 102

True Energy / TeV

0.0

0.1

0.2

0.3

Co
nt

ai
nm

en
t r

ad
iu

s /
 d

eg

H.E.S.S.

CTAO North

CTAO South

Fermi-LAT

Point Spread Function

Fig. 4. Using gammapy.irf to read and plot instrument response functions. The left panel shows the effective area as a function of energy for
the CTA, H.E.S.S., MAGIC, HAWC and Fermi-LAT instruments. The right panel shows the 68% containment radius of the PSF as a function of
energy for the CTA, H.E.S.S. and Fermi-LAT instruments. The CTA IRFs are from the “prod5” production for the alpha configuration of the south
and north array. The H.E.S.S. IRFs are from the DL3 DR1, using observation ID 033787. The MAGIC effective area is computed for a 20 min
observation at the Crab Nebula coordinates. The Fermi-LAT IRFs use “pass8” data and are also taken at the position of the Crab Nebula. The
HAWC effective area is shown for the event classes NHit = 5−9 as light gray lines along with the sum of all event classes as a black line. The
HAWC IRFs are taken from the first public release of events data by the HAWC collaboration. All IRFs do not correspond to the latest performance
of the instruments, but still are representative of the detector type and energy range. We exclusively relied on publicly available data provided by
the collaborations. The data are also available in the gammapy-data repository.

operations on maps independent of the underlying pixelization
scheme. The gammapy.maps package is also used by external
packages such as “FermiPy” (Wood et al. 2017).

3.4.1. WCS maps

The FITS WCS pixelization supports a number of different
projections to represent celestial spherical coordinates in a
regular rectangular grid. Gammapy provides full support to
data structures using this pixelization scheme. For details see
Calabretta & Greisen (2002). This pixelization is typically used
for smaller regions of interests, such as pointed observations and
is represented by a combination of the WcsGeom and WcsNDMap
class.

3.4.2. HEALPix maps

This pixelization scheme (Calabretta & Greisen 2002; Górski
et al. 2005) provides a subdivision of a sphere in which each
pixel covers the same surface area as every other pixel. As a
consequence, however, pixel shapes are no longer rectangular, or
regular. This pixelization is typically used for all-sky data, such
as data from the HAWC or Fermi-LAT observatory. Gammapy
natively supports the multiscale definition of the HEALPix pix-
elization and thus allows for easy upsampling and downsampling
of the data. In addition to the all-sky map, Gammapy also
supports a local HEALPix pixelization where the size of the
map is constrained to a given radius. For local neighborhood
operations, such as convolution, Gammapy relies on projecting
the HEALPix data to a local tangential WCS grid. This data
structure is represented by the HpxGeom and HpxNDMap classes.

3.4.3. Region maps

In this case, instead of a fine spatial grid dividing a rectangu-
lar sky region, the spatial dimension is reduced to a single bin

with an arbitrary shape, describing a region in the sky with
that same shape. Region maps are typically used together with
a nonspatial dimension, for example an energy axis, to represent
how a quantity varies in that dimension inside the corresponding
region. To avoid the complexity of handling spherical geometry
for regions, the regions are projected onto the local tangential
plane using a WCS transform. This approach follows Astropy’s
“Regions” package (Bradley et al. 2022), which is both used as
an API to define regions for users as well as handling the underly-
ing geometric operations. Region based maps are represented by
the RegionGeom and RegionNDMap classes. More information
on the gammapy.maps sub-module can be found in the online
documentation5.

3.5. gammapy.datasets

The gammapy.datasets sub-package contains classes to bun-
dle together binned data along with the associated models and
likelihood function, which provides an interface to the Fit class
(Sect. 3.8.2) for modeling and fitting purposes. Depending upon
the type of analysis and the associated statistic, different types
of Datasets are supported. The MapDataset is used for com-
bined spectral and morphological (3D) fitting, while spectral
fitting only can be performed using the SpectrumDataset.
While the default fit statistics for both of these classes is the
Cash (Cash 1979) statistic, there are other classes which sup-
port analyses where the background is measured from control
regions, so called “off” observations. Those require the use of
a different fit statistics, which takes into account the uncer-
tainty of the background measurement. This case is covered by
the MapDatasetOnOff and SpectrumDatasetOnOff classes,
which use the WStat (Arnaud et al. 2023) statistic.

5 https://docs.gammapy.org/1.0/user-guide/maps/index.
html#maps

A157, page 7 of 23

https://docs.gammapy.org/1.0/user-guide/maps/index.html#maps
https://docs.gammapy.org/1.0/user-guide/maps/index.html#maps

Donath, A., et al.: A&A, 678, A157 (2023)

from gammapy.maps import Map, MapAxis
from astropy.coordinates import SkyCoord
from astropy import units as u

skydir = SkyCoord("0d", "5d", frame="galactic")

energy_axis = MapAxis.from_energy_bounds(
energy_min="1 TeV", energy_max="10 TeV", nbin=10

)

Create a WCS Map
m_wcs = Map.create(

binsz=0.1,
map_type="wcs",
skydir=skydir,
width=[10.0, 8.0] * u.deg,
axes=[energy_axis])

Create a HEALPix Map
m_hpx = Map.create(

binsz=0.1,
map_type="hpx",
skydir=skydir,
axes=[energy_axis]

)

Create a region map
region = "galactic;circle(0, 5, 1)"
m_region = Map.create(

region=region,
map_type="region",
axes=[energy_axis]

)

print(m_wcs, m_hpx, m_region)

Fig. 5. Using gammapy.maps to create a WCS, a HEALPix and a region
based data structures. The initialization parameters include consistently
the positions of the center of the map, the pixel size, the extend of the
map as well as the energy axis definition. The energy minimum and
maximum values for the creation of the MapAxis object can be defined
as strings also specifying the unit. Region definitions can be passed as
strings following the DS9 region specifications http://ds9.si.edu/
doc/ref/region.html. The output of the code example is shown in
Fig. A.3.

Fitting of precomputed flux points is enabled through
FluxPointsDataset, using χ2 statistics. Multiple datasets of
same or different types can be bundled together in Datasets
(see e.g., Fig. 6), where the likelihood from each constituent
member is added, thus facilitating joint fitting across differ-
ent observations, and even different instruments across different
wavelengths. Datasets also provide functionalities for manipulat-
ing reduced data, for instance stacking, sub-grouping, plotting.
Users can also create their customized datasets for implement-
ing modified likelihood methods. We also refer to our online
documentation for more details on gammapy.datasets6.

3.6. gammapy.makers

The gammapy.makers sub-package contains the various classes
and functions required to process and prepare γ-ray data from the
DL3 to the DL4. The end product of the data reduction process

6 https://docs.gammapy.org/1.0/user-guide/datasets/
index.html#datasets

from pathlib import Path

from gammapy.datasets import (
Datasets,
FluxPointsDataset,
MapDataset,
SpectrumDatasetOnOff,

)

path = Path("$GAMMAPY_DATA")

map_dataset = MapDataset.read(
path / "cta-1dc-gc/cta-1dc-gc.fits.gz",
name="map-dataset",

)

spectrum_dataset = SpectrumDatasetOnOff.read(
path / "joint-crab/spectra/hess/pha_obs23523.fits",
name="spectrum-datasets",

)

flux_points_dataset = FluxPointsDataset.read(
path / "hawc_crab/HAWC19_flux_points.fits",
name="flux-points-dataset",

)

datasets = Datasets([
map_dataset,
spectrum_dataset,
flux_points_dataset

])

print(datasets["map-dataset"])

Fig. 6. Using gammapy.datasets to read existing reduced binned
datasets. After the different datasets are read from disk they are col-
lected into a common Datasets container. All dataset types have an
associated name attribute to allow a later access by name in the code.
The environment variable $GAMMAPY_DATA is automatically resolved by
Gammapy. The output of the code example is shown in Fig. A.2.

is a set of binned counts, background exposure, psf and energy
dispersion maps at the DL4 level, bundled into a MapDataset
object. The MapDatasetMaker and SpectrumDatasetMaker
are responsible for this task for three- and 1D analyses, respec-
tively (see Fig. 7).

The correction of background models from the
data themselves is supported by specific Maker
classes such as the FoVBackgroundMaker or the
ReflectedRegionsBackgroundMaker. The former is used
to estimate the normalization of the background model from
the data themselves, while the latter is used to estimate the
background from regions reflected from the pointing position.

Finally, to limit other sources of systematic uncertainties, a
data validity domain is determined by the SafeMaskMaker. It
can be used to limit the extent of the FoV used, or to limit the
energy range to a domain where the energy reconstruction bias
is below a given threshold.

More detailed information on the gammapy.makers sub-
package is available online7.

7 https://docs.gammapy.org/1.0/user-guide/makers/
index.html#makers

A157, page 8 of 23

http://ds9.si.edu/doc/ref/region.html
http://ds9.si.edu/doc/ref/region.html
https://docs.gammapy.org/1.0/user-guide/datasets/index.html#datasets
https://docs.gammapy.org/1.0/user-guide/datasets/index.html#datasets
https://docs.gammapy.org/1.0/user-guide/makers/index.html#makers
https://docs.gammapy.org/1.0/user-guide/makers/index.html#makers

Donath, A., et al.: A&A, 678, A157 (2023)

import astropy.units as u

from gammapy.data import DataStore
from gammapy.datasets import MapDataset
from gammapy.makers import (

FoVBackgroundMaker,
MapDatasetMaker,
SafeMaskMaker

)
from gammapy.maps import MapAxis, WcsGeom

data_store = DataStore.from_dir(
base_dir="$GAMMAPY_DATA/hess-dl3-dr1"

)

obs = data_store.obs(23523)

energy_axis = MapAxis.from_energy_bounds(
energy_min="1 TeV",
energy_max="10 TeV",
nbin=6,

)

geom = WcsGeom.create(
skydir=(83.633, 22.014),
width=(4, 3) * u.deg,
axes=[energy_axis],
binsz=0.02 * u.deg,

)

empty = MapDataset.create(geom=geom)

maker = MapDatasetMaker()

mask_maker = SafeMaskMaker(
methods=["offset-max", "aeff-default"],
offset_max="2.0 deg",

)

bkg_maker = FoVBackgroundMaker(
method="scale",

)

dataset = maker.run(empty, observation=obs)
dataset = bkg_maker.run(dataset, observation=obs)
dataset = mask_maker.run(dataset, observation=obs)
dataset.peek()

Fig. 7. Using gammapy.makers to reduce DL3 level data into a
MapDataset. All Maker classes represent a step in the data reduction
process. They take the configuration on initialization of the class. They
also consistently define .run() methods, which take a dataset object
and optionally an Observation object. In this way, Maker classes can
be chained to define more complex data reduction pipelines. The output
of the code example is shown in Fig. A.5.

3.7. gammapy.stats

The gammapy.stats subpackage contains the fit statistics
and the associated statistical estimators commonly adopted in
γ-ray astronomy. In general, γ-ray observations count Poisson-
distributed events at various sky positions and contain both
signal and background events. To estimate the number of signal
events in the observation one typically uses Poisson maxi-
mum likelihood estimation (MLE). In practice this is done by
minimizing a fit statistic defined by −2 logL, where L is the
likelihood function used. Gammapy uses the convention of a

from gammapy.stats import WStatCountsStatistic

n_on = [13, 5, 3]
n_off = [11, 9, 20]
alpha = [0.8, 0.5, 0.1]
stat = WStatCountsStatistic(n_on, n_off, alpha)

Excess
print(f"Excess: {stat.n_sig}")

Significance
print(f"Significance: {stat.sqrt_ts}")

Asymmetrical errors
print(f"Error Neg.: {stat.compute_errn(n_sigma=1.0)}")
print(f"Error Pos.: {stat.compute_errp(n_sigma=1.0)}")

Fig. 8. Using gammapy.stats to compute statistical quantities such
as excess, significance and asymmetric errors from counts based
data. The data array such as counts, counts_off and the back-
ground efficiency ratio alpha are passed on initialization of the
WStatCountsStatistic class. The derived quantities are then com-
puted dynamically from the corresponding class attributes such as
stat.n_sig for the excess and stat.sqrt_ts for the significance.
The output of the code example is shown in Fig. A.4.

factor of 2 in front, such that a difference in log-likelihood will
approach a χ2 distribution in the statistial limit.

When the expected number of background events is known,
the statistic function is the so called Cash statistic (Cash
1979). It is used by datasets using background templates such
as the MapDataset. When the number of background events
is unknown, and an “off” measurement where only background
events are expected is used, the statistic function is WStat. It is a
profile log-likelihood statistic where the background counts are
marginalized parameters. It is used by datasets containing “off”
counts measurements such as the SpectrumDatasetOnOff,
used for classical spectral analysis.

To perform simple statistical estimations on counts measure-
ments, CountsStatistic classes encapsulate the aforemen-
tioned statistic functions to measure excess counts and estimate
the associated statistical significance, errors and upper limits.
They perform maximum likelihood ratio tests to estimate signif-
icance (the square root of the statistic difference) and compute
likelihood profiles to measure errors and upper limits. The code
example Fig. 8 shows how to compute the Li & Ma signifi-
cance (Li & Ma 1983) of a set of measurements. Our online
documentation provides more information on gammapy.stats8.

3.8. gammapy.modeling

gammapy.modeling contains all the functionality related to
modeling and fitting data. This includes spectral, spatial and
temporal model classes, as well as the fit and parameter API.

3.8.1. Models

Source models in Gammapy (Eq. (4)) are 4D analytical mod-
els which support two spatial dimensions defined by the sky
coordinates `, b, an energy dimension E, and a time dimension t.
To simplify the definition of the models, Gammapy uses a

8 https://docs.gammapy.org/1.0/user-guide/stats/index.
html#stats

A157, page 9 of 23

https://docs.gammapy.org/1.0/user-guide/stats/index.html#stats
https://docs.gammapy.org/1.0/user-guide/stats/index.html#stats

Donath, A., et al.: A&A, 678, A157 (2023)

factorized representation of the total source model:

φ(`, b, E, t) = F(E) ·G(`, b, E) · H(t, E). (5)

The spectral component F(E), described by the
SpectralModel class, always includes an amplitude parameter
to adjust the total flux of the model. The spatial component
G(`, b, E), described by the SpatialModel class, also depends
on energy, in order to consider energy-dependent sources mor-
phology. Finally, the temporal component H(t, E), described by
the TemporalModel class, also supports an energy dependency
in order to consider spectral variations of the model with
time.

The models follow a naming scheme which contains the
category as a suffix to the class name. The spectral mod-
els include a special class of normed models, named using
the NormSpectralModel suffix. These spectral models fea-
ture a dimension-less “norm” parameter instead of an amplitude
parameter with physical units. They can be used as an energy-
dependent multiplicative correction factor to another spectral
model. They are typically used for adjusting template-based
models, or, for example, to take into account the absorption effect
on γ-ray spectra caused by the extra-galactic background light
(EBL; EBLAbsorptionNormSpectralModel). Gammapy sup-
ports a variety of EBL absorption models, such as those from
Franceschini et al. (2008); Franceschini & Rodighiero (2017),
Finke et al. (2010), and Domínguez et al. (2011).

The analytical spatial models are all normalized such that
they integrate to unity over the entire sky. The template spatial
models may not, so in that special case they have to be combined
with a NormSpectralModel.

The SkyModel class represents the factorized model in
Eq. (5) (the spatial and temporal components being optional).
A SkyModel object can represent the sum of several emission
components: either, for example, from multiple sources and from
a diffuse emission, or from several spectral components within
the same source. To handle a list of multiple SkyModel objects,
Gammapy implements a Models class.

The model gallery9 provides a visual overview of the avail-
able models in Gammapy. Most of the analytic models com-
monly used in γ-ray astronomy are built-in. We also offer a
wrapper to radiative models implemented in the Naima pack-
age (Zabalza 2015). The modeling framework can be easily
extended with user-defined models. For example, the radia-
tive models of jetted Active Galactic Nuclei (AGN) imple-
mented in Agnpy (Nigro et al. 2022), can be wrapped into
Gammapy (see Sect. 3.5 of Nigro et al. 2022). An example
of using gammapy.modeling.models is shown in Fig. 9. We
provide more examples of user-defined models, such as a para-
metric model for energy dependent morphology, in the online
documentation10.

3.8.2. Fit

The Fit class provides methods to optimize (“fit”), model
parameters and estimate their errors and correlations. It inter-
faces with a Datasets object, which in turn is connected to a
Models object containing the model parameters bundled into a
Parameters object. Models can be unique for a given dataset, or
contribute to multiple datasets, allowing one to perform a joint fit
9 https://docs.gammapy.org/1.0/user-guide/
model-gallery/index.html
10 https://docs.gammapy.org/1.0/tutorials/api/models.
html#implementing-a-custom-model

from astropy import units as u
from gammapy.modeling.models import (

ConstantTemporalModel,
EBLAbsorptionNormSpectralModel,
PointSpatialModel,
PowerLawSpectralModel,
SkyModel,

)

define a spectral model
pwl = PowerLawSpectralModel(

amplitude="1e-12 TeV-1 cm-2 s-1", index=2.3
)

define a spatial model
point = PointSpatialModel(

lon_0="45.6 deg",
lat_0="3.2 deg",
frame="galactic"

)

define a temporal model
constant = ConstantTemporalModel()

combine all components
model = SkyModel(

spectral_model=pwl,
spatial_model=point,
temporal_model=constant,
name="my-model",

)
print(model)

ebl = EBLAbsorptionNormSpectralModel.read_builtin(
reference="dominguez", redshift=0.5

)

absorbed = pwl * ebl
absorbed.plot(energy_bounds=(0.1, 100) * u.TeV)

Fig. 9. Using gammapy.modeling.models to define a source model
with a spectral, spatial and temporal component. For convenience the
model parameters can be defined as strings with attached units. The
spatial model takes an additional frame parameter which allow users to
define the coordinate frame of the position of the model. The output of
the code example is shown in Fig. A.8.

to multiple IACT datasets, or to jointly fit IACT and Fermi-LAT
datasets. Many examples are given in the tutorials.

The Fit class provides a uniform interface to multiple fitting
backends:

– iminuit (Dembinski et al. 2020)
– scipy.optimize (Virtanen et al. 2020)
– Sherpa (Refsdal et al. 2011; Freeman et al. 2001)
We note that, for now, covariance matrix and errors are com-

puted only for the fitting with iminuit. However, depending on
the problem other optimizers can perform better, so sometimes
it can be useful to run a pre-fit with alternative optimization
methods. In the future, we plan to extend the supported fit-
ting backends, including for example solutions based on Markov
chain Monte Carlo methods11.

11 A prototype is available in gammapy-recipes, https:
//gammapy.github.io/gammapy-recipes/_build/html/
notebooks/mcmc-sampling-emcee/mcmc_sampling.html

A157, page 10 of 23

https://docs.gammapy.org/1.0/user-guide/model-gallery/index.html
https://docs.gammapy.org/1.0/user-guide/model-gallery/index.html
https://docs.gammapy.org/1.0/tutorials/api/models.html#implementing-a-custom-model
https://docs.gammapy.org/1.0/tutorials/api/models.html#implementing-a-custom-model
https://gammapy.github.io/gammapy-recipes/_build/html/notebooks/mcmc-sampling-emcee/mcmc_sampling.html
https://gammapy.github.io/gammapy-recipes/_build/html/notebooks/mcmc-sampling-emcee/mcmc_sampling.html
https://gammapy.github.io/gammapy-recipes/_build/html/notebooks/mcmc-sampling-emcee/mcmc_sampling.html

Donath, A., et al.: A&A, 678, A157 (2023)

Table 1. Definition of the different SED types supported in Gammapy.

Type Description Unit equivalency

dnde Differential flux at a given energy TeV−1 cm−2 s−1

e2dnde Differential flux at a given energy TeV cm−2 s−1

flux Integrated flux in a given energy range cm−2 s−1

eflux Integrated energy flux in a given energy range erg cm−2 s−1

3.9. gammapy.estimators

By fitting parametric models to the data, the total γ-ray flux
and its overall temporal, spectral and morphological compo-
nents can be constrained. In many cases though, it is useful to
make a more detailed follow-up analysis by measuring the flux
in smaller spectral, temporal or spatial bins. This possibly reveals
more detailed emission features, which are relevant for studying
correlation with counterpart emissions.

The gammapy.estimators sub-module features methods to
compute flux points, light curves, flux maps and flux profiles
from data. The basic method for all these measurements is equiv-
alent. The initial fine bins of MapDataset are grouped into larger
bins. A multiplicative correction factor (the norm) is applied to
the best fit reference spectral model and is fitted in the restricted
data range, defined by the bin group only.

In addition to the best-fit flux norm, all estimators compute
quantities corresponding to this flux. This includes: the pre-
dicted number of total, signal and background counts per flux
bin; the total fit statistics of the best fit model (for signal and
background); the fit statistics of the null hypothesis (background
only); and the difference between both, the so-called test statistic
value (TS). From this TS value, a significance of the measured
signal and associated flux can be derived.

Optionally, the estimators can also compute more advanced
quantities such as asymmetric flux errors, flux upper limits and
1D profiles of the fit statistic, which show how the likelihood
functions varies with the flux norm parameter around the fit min-
imum. This information is useful in inspecting the quality of a fit,
for which a parabolic shape of the profile is asymptomatically
expected at the best fit values.

The base class of all algorithms is the Estimator class. The
result of the flux point estimation are either stored in a FluxMaps
or FluxPoints object. Both objects are based on an internal
representation of the flux which is independent of the Spectral
Energy Distribution (SED) type. The flux is represented by a
reference spectral model and an array of normalization values
given in energy, time and spatial bins, which factorizes the devi-
ation of the flux in a given bin from the reference spectral model.
This allows users to conveniently transform between different
SED types. Table 1 shows an overview and definitions of the
supported SED types. The actual flux values for each SED type
are obtained by multiplication of the norm with the reference
flux.

Both result objects support the possibility to serialize the
data into multiple formats. This includes the GADF SED for-
mat12, FITS-based nd sky maps and other formats compatible
with Astropy’s Table and BinnedTimeSeries data structures.
This allows users to further analyze the results with Astropy,
for example using standard algorithms for time analysis, such as

12 https://gamma-astro-data-formats.readthedocs.io/en/
latest/spectra/flux_points/index.html

from astropy import units as u

from gammapy.datasets import MapDataset
from gammapy.estimators import TSMapEstimator

filename = "$GAMMAPY_DATA/cta-1dc-gc/cta-1dc-gc.fits.gz"
dataset = MapDataset.read(filename)

estimator = TSMapEstimator(
energy_edges=[0.1, 1, 10] * u.TeV,
n_sigma=1,
n_sigma_ul=2,

)

maps = estimator.run(dataset)
maps["sqrt_ts"].plot_grid(add_cbar=True)

Fig. 10. Using the TSMapEstimator object from
gammapy.estimators to compute a flux, flux upper limits and
TS map. The additional parameters n_sigma and n_sigma_ul define
the confidence levels (in multiples of the normal distribution width) of
the flux error and flux upper limit maps respectively. The output of the
code example is shown in Fig. A.6.

the Lomb-Scargle periodogram or the Bayesian blocks. So far,
Gammapy does not support unfolding of γ-ray spectra. Methods
for this will be implemented in future versions of Gammapy.

The code example shown in Fig. 10 shows how to use the
TSMapEstimator objects with a given input MapDataset. In
addition to the model, it allows the energy bins of the resulting
flux and TS maps to be specified.

More details on the gammapy.estimators sub-module are
available online13.

3.10. gammapy.analysis

The gammapy.analysis sub-module provides a high-level
interface (HLI) for the most common use cases identified in
γ-ray analyses. The included classes and methods can be used in
Python scripts, notebooks or as commands within IPython ses-
sions. The HLI can also be used to automatize workflows driven
by parameters declared in a configuration file in YAML format.
In this way, a full analysis can be executed via a single command
line taking the configuration file as input.

The Analysis class has the responsibility for orchestrat-
ing the workflow defined in the configuration AnalysisConfig
objects and triggering the execution of the AnalysisStep
classes that define the identified common use cases. These
steps include the following: observations selection with the
DataStore, data reduction, excess map computation, model
fitting, flux points estimation, and light curves production.

13 https://docs.gammapy.org/1.0/user-guide/estimators.
html#estimators

A157, page 11 of 23

https://gamma-astro-data-formats.readthedocs.io/en/latest/spectra/flux_points/index.html
https://gamma-astro-data-formats.readthedocs.io/en/latest/spectra/flux_points/index.html
https://docs.gammapy.org/1.0/user-guide/estimators.html#estimators
https://docs.gammapy.org/1.0/user-guide/estimators.html#estimators

Donath, A., et al.: A&A, 678, A157 (2023)

3.11. gammapy.visualization

The gammapy.visualization sub-package contains helper
functions for plotting and visualizing analysis results and
Gammapy data structures. This includes, for example, the visu-
alization of reflected background regions across multiple obser-
vations, or plotting large parameter correlation matrices of
Gammapy models. It also includes a helper class to split wide
field Galactic survey images across multiple panels to fit a
standard paper size.

The sub-package also provides matplotlib implementa-
tions of specific colormaps. Those colormaps have been histori-
cally used by larger collaborations in the VHE domain (such as
MILAGRO or H.E.S.S.) as “trademark” colormaps. While we
explicitly discourage the use of those colormaps for publication
of new results, because they do not follow modern visualization
standards, such as linear brightness gradients and accessibility
for visually impaired people, we still consider the colormaps
useful for reproducibility of past results.

3.12. gammapy.astro

The gammapy.astro sub-package contains utility functions for
studying physical scenarios in high-energy astrophysics. The
gammapy.astro.darkmatter module computes the so called
J-factors and the associated γ-ray spectra expected from anni-
hilation of dark matter in different channels, according to the
recipe described in Cirelli et al. (2011).

In the gammapy.astro.source sub-module, dedicated
classes exist for modeling galactic γ-ray sources according to
simplified physical models, for example supernova remnant
(SNR) evolution models (Taylor 1950; Truelove & McKee 1999),
evolution of pulsar wind nebulae (PWNe) during the free expan-
sion phase (Gaensler & Slane 2006), or computation of physical
parameters of a pulsar using a simplified dipole spin-down
model.

In the gammapy.astro.population sub-module there are
dedicated tools for simulating synthetic populations based on
physical models derived from observational or theoretical con-
siderations for different classes of Galactic very high-energy
γ-ray emitters: PWNe, SNRs Case & Bhattacharya (1998), pul-
sars Faucher-Giguère & Kaspi (2006); Lorimer et al. (2006);
Yusifov & Küçük (2004) and γ-ray binaries.

While the present list of use cases is rather preliminary, this
can be enriched with time by users and/or developers according
to future needs.

3.13. gammapy.catalog

Comprehensive source catalogs are increasingly being pro-
vided by many high-energy astrophysics experiments. The
gammapy.catalog sub-packages provides a convenient access
to the most important γ-ray catalogs. Catalogs are represented
by the SourceCatalog object, which contains the actual cata-
log as an Astropy Table object. Objects in the catalog can be
accessed by row index, name of the object or any association or
alias name listed in the catalog.

Sources are represented in Gammapy by the
SourceCatalogObject class, which has the responsibil-
ity to translate the information contained in the catalog to
Gammapy objects. This includes the spatial and spectral models
of the source, flux points and light curves (if available) for each
individual object. Figure 11 show how to load a given catalog
and access these information for a selected source. The required

import matplotlib.pyplot as plt

from gammapy.catalog import CATALOG_REGISTRY

catalog = CATALOG_REGISTRY.get_cls("4fgl")()
print("Number of sources :", len(catalog.table))

source = catalog["PKS 2155-304"]

_, axes = plt.subplots(ncols=2)
source.flux_points.plot(ax=axes[0], sed_type="e2dnde")

source.lightcurve().plot(ax=axes[1])

Fig. 11. Using gammapy.catalogs to access the underlying model,
flux points and light-curve from the Fermi-LAT 4FGL catalog for the
blazar PKS 2155-304. The output of the code example is shown in
Fig. A.7.

catalogs are supplied in the GAMMAPY_DATA repository, such that
user do not have to download them separately. The overview
of currently supported catalogs, the corresponding Gammapy
classes and references are shown in Table 2. Newly released
relevant catalogs will be added in future.

4. Applications

Gammapy is currently used for a variety of analyses by differ-
ent IACT experiments and has already been employed in about
65 scientific publications as of 21/03/202314. In this section,
we illustrate the capabilities of Gammapy by performing some
standard analysis cases commonly considered in γ-ray astron-
omy. Beside reproducing standard methodologies, we illustrate
the unique data combination capabilities of Gammapy by pre-
senting a multi-instrument analysis, which is not possible within
any of the current instrument private software frameworks.
The examples shown are based on the data accessible in the
gammapy-data repository, and limited by the availability of
public data. We remark that, as long as the data are compli-
ant with the GADF specifications (or its future evolutions), and
hence with Gammapy’s data structures, there is no limitation on
performing analyses of data from a given instrument.

4.1. 1D analysis

One of the most common analysis cases in γ-ray astronomy is
measuring the spectrum of a source in a given region defined
on the sky, in conventional astronomy also called aperture pho-
tometry. The spectrum is typically measured in two steps: first
a parametric spectral model is fitted to the data and secondly
flux points are computed in a predefined set of energy bins.
The result of such an analysis performed on three simulated
CTA observations is shown in Fig. 12. In this case the spectrum
was measured in a circular aperture centered on the Galac-
tic Center, in γ-ray astronomy often called “on region”. For
such analysis the user first chooses a region of interest and
energy binning, both defined by a RegionGeom. In a second step,
the events and the IRFs are binned into maps of this geome-
try, by the SpectrumDatasetMaker. All the data and reduced
14 List on ADS: https://ui.adsabs.harvard.edu/search/
q=(%20(citations(doi%3A%2210.1051%2F0004-6361%
2F201834938%22)%20OR%20citations(bibcode%3A2017ICRC...
35..766D))%20AND%20year%3A2014-2023)&sort=date%20desc%
2C%20bibcode%20desc&p_=0

A157, page 12 of 23

https://ui.adsabs.harvard.edu/search/q=(%20(citations(doi%3A%2210.1051%2F0004-6361%2F201834938%22)%20OR%20citations(bibcode%3A2017ICRC...35..766D))%20AND%20year%3A2014-2023)&sort=date%20desc%2C%20bibcode%20desc&p_=0
https://ui.adsabs.harvard.edu/search/q=(%20(citations(doi%3A%2210.1051%2F0004-6361%2F201834938%22)%20OR%20citations(bibcode%3A2017ICRC...35..766D))%20AND%20year%3A2014-2023)&sort=date%20desc%2C%20bibcode%20desc&p_=0
https://ui.adsabs.harvard.edu/search/q=(%20(citations(doi%3A%2210.1051%2F0004-6361%2F201834938%22)%20OR%20citations(bibcode%3A2017ICRC...35..766D))%20AND%20year%3A2014-2023)&sort=date%20desc%2C%20bibcode%20desc&p_=0
https://ui.adsabs.harvard.edu/search/q=(%20(citations(doi%3A%2210.1051%2F0004-6361%2F201834938%22)%20OR%20citations(bibcode%3A2017ICRC...35..766D))%20AND%20year%3A2014-2023)&sort=date%20desc%2C%20bibcode%20desc&p_=0
https://ui.adsabs.harvard.edu/search/q=(%20(citations(doi%3A%2210.1051%2F0004-6361%2F201834938%22)%20OR%20citations(bibcode%3A2017ICRC...35..766D))%20AND%20year%3A2014-2023)&sort=date%20desc%2C%20bibcode%20desc&p_=0

Donath, A., et al.: A&A, 678, A157 (2023)

Table 2. Overview of supported catalogs in gammapy.catalog.

Class name Shortcut Description Reference

SourceCatalog3FGL “3fgl” 3rd catalog of Fermi-LAT sources Acero et al. (2015)
SourceCatalog4FGL “4fgl” 4th catalog of Fermi-LAT sources Abdollahi et al. (2020)
SourceCatalog2FHL “2fhl” 2nd catalog high-energy Fermi-LAT sources Ackermann et al. (2016)
SourceCatalog3FHL “3fhl” 3rd catalog high-energy Fermi-LAT sources Ajello et al. (2017)
SourceCatalog2HWC “2hwc” 2nd catalog of HAWC sources Abeysekara et al. (2017)
SourceCatalog3HWC “3hwc” 3rd catalog of HAWC sources Albert et al. (2020)
SourceCatalogHGPS “hgps” H.E.S.S. Galactic Plane Survey catalog H.E.S.S. Collaboration (2018b)
SourceCatalogGammaCat “gammacat” Open source data collection Deil et al. (2022)

4° 2° 0° 358° 356°

4°

2°

0°

-2°

-4°

Galactic Longitude

Ga
la

ct
ic

La
tit

ud
e

obs-110380
obs-111140
obs-111159

100 101

Energy / TeV

10 12

10 11

E2
d

/d
E

/(
er

gc
m

2
s

1)

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

Fit
 st

at
ist

ic
di

ffe
re

nc
e

Fig. 12. Example of a 1D spectral analysis of the Galactic Center for three simulated observations from the first CTA data challenge. The left
image shows the maps of counts with the signal region in white and the reflected background regions for the three different observations overlaid in
different colors. The right image shows the resulting spectral flux points and their corresponding log-likelihood profiles. The flux points are shown
in orange, with the horizontal bar illustrating the width of the energy bin and the vertical bar the 1σ error. The log-likelihood profiles for each
enetgy bin are shown in the background. The colormap illustrates the difference of the log-likelihood to the log-likelihood of the best fit value.

IRFs are bundled into a SpectrumDataset. To estimate the
expected background in the “on region” a “reflected regions”
background method was used (Berge et al. 2007), represented
in Gammapy by the ReflectedRegionsBackgroundMaker
class. The resulting reflected regions are illustrated for all
three observations overlaid on the counts map in Fig. 12.
After reduction, the data were modeled using a forward-folding
method and assuming a point source with a power law spec-
tral shape. The model was defined, using the SkyModel class
with a PowerLawSpectralModel spectral component only.
This model was then combined with the SpectrumDataset,
which contains the reduced data and fitted using the Fit class.
Based on this best-fit model, the final flux points and cor-
responding log-likelihood profiles were computed using the
FluxPointsEstimator. The example takes <10 s to run on a
standard laptop with M1 arm64 CPU.

4.2. 3D analysis

The 1D analysis approach is a powerful tool to measure the
spectrum of an isolated source. However, more complicated sit-
uations require a more careful treatment. In a FoV containing
several overlapping sources, the 1D approach cannot disentan-
gle the contribution of each source to the total flux in the
selected region. Sources with extended or complex morphology
can result in the measured flux being underestimated, and heavily
dependent on the choice of extraction region.

For such situations, a more complex approach is needed,
the so-called 3D analysis. The three relevant dimensions are
the two spatial angular coordinates and an energy axis. In this
framework, a combined spatial and spectral model (that is, a
SkyModel, see Sect. 3.8) is fitted to the sky maps that were pre-
viously derived from the data reduction step and bundled into a
MapDataset (see Sects. 3.6 and 3.5).

A thorough description of the 3D analysis approach and mul-
tiple examples that use Gammapy can be found in Mohrmann
et al. (2019). Here we present a short example to highlight some
of its advantages.

Starting from the IRFs corresponding to the same three sim-
ulated CTA observations used in Sect. 4.1, we can create a
MapDataset via the MapDatasetMaker. However, we will not
use the simulated event lists provided by CTA but instead, use the
method MapDataset.fake() to simulate measured counts from
the combination of several SkyModel instances. In this way, a
DL4 dataset can directly be simulated. In particular we simulate:

1. a point source located at (l = 0°, b = 0°) with a power law
spectral shape,

2. an extended source with Gaussian morphology located at
(l = 0.4°, b = 0.15°) with σ = 0.2° and a log parabola spectral
shape,

3. a large shell-like structure centered on (l = 0.06°, b = 0.6°)
with a radius and width of 0.6° and 0.3° respectively and a
power law spectral shape.

A157, page 13 of 23

Donath, A., et al.: A&A, 678, A157 (2023)

2° 0° 358°

2°

0°

-2°

Galactic Longitude

Ga
la

ct
ic

La
tit

ud
e

0

10

20

30
40
50
60

2° 0° 358°

2°

0°

-2°

Galactic Longitude
Ga

la
ct

ic
La

tit
ud

e

4

2

0

2

4

10 1 100 101

Energy / TeV

102

103

Co
un

ts

Point source
Gaussian
Shell

total
excess counts

Fig. 13. Example of a 3D analysis for simulated sources with point-like, Gaussian and shell-like morphologies. The simulation uses “prod5” IRFs
from CTA (Cherenkov Telescope Array Observatory & Cherenkov Telescope Array Consortium 2021). The left image shows a significance map
(using the Cash statistics) where the three simulated sources can be seen. The middle figure shows another significance map, but this time after
subtracting the best-fit model for each of the sources, which are displayed in black. The right figure shows the contribution of each source model to
the circular region of radius 0.5° drawn in the left image, together with the excess counts inside that region.

The position and sizes of the sources have been selected so
that their contributions overlap. This can be clearly seen in the
significance map shown in the left panel of Fig. 13. This map was
produced with the ExcessMapEstimator (see Sect. 3.9) with a
correlation radius of 0.1°.

We can now fit the same model shapes to the simulated data
and retrieve the best-fit parameters. To check the model agree-
ment, we compute the residual significance map after removing
the contribution from each model. This is done again via the
ExcessMapEstimator. As can be seen in the middle panel of
Fig. 13, there are no regions above or below 5σ, meaning that
the models describe the data sufficiently well.

As the example above shows, the 3D analysis allows the mor-
phology of the emission to be characterized and fit it together
with the spectral properties of the source. Among the advantages
that this provides is the ability to disentangle the contribution
from overlapping sources to the same spatial region. To highlight
this, we define a circular RegionGeom of radius 0.5° centered
around the position of the point source, which is drawn in the
left panel of Fig. 13. We can now compare the measured excess
counts integrated in that region to the expected relative contri-
bution from each of the three source models. The result can be
seen in the right panel of Fig. 13. We note that all the models fit-
ted also have a spectral component, from which flux points can
be derived in a similar way as described in Sect. 4.1. The whole
example takes <2 min to run on a standard laptop with M1 arm64
CPU.

4.3. Temporal analysis

A common use case in many astrophysical scenarios is to study
the temporal variability of a source. The most basic way to do
this is to construct a “light curve”, which corresponds to measur-
ing the flux of a source in a set of given time bins. In Gammapy,
this is done by using the LightCurveEstimator that fits the
normalization of a source in each time (and optionally energy)
band per observation, keeping constant other parameters. For
custom time binning, an observation needs to be split into
finer time bins using the Observation.select_time method.
Figure 14 shows the light curve of the blazar PKS 2155-304
in different energy bands as observed by the H.E.S.S. tele-
scope during an exceptional flare on the night of July 29–30,
2006 (Aharonian et al. 2009). The data are publicly available as
a part of the HESS-DL3-DR1 (H.E.S.S. Collaboration 2018a).

Each observation is first split into 10 min smaller observations,
and spectra extracted for each of these within a 0.11° radius
around the source. A PowerLawSpectralModel is fit to all
the datasets, leading to a reconstructed index of 3.54 ± 0.02.
With this adjusted spectral model the LightCurveEstimator
runs directly for two energy bands, 0.5–1.5 TeV and 1.5–20 TeV
respectively. The obtained flux points can be analytically mod-
eled using the available or user-implemented temporal models.
Alternatively, instead of extracting a light curve, it is also pos-
sible to directly fit temporal models to the reduced datasets. By
associating an appropriate SkyModel, consisting of both tempo-
ral and spectral components, or using custom temporal models
with spectroscopic variability, to each dataset, a joint fit across
the datasets will directly return the best fit temporal and spectral
parameters. The light curve data reduction and computation of
flux points takes about 0.5 min to run on a standard laptop with
M1 arm64 CPU.

4.4. Multi-instrument analysis

In this multi-instrument analysis example we showcase the capa-
bilities of Gammapy to perform a simultaneous likelihood fit
incorporating data from different instruments and at different
levels of reduction. We estimate the spectrum of the Crab Neb-
ula combining data from the Fermi-LAT, MAGIC and HAWC
instruments.

The Fermi-LAT data are introduced at the data level DL4,
and directly bundled in a MapDataset. They have been pre-
pared using the standard “fermitools” (Fermi Science Support
Development Team 2019) and selecting a region of 5 ◦ × 4 ◦
around the position of the Crab Nebula, applying the same selec-
tion criteria of the 3FHL catalog (7 yr of data with energy from
10 GeV to 2 TeV, Ajello et al. 2017).

The MAGIC data are included from the data level DL3.
They consist of two observations of 20 min each, chosen from
the dataset used to estimate the performance of the upgraded
stereo system (MAGIC Collaboration 2016) and already included
in Nigro et al. (2019). The observations were taken at small
zenith angles (<30 ◦) in wobble mode (Fomin et al. 1994), with
the source sitting at an offset of 0.4 ◦ from the FoV center.
Their energy range spans 80 GeV–20 TeV. The data reduction
for the 1D analysis is applied, and the data are reduced to a
SpectrumDataset before being fitted.

A157, page 14 of 23

Donath, A., et al.: A&A, 678, A157 (2023)

2006-07-29 21:00:00

2006-07-29 22:00:00

2006-07-29 23:00:00

2006-07-30 00:00:00

2006-07-30 01:00:00

2006-07-30 02:00:00

Time [iso]

10 11

10 10

E
/(

er
gc

m
2
s

1)

5.92e-01 TeV - 1.29e+00 TeV
1.29e+00 TeV - 2.00e+01 TeV

Fig. 14. Binned PKS 2155-304 light curve
in two different energy bands as observed
by the H.E.S.S. telescopes in 2006. The
colored markers show the flux points in
the different energy bands: the range from
(0.5 TeV to 1.5 TeV is shown in blue, while
the range from 1.5 TeV to 20 TeV) is shown
in orange. The horizontal error illustrates the
width of the time bin of 10 min. The vertical
error bars show the associated asymmetrical
flux errors. The marker is set to the center of
the time bin.

10 2 10 1 100 101 102

Energy / TeV

10 12

10 11

10 10

E2
d

/d
E

/(
er

gc
m

2
s

1)

joint fit, log parabola model
joint fit, naima inverse Compton model
Fermi-LAT
MAGIC
HAWC

Fig. 15. Multi-instrument spectral energy dis-
tribution (SED) and combined model fit of the
Crab Nebula. The colored markers show the
flux points computed from the data of the dif-
ferent listed instruments. The horizontal error
bar illustrates the width of the chosen energy
band (EMin, EMax). The marker is set to the log-
center energy of the band, that is defined by√

EMin · EMax. The vertical errors bars indicate
the 1σ error of the measurement. The downward
facing arrows indicate the value of 2σ upper
flux limits for the given energy range. The black
solid line shows the best fit model and the trans-
parent band its 1σ error range. The band is too
small be visible.

HAWC data are directly provided as flux points (DL5 data
level) and are read via Gammapy’s FluxPoints class. They
were estimated in HAWC Collaboration (2019) with 2.5 yr of
data and span an energy range 300 GeV–300 TeV.

Combining the datasets in a Datasets list, Gammapy auto-
matically generates a likelihood including three different types of
terms, two Poissonian likelihoods for Fermi-LAT’s MapDataset
and MAGIC’s SpectrumDataset, and a χ2 accounting for the
HAWC flux points. For Fermi-LAT, a 3D forward folding of
the sky model with the IRF is performed, in order to compute
the predicted counts in each sky-coordinate and energy bin. For
MAGIC, a 1D forward-folding of the spectral model with the
IRFs is performed to predict the counts in each estimated energy
bin. A log parabola is fitted over almost five decades in energy
10 GeV–300 TeV, taking into account all flux points from all
three datasets.

The result of the joint fit is displayed in Fig. 15. We remark
that the objective of this exercise is illustrative. We display
the flexibility of Gammapy in simultaneously fitting multi-
instrument data even at different levels of reduction, without
aiming to provide a new measurement of the Crab Nebula

spectrum. The spectral fit takes <10 s to run on a standard laptop
with M1 arm64 CPU.

4.5. Broadband SED modeling

By combining Gammapy with astrophysical modeling codes,
users can also fit astrophysical spectral models to γ-ray data.
There are several Python packages that are able to model the
γ-ray emission, given a physical scenario. Among those pack-
ages are Agnpy (Nigro et al. 2022), Naima (Zabalza 2015),
Jetset (Tramacere 2020) and Gamera (Hahn et al. 2022). Typ-
ically those emission models predict broadband emission from
radio, up to very high-energy γ-rays. By relying on the multiple
dataset types in Gammapy those data can be combined to con-
strain such a broadband emission model. Gammapy provides a
built-in NaimaSpectralModel that allows users to wrap a given
astrophysical emission model from the Naima package and fit it
directly to γ-ray data.

As an example application, we use the same multi-instrument
dataset of the Crab Nebula, described in the previous sec-
tion, and we apply an inverse Compton model computed with

A157, page 15 of 23

Donath, A., et al.: A&A, 678, A157 (2023)

Naima and wrapped in the Gammapy models through the
NaimaSpectralModel class. We describe the gamma-ray emis-
sion with an inverse Compton scenario, considering a log-
parabolic electron distribution that scatters photons from:

– the synchrotron radiation produced by the very same elec-
trons

– near and far infrared photon fields
– and the cosmic microwave background (CMB).

We adopt the prescription on the target photon fields provided
in the documentation of the “Naima” package15. The best-fit
inverse Compton spectrum is represented with a red dashed line
in Fig. 15. The fit of the astrophysical model takes <5 min to run
on a standard laptop with M1 arm64 CPU.

More examples for modeling the broadband emission of
γ-ray sources, which partly involve Gammapy are available in the
online documentation of the Agnpy, Naima, Jetset and Gamera
packages16,17,18,19.

4.6. Surveys, catalogs, and population studies

As a last application example we describe the use of Gammapy
for large scale analyses such as γ-ray surveys, catalogs and pop-
ulation studies. Early versions of Gammapy were developed in
parallel to the preparation of the H.E.S.S. Galactic plane survey
catalog (HGPS, H.E.S.S. Collaboration 2018b) and the associ-
ated PWN and SNR populations studies (H.E.S.S. Collaboration
2018c,d).

The increase in sensitivity and angular resolution provided
by the new generation of instruments scales up the number of
detectable sources and the complexity of models needed to repre-
sent them accurately. As an example, if we compare the results of
the HGPS to the expectations from the CTA Galactic Plane sur-
vey simulations, we jump from 78 sources detected by H.E.S.S.
to about 500 detectable by CTA (Remy et al. 2021). This large
increase in the amount of data to analyze and increase in com-
plexity of modeling scenarios, requires the high-level analysis
software to be both scalabale as well as performant.

In short, the production of catalogs from γ-ray surveys can be
divided in four main steps: (a) data reduction, (b) object detec-
tion, (c) model fitting and model selection and (d) associations
and classification. All steps can either be done directly with
Gammapy or by relying on the seamless integration of Gammapy
with the scientific Python ecosystem. This allows one to rely on
third party functionality wherever needed. A simplified catalog
analysis based on Gammapy typically includes:

– The IACTs data reduction step is done in the same way
described in the previous sections but scaled up to a few thou-
sand observations. This step can be trivially parallelized by
deploying the Gammapy package on a cluster.

– The object detection step typically consists in finding
local maxima in the significance or TS maps, computed by the
ExcessMapEstimator or TSMapEstimator respectively. For
this Gammapy provides a simple find_peaks method. For more
advanced methods users can rely on third party packages such as

15 https://naima.readthedocs.io/en/stable/examples.
html#crab-nebula-ssc-model
16 https://agnpy.readthedocs.io/en/latest/tutorials/
ssc_gammapy_fit.html
17 https://naima.readthedocs.io/en/stable/tutorial.html
18 https://jetset.readthedocs.io/en/stable/user_guide/
documentation_notebooks/gammapy_plugin/gammapy_plugin.
html
19 http://libgamera.github.io/GAMERA/docs/fitting_data.
html

“Scikit-image” (van der Walt et al. 2014). This packages pro-
vide for example general “blob detection” algorithms and image
segmentation methods such as hysteresis thresholding or the
watershed transform.

– During the modeling step each object is alternatively
fitted with different models in order to determine their opti-
mal parameters, and the best-candidate model. The subpackage
gammapy.modeling.models offers a large variety of choices
for spatial and spectral models as well as the possibility to
add custom models. For the model selection Gammapy pro-
vides statisticl helper methods to perform likelihood ratio tests.
But users can also rely on third party packages such as “Scikit-
learn” (Pedregosa et al. 2011) to compute quantities such as the
Akaike information criterion (AIC) or the Bayesian information
criterion (BIC), which also allow for model selection.

– For the association and classification step, which is tightly
connected to population studies, we can easily compare the
fitted models to the set of existing γ-ray catalogs available
in gammapy.catalog. Further multi-wavelength cross-matches
are usually required to characterize the sources. This can
easily be achieved by relying on coordinate handling from
Astropy in combination with affiliated packages such as “Astro-
query” (Ginsburg et al. 2019). For more advanced source classi-
fication methods users can again rely for example on Scikit-learn
to perform supervised or unsupervised clustering.

Gammapy has been successfully used for catalog studies
performed on simulations of the future CTA Galactic Plane
Survey (Remy et al. 2021). Besides the scientific insights they
also gave us the opportunity to test the Gammapy software on
complex use cases. This resulted in a number of improvements
to the Gammapy package, such as as improved performance,
optimized analysis strategies documented to users, and identi-
fying the needs for future developments, including solutions for
distributed computing. The catalog studies of the CTA Galac-
tic Plane Survey simulations also allowed for detailed cross-
comparison of the results obtained with the independent γ-ray
analysis package “ctools” (Knödlseder et al. 2016), with very
consistent results.

5. The Gammapy project

In this section, we provide an overview of the organization of
the Gammapy project. We briefly describe the main roles and
responsibilities within the team, as well as the technical infras-
tructure designed to facilitate the development and maintenance
of Gammapy as a high-quality software. We use common tools
and services for software development of Python open-source
projects, code review, testing, package distribution and user sup-
port, with a customized solution for a versioned and thoroughly
tested documentation in the form of user-friendly playable tuto-
rials. This section concludes with an outlook on the road map for
future directions.

5.1. Organizational structure

Gammapy is an international open-source project with a broad
developer base and contributions and commitments from mul-
tiple groups and leading institutes in the very high-energy
astrophysics domain20. The main development road maps are
discussed and validated by a “Coordination Committee”, com-
posed of representatives of the main contributing institutions

20 https://gammapy.org/team.html

A157, page 16 of 23

https://naima.readthedocs.io/en/stable/examples.html#crab-nebula-ssc-model
https://naima.readthedocs.io/en/stable/examples.html#crab-nebula-ssc-model
https://agnpy.readthedocs.io/en/latest/tutorials/ssc_gammapy_fit.html
https://agnpy.readthedocs.io/en/latest/tutorials/ssc_gammapy_fit.html
https://naima.readthedocs.io/en/stable/tutorial.html
https://jetset.readthedocs.io/en/stable/user_guide/documentation_notebooks/gammapy_plugin/gammapy_plugin.html
https://jetset.readthedocs.io/en/stable/user_guide/documentation_notebooks/gammapy_plugin/gammapy_plugin.html
https://jetset.readthedocs.io/en/stable/user_guide/documentation_notebooks/gammapy_plugin/gammapy_plugin.html
http://libgamera.github.io/GAMERA/docs/fitting_data.html
http://libgamera.github.io/GAMERA/docs/fitting_data.html
https://gammapy.org/team.html

Donath, A., et al.: A&A, 678, A157 (2023)

34 %

26 %

22 %
9 %

6 %
2 %

Total
50, 000 LOC

Python API
DocStrings
Python Tests
reStructuredText
C
Others

Fig. 16. Overview of used programming languages and distribution of
code across the different file categories in the Gammapy code base. The
total number of lines is ≈50 000.

and observatories. This committee is chaired by a “Project Man-
ager” and his deputy while two “Lead Developers” manage
the development strategy and organize technical activities. This
institutionally driven organization, the permanent staff and com-
mitment of supporting institutes ensure the continuity of the
executive teams. A core team of developers from the contribut-
ing institutions is in charge of the regular development, which
benefits from regular contributions of the community at large.

5.2. Technical infrastructure

Gammapy follows an open-source and open-contribution devel-
opment model based on the cloud repository service GitHub. A
GitHub organization named “gammapy21” hosts different repos-
itories related with the project. The software codebase may be
found in the Gammapy repository (see Fig. 16 for code lines
statistics). We make extensive use of the pull request system to
discuss and review code contributions.

Several automated tasks are set as GitHub actions22, blocking
the processes and alerting developers when failures occur. This is
the case of the continuous integration workflow, which monitors
the execution of the test coverage suite23 using datasets from the
“gammapy-data” repository24. Tests scan not only the codebase,
but also the code snippets present in docstrings of the scripts
and in the RST documentation files, as well as in the tutorials
provided in the form of Jupyter notebooks.

Other automated tasks, executing in the “gammapy-
benchmarks25” repository, are responsible for numerical valida-
tion tests and benchmarks monitoring. Also, tasks related with
the release process are partially automated, and every contri-
bution to the codebase repository triggers the documentation
building and publishing workflow within the “gammapy-docs”
repository26 (see Sects. 5.3 and 5.4).

This small ecosystem of interconnected up-to-date reposito-
ries, automated tasks and alerts, is just a part of a bigger set of
GitHub repositories, where most of them are related with the
project but not necessary for the development of the software
(i.e., project webpage, complementary high-energy astrophysics

21 https://github.com/gammapy
22 https://github.com/features/actions
23 https://pytest.org
24 https://github.com/gammapy/gammapy-data
25 https://github.com/gammapy/gammapy-benchmarks
26 https://github.com/gammapy/gammapy-docs

object catalogs, coding sprints and weekly developer calls min-
utes, contributions to conferences, other digital assets, etc).
Finally, third-party services for code quality metrics are also set
and may be found as status shields in the codebase repository.

5.3. Software distribution

Gammapy is distributed for Linux, Windows and Mac environ-
ments, and installed in the usual way for Python packages. Each
stable release is uploaded to the Python package index27 and as
a binary package to the “conda-forge” and “astropy” Anaconda
repository28 channels. At this time, Gammapy is also available
as a Debian Linux package29. We recommend installing the soft-
ware using the “conda” installation process with an environment
definition file that we provide, so to work within a virtual iso-
lated environment with additional useful packages and ensure
reproducibility.

Gammapy is indexed in the Astronomy Source Code
Library30 and Zenodo31 digital libraries for software. The Zen-
odo record is synchronized with the codebase GitHub repository
so that every release triggers the update of the versioned record.
In addition, Gammapy has been added to the Open-source scien-
tific Software and Service Repository32 (Vuillaume et al. 2023)
and indexed in the European Open Science Cloud catalog33.

In addition, Gammapy is also listed in the “SoftWare Her-
itage34” (SWH) archive (Cosmo 2020). The archive collects,
preserves, and shares the source code of publicly available soft-
ware. SWH automatically scans open software repositories, such
as GitHub, and projects are archived in SWH by the means of
SoftWare Heritage persistent IDentifiers (SWHID), that are guar-
anteed to remain stable (persistent) over time. The French open
publication archive, HAL35, is using the Gammapy SWHIDs to
register the releases as scientific products36 of open science.

5.4. Documentation and user-support

Gammapy provides its user community with a tested and ver-
sioned up-to-date online documentation37 (Boisson et al. 2019)
built with Sphinx38 scanning the codebase Python scripts, as
well as a set of RST files and Jupyter notebooks. The docu-
mentation includes a user guide, a set of executable tutorials,
and a reference to the API automatically extracted from the
code and docstrings. The Gammapy code snippets present in
the documentation are tested in different environments using our
continuous integration (CI) workflow based on GitHub actions.

The Jupyter notebooks tutorials are generated using the
sphinx-gallery package (Nájera et al. 2020). The resulting web
published tutorials also provide links to playground spaces in
“myBinder” (Project Jupyter et al. 2018), where they may be
executed on-line in versioned virtual environments hosted in the
myBinder infrastructure. Users may also play with the tutorials
locally in their laptops. They can download a specific version

27 https://pypi.org
28 https://anaconda.org/anaconda/repo
29 https://packages.debian.org/sid/python3-gammapy
30 https://ascl.net/1711.014
31 https://doi.org/10.5281/zenodo.4701488
32 https://projectescape.eu/ossr
33 https://eosc-portal.eu
34 https://softwareheritage.org
35 https://hal.archives-ouvertes.fr
36 https://hal.science/hal-03885031v1
37 https://docs.gammapy.org
38 https://www.sphinx-doc.org

A157, page 17 of 23

https://github.com/gammapy
https://github.com/features/actions
https://pytest.org
https://github.com/gammapy/gammapy-data
https://github.com/gammapy/gammapy-benchmarks
https://github.com/gammapy/gammapy-docs
https://pypi.org
https://anaconda.org/anaconda/repo
https://packages.debian.org/sid/python3-gammapy
https://ascl.net/1711.014
https://doi.org/10.5281/zenodo.4701488
https://projectescape.eu/ossr
https://eosc-portal.eu
https://softwareheritage.org
https://hal.archives-ouvertes.fr
https://hal.science/hal-03885031v1
https://docs.gammapy.org
https://www.sphinx-doc.org

Donath, A., et al.: A&A, 678, A157 (2023)

of the tutorials together with the associated datasets needed and
the specific conda computing environment, using the gammapy
download command.

We have also set up a solution for users to share recipes that
do not fit in the Gammapy core documentation, but which may
be relevant for specific use cases, in the form of Jupyter note-
books. Contributions happen via pull requests to the “gammapy-
recipes” GitHub repository and are merged after a short review.
All notebooks in the repository are tested and published in
the Gammapy recipes webpage39 automatically using GitHub
actions.

A growing community of users is gathering around the Slack
messaging40 and GitHub discussions41 support forums, provid-
ing valuable feedback on the Gammapy functionalities, interface
and documentation. Other communication channels have been
set such as mailing lists, a Twitter account42, regular public cod-
ing sprint meetings, hands-on sessions within collaborations,
weekly development meetings, etc.

5.5. Proposals for improving Gammapy

An important part of Gammapy’s development organization is
the support for “Proposals for improving Gammapy ” (PIG). This
system is very much inspired by Python’s PEP43 and Astropy’s
APE (Greenfield 2013) system. PIG are self-contained docu-
ments which outline a set of significant changes to the Gammapy
code base. This includes large feature additions, code and pack-
age restructuring and maintenance, as well as changes related
to the organizational structure of the Gammapy project. PIGs
can be proposed by any person in or outside the project and
by multiple authors. They are presented to the Gammapy devel-
oper community in a pull request on GitHub and then undergo
a review phase in which changes and improvements to the doc-
ument are proposed and implemented. Once the PIG document
is in a final state it is presented to the Gammapy coordination
committee, which takes the final decision on the acceptance or
rejection of the proposal. Once accepted, the proposed change
are implemented by Gammapy developers in a series of indi-
vidual contributions via pull requests. A list of all proposed PIG
documents is available in the Gammapy online documentation44.

A special category of PIGs are long-term road maps. To
develop a common vision for all Gammapy project members on
the future of the project, the main goals regarding planned fea-
tures, maintenance and project organization are written up as an
overview and presented to the Gammapy community for discus-
sion. The review and acceptance process follows the normal PIG
guidelines. Typically road maps are written to outline and agree
on a common vision for the next long term support release of
Gammapy.

5.6. Release cycle, versioning, and long-term support

With the first long term support (LTS) release v1.0, the
Gammapy project enters a new development phase. The devel-
opment will change from quick feature-driven development to
more stable maintenance and user support driven development.
After v1.0 we foresee a development cycle with major, minor

39 https://gammapy.github.io/gammapy-recipes
40 https://gammapy.slack.com
41 https://github.com/gammapy/gammapy/discussions
42 https://twitter.com/gammapyST
43 https://peps.python.org/pep-0001/
44 https://docs.gammapy.org/dev/development/pigs/index.
html

and bugfix releases; basically following the development cycle
of the Astropy project. Thus we expect a major LTS release
approximately every two years, minor releases are planned
every 6 months, while bug-fix releases will happen as needed.
While bug-fix releases will not introduce API-breaking changes,
we will work with a deprecation system for minor releases.
API-breaking changes will be announced to users by runtime
warnings first and then implemented in the subsequent minor
release. We consider this approach as a fair compromise between
the interests of users in a stable package and the interest of
developers to improve and develop Gammapy in future. The
development cycle is described in more detail in PIG 23 (Terrier
& Donath 2022).

6. Paper reproducibility

One of the most important goals of the Gammapy project
is to support open and reproducible science results. Thus we
decided to write this manuscript openly and publish the Latex
source code along with the associated Python scripts to cre-
ate the figures in an open repository45. This GitHub repository
also documents the history of the creation and evolution of the
manuscript with time. To simplify the reproducibility of this
manuscript including figures and text, we relied on the tool
“showyourwork” (Luger 2021). This tool coordinates the build-
ing process and both software and data dependencies, such that
the complete manuscript can be reproduced with a single make
command, after downloading the source repository. For this we
provide detailed instructions online46. Almost all figures in this
manuscript provide a link to a Python script, that was used to
produce it. This means all example analyses presented in Sect. 4
link to actually working Python source code.

7. Summary and outlook

In this paper we have presented the first LTS version of
Gammapy. Gammapy is a Python package for γ-ray astron-
omy, which relies on the scientific Python ecosystem, including
Numpy, Scipy, and Astropy as main dependencies. It also holds
the status of an Astropy affiliated package. It supports high-
level analysis of astronomical γ-ray data from intermediate level
data formats, such as the FITS based GADF. Starting from lists
of γ-ray events and corresponding descriptions of the instru-
ment response, users can reduce and project the data to WCS,
HEALPix, and region-based data structures. The reduced data
are bundled into datasets, which serve as a basis for Poisson
maximum likelihood modeling of the data. For this purpose
Gammapy provides a wide selection of built-in spectral, spatial,
and temporal models, as well as a unified fitting interface with a
connection to multiple optimization backends.

With the v1.0 release, the Gammapy project has entered
a new development phase. Future work will not only include
maintenance of the v1.0 release, but also parallel development
of new features, improved API, and data model support. While
v1.0 provides all the features required for standard and advanced
astronomical γ-ray data analysis, we already identified specific
improvements to be considered in the road map for a future v2.0
release. This includes the support for scalable analyses via dis-
tributed computing. This will allow users to scale an analysis
from a few observations to multiple hundreds of observations,

45 https://github.com/gammapy/gammapy-v1.0-paper
46 https://github.com/gammapy/gammapy-v1.0-paper/blob/
main/README.md

A157, page 18 of 23

https://gammapy.github.io/gammapy-recipes
https://gammapy.slack.com
https://github.com/gammapy/gammapy/discussions
https://twitter.com/gammapyST
https://peps.python.org/pep-0001/
https://docs.gammapy.org/dev/development/pigs/index.html
https://docs.gammapy.org/dev/development/pigs/index.html
https://github.com/gammapy/gammapy-v1.0-paper
https://github.com/gammapy/gammapy-v1.0-paper/blob/main/README.md
https://github.com/gammapy/gammapy-v1.0-paper/blob/main/README.md

Donath, A., et al.: A&A, 678, A157 (2023)

as expected by deep surveys of the CTA observatory. In addition
the high-level interface of Gammapy is planned to be developed
into a fully configurable API design. This will allow users to
define arbitrary complex analysis scenarios as YAML files and
even extend their workflows by user-defined analysis steps via a
registry system. Another important topic will be to improve the
support of handling metadata for data structures and provenance
information to track the history of the data reduction process
from the DL3 to the highest DL5 and DL6 data levels. Gammapy
will also extend its functionalities for time-based analyses, for
example tests for variability in light curves, phase curves peak
search, as well as improving the interoperability with other tim-
ing packages such as “Stingray” (Huppenkothen et al. 2019),
Astropy’s time series classes, and “pint-pulsar” (Luo et al. 2021)
for high-precision pulsar timing.

Around the core Python package, a large diverse community
of users and contributors has developed. With regular developer
meetings, coding sprints, and in-person user tutorials at relevant
conferences and collaboration meetings, the community has con-
stantly grown. So far Gammapy has seen 80 contributors from
ten different countries. With typically ten regular contributors
at any given time of the project, the code base has constantly
grown its range of features and improved its code quality. With
Gammapy being officially selected in 2021 as the base library
for the future science tools for CTA47, we expect the commu-
nity to grow even further, providing a stable perspective for
further usage, development, and maintenance of the project. In
addition to the future use by the CTA community, Gammapy
has already been used for analysis of data from the H.E.S.S.,
MAGIC, ASTRI (e.g. Vercellone et al. 2022), and VERITAS
instruments.

While Gammapy was mainly developed for the science com-
munity around IACT instruments, the internal data model and
software design are general enough to be applied to other γ-ray
instruments as well. The use of Gammapy for the analysis
of data from the High Altitude Water Cherenkov Observatory
(HAWC) has been successfully demonstrated by Albert et al.
(2022). This makes Gammapy a viable choice for the base library
for the science tools of the future Southern Widefield Gamma
Ray Observatory (SWGO) and use with data from the Large
High Altitude Air Shower Observatory (LHAASO) as well.
Gammapy has the potential to further unify the community of
γ-ray astronomers, by sharing common tools, data formats, and
a common vision of open and reproducible science for the future.

Acknowledgements. We would like to thank the Numpy, Scipy, IPython and
Matplotlib communities for providing their packages which are invaluable
to the development of Gammapy. We thank the GitHub team for provid-
ing us with an excellent free development platform. We also are grateful
to Read the Docs (https://readthedocs.org/), and Travis (https://
www.travis-ci.org/) for providing free documentation hosting and test-
ing respectively. We would like to thank all the Gammapy users that have
provided feedback and submitted bug reports. A.A.-C. acknowledges the
financial support from the Spanish Ministry of Science and Innovation and
the Spanish Research State Agency (AEI) under grant PID2019-104114RB-
C33/AEI/10.13039/501100011034 and the Institute of Cosmos Sciences Uni-
versity of Barcelona (ICCUB, Unidad de Excelencia “María de Maeztu”)
through grant CEX2019-000918-M. J.L.C. acknowledges the funding from the
ESCAPE H2020 project, GA No 824064. L.G. acknowledges financial sup-
port from the Agence Nationale de la Recherche (ANR-17-CE31-0014). M.L.
acknowledges support by the German BMBF (ErUM) and DFG (SFBs 876
and 1491). R.L.-C. acknowledges the Ramon y Cajal program through grant
RYC-2020-028639-I and the financial support from the grant CEX2021-001131-
S funded by MCIN/AEI/ 10.13039/501100011033. C.N. acknowledges support

47 CTAO Press Release: https://www.cta-observatory.org/
ctao-adopts-the-gammapy-software-package-for-science-
analysis/

by the Spanish Ministerio de Ciencia e Innovación (MICINN), the European
Union – NextGenerationEU and PRTR through the programme Juan de la
Cierva (grant FJC2020-046063-I), by the MICINN (grant PID2019-107847RB-
C41), and from the CERCA program of the Generalitat de Catalunya. Q. R.
acknowledges support from the project “European Science Cluster of Astron-
omy & Particle Physics ESFRI Research Infrastructures” (ESCAPE), that has
received funding from the European Union’s Horizon 2020 research and inno-
vation programme under Grant Agreement no. 824064. J.E.R. acknowledges
financial support from the grant CEX2021-001131-S funded by MCIN/AEI/
10.13039/501100011033. A.S. was supported by NASA contract NAS8-03060
(Chandra X-ray Center). A.S. acknowledges support from The European Sci-
ence Cluster of Astronomy & Particle Physics ESFRI Research Infrastructures
funded by the European Union’s Horizon 2020 research and innovation pro-
gram under Grant Agreement no. 824064 and from the Spanish Ministry of
Universities through the Maria Zambrano Talent Attraction Programme, 2021-
2023. A special acknowledgment has to be given to our first lead developer,
Christoph Deil, who started the Gammapy project and set the foundation for
its future success. For contributing to the writing of the manuscript, we thank
A. Donath, R. Terrier, Q. Remy, A. Sinha, C. Nigro, F. Pintore, B. Khélifi,
L. Olivera-Nieto, J. E. Ruiz, K. Brügge, M. Linhoff and J.L. Contreras.
We also thank the current and former members of the Gammapy coordina-
tion committee A. Donath, B. Khélifi, C. Boisson, C. Deil, C. van Eldik,
D. Berge, E. de Ona Wilhelmi, F. Acero, F. Pintore, M. Cardillo, J. Hinton, J.L.
Contreras, M. Fuessling, R. Terrier, R. Zanin, R. López-Coto and S. Funk, who
contributed to promotion, coordination and steering of the Gammapy project.
Finally we would like to thank A. Aguasca-Cabot, P. Bhattacharjee, K. Brügge, J.
Buchner, D. Carreto Fidalgo, A. Chen, M. de Bony de Lavergne, A. Donath,
J. V. de Miranda Cardoso, C. Deil, L. Giunti, L. Jouvin, B. Khélifi, J. King,
J. Lefaucheur, M. Lemoine-Goumard, J.P. Lenain, M. Linhoff, L. Mohrmann,
D. Morcuende, C. Nigro, L. Olivera-Nieto, S. Panny, F. Pintore, M. Regeard,
Q. Remy, J. E. Ruiz, L. Saha, H. Siejkowski, A. Siemiginowska, A. Sinha,
B. M. Sipőcz, R. Terrier, T. Unbehaun, T. Vuillaume and unnamed contributors
for contributing to the development of Gammapy.

References
Abdollahi, S., Acero, F., Ackermann, M., et al. 2020, ApJS, 247, 33
Abeysekara, A. U., Albert, A., Alfaro, R., et al. 2017, ApJ, 843, 40
Acero, F., Ackermann, M., Ajello, M., et al. 2015, ApJS, 218, 23
Ackermann, M., Ajello, M., Atwood, W. B., et al. 2016, ApJS, 222, 5
Aharonian, F., Akhperjanian, A. G., Anton, G., et al. 2009, A&A, 502, 749
Ajello, M., Atwood, W. B., Baldini, L., et al. 2017, ApJS, 232, 18
Albert, A., Alfaro, R., Alvarez, C., et al. 2020, ApJ, 905, 76
Albert, A., Alfaro, R., Arteaga-Velázquez, J. C., et al. 2022, A&A, 667, A36
Arnaud, K., Gordon, C., Dorman, B., & Rutkowski, K. 2023, Appendix B: Statis-

tics in XSPEC, in Xspec, An X-Ray Spectral Fitting Package (Greenbelt, MD
20771: HEASARC, Astrophysics Science Division, NASA/GSFC)

Astropy Collaboration (Robitaille, T. P., et al.) 2013, A&A, 558, A33
Atwood, W. B., Abdo, A. A., Ackermann, M., et al. 2009, ApJ, 697, 1071
Barker, M., Chue Hong, N. P., Katz, D. S., et al. 2022, Sci. Data, 9, 622
Berge, D., Funk, S., & Hinton, J. 2007, A&A, 466, 1219
Boisson, C., Ruiz, J. E., Deil, C., Donath, A., & Khelifi, B. 2019, ASP Conf. Ser.,

523, 357
Bradley, L., Deil, C., Patra, S., et al. 2022, https://doi.org/10.5281/

zenodo.6374572
Calabretta, M. R., & Greisen, E. W. 2002, A&A, 395, 1077
Case, G. L., & Bhattacharya, D. 1998, ApJ, 504, 761
Cash, W. 1979, ApJ, 228, 939
Cherenkov Telescope Array Observatory & Cherenkov Telescope Array Consor-

tium 2021, https://doi.org/10.5281/zenodo.5499840
Cirelli, M., Corcella, G., Hektor, A., et al. 2011, J. Cosmology Astropart. Phys.,

2011, 051
Cosmo, R. D. 2020, Lec. Notes Comput. Sci., 12097, 362
Deil, C., Boisson, C., Kosack, K., et al. 2017, AIP Conf. Ser., 1792, 070006
Deil, C., Maier, G., Donath, A., et al. 2022, https://github.com/gammapy/

gamma-cat
Dembinski, H., Ongmongkolkul, P., Deil, C., et al. 2020, https://doi.org/

10.5281/zenodo.3949207
de Naurois, M., & Mazin, D. 2015, Comptes Rendus Physique, 16, 610
Domínguez, A., Primack, J. R., Rosario, D. J., et al. 2011, MNRAS, 410, 2556
Donath, A., Deil, C., Arribas, M. P., et al. 2015, Int. Cosmic Ray Conf., 34, 789
Faucher-Giguère, C.-A., & Kaspi, V. M. 2006, ApJ, 643, 332
Fermi Science Support Development Team 2019, Astrophysics Source Code

Library [record ascl:1905.011]
Finke, J. D., Razzaque, S., & Dermer, C. D. 2010, ApJ, 712, 238
Fomin, V. P., Stepanian, A. A., Lamb, R. C., et al. 1994, Astropart. Phys., 2, 137
Franceschini, A., & Rodighiero, G. 2017, A&A, 603, A34

A157, page 19 of 23

https://readthedocs.org/
https://www.travis-ci.org/
https://www.travis-ci.org/
https://www.cta-observatory.org/ctao-adopts-the-gammapy-software-package-for-science-analysis/
https://www.cta-observatory.org/ctao-adopts-the-gammapy-software-package-for-science-analysis/
https://www.cta-observatory.org/ctao-adopts-the-gammapy-software-package-for-science-analysis/
http://linker.aanda.org/10.1051/0004-6361/202346488/1
http://linker.aanda.org/10.1051/0004-6361/202346488/2
http://linker.aanda.org/10.1051/0004-6361/202346488/3
http://linker.aanda.org/10.1051/0004-6361/202346488/4
http://linker.aanda.org/10.1051/0004-6361/202346488/5
http://linker.aanda.org/10.1051/0004-6361/202346488/6
http://linker.aanda.org/10.1051/0004-6361/202346488/7
http://linker.aanda.org/10.1051/0004-6361/202346488/8
http://linker.aanda.org/10.1051/0004-6361/202346488/10
http://linker.aanda.org/10.1051/0004-6361/202346488/11
http://linker.aanda.org/10.1051/0004-6361/202346488/12
http://linker.aanda.org/10.1051/0004-6361/202346488/13
http://linker.aanda.org/10.1051/0004-6361/202346488/14
http://linker.aanda.org/10.1051/0004-6361/202346488/14
https://doi.org/10.5281/zenodo.6374572
https://doi.org/10.5281/zenodo.6374572
http://linker.aanda.org/10.1051/0004-6361/202346488/16
http://linker.aanda.org/10.1051/0004-6361/202346488/17
http://linker.aanda.org/10.1051/0004-6361/202346488/18
https://doi.org/10.5281/zenodo.5499840
http://linker.aanda.org/10.1051/0004-6361/202346488/20
http://linker.aanda.org/10.1051/0004-6361/202346488/20
http://linker.aanda.org/10.1051/0004-6361/202346488/21
http://linker.aanda.org/10.1051/0004-6361/202346488/22
https://github.com/gammapy/gamma-cat
https://github.com/gammapy/gamma-cat
https://doi.org/10.5281/zenodo.3949207
https://doi.org/10.5281/zenodo.3949207
http://linker.aanda.org/10.1051/0004-6361/202346488/25
http://linker.aanda.org/10.1051/0004-6361/202346488/26
http://linker.aanda.org/10.1051/0004-6361/202346488/27
http://linker.aanda.org/10.1051/0004-6361/202346488/28
http://www.ascl.net/1905.011
http://linker.aanda.org/10.1051/0004-6361/202346488/30
http://linker.aanda.org/10.1051/0004-6361/202346488/31
http://linker.aanda.org/10.1051/0004-6361/202346488/32

Donath, A., et al.: A&A, 678, A157 (2023)

Franceschini, A., Rodighiero, G., & Vaccari, M. 2008, A&A, 487, 837
Freeman, P., Doe, S., & Siemiginowska, A. 2001, SPIE Conf. Ser., 4477, 76
Gaensler, B. M., & Slane, P. O. 2006, ARA&A, 44, 17
Ginsburg, A., Sipőcz, B. M., Brasseur, C. E., et al. 2019, AJ, 157, 98
Górski, K. M., Hivon, E., Banday, A. J., et al. 2005, ApJ, 622, 759
Greenfield, P. 2013, https://doi.org/10.5281/zenodo.1043886
Hahn, J., Romoli, C., & Breuhaus, M. 2022, Astrophysics Source Code Library

[record ascl:2203.007]
Harris, C. R., Millman, K. J., van der Walt, S. J., et al. 2020, Nature, 585, 357
HAWC Collaboration (Abeysekara, A. U., et al.) 2019, ApJ, 881, 134
H.E.S.S. Collaboration 2018a, https://doi.org/10.5281/zenodo.

1421099
H.E.S.S. Collaboration (Abdalla, H., et al.) 2018b, A&A, 612, A1
H.E.S.S. Collaboration (Abdalla, H., et al.) 2018c, A&A, 612, A2
H.E.S.S. Collaboration (Abdalla, H., et al.) 2018d, A&A, 612, A3
Hunter, J. D. 2007, Comput. Sci. Eng., 9, 90
Huppenkothen, D., Bachetti, M., Stevens, A. L., et al. 2019, ApJ, 881, 39
Knödlseder, J., Mayer, M., Deil, C., et al. 2016, A&A, 593, A1
Li, T. P., & Ma, Y. Q. 1983, ApJ, 272, 317
Lorimer, D. R., Faulkner, A. J., Lyne, A. G., et al. 2006, MNRAS, 372, 777
Luger, R. 2021, https://github.com/rodluger/showyourwork
Luo, J., Ransom, S., Demorest, P., et al. 2021, ApJ, 911, 45
MAGIC Collaboration (Aleksić, J., et al.) 2016, Astropart. Phys., 72, 76
Mohrmann, L., Specovius, A., Tiziani, D., et al. 2019, A&A, 632, A72
Momcheva, I., & Tollerud, E. 2015, arXiv e-prints [arXiv:1507.03989]
Nigro, C., Deil, C., Zanin, R., et al. 2019, A&A, 625, A10
Nigro, C., Hassan, T., & Olivera-Nieto, L. 2021, Universe, 7, 374
Nigro, C., Sitarek, J., Gliwny, P., et al. 2022, A&A, 660, A18
Nájera, O., Larson, E., Estève, L., et al. 2020, https://doi.org/10.5281/

zenodo.3838216
Pedregosa, F., Varoquaux, G., Gramfort, A., et al. 2011, J. Mach. Learn. Res., 12,

2825
Pence, W. D., Chiappetti, L., Page, C. G., Shaw, R. A., & Stobie, E. 2010, A&A,

524, A42
Project Jupyter, Bussonnier, M., Forde, J., et al. 2018, in Proc. of the 17th Python

in Science Conf., eds. F. Akici, D. Lippa, D. Niederhut, & M. Pacer, 113
Refsdal, B., Doe, S., Nguyen, D., & Siemiginowska, A. 2011, in 10th SciPy

Conference, 4
Remy, Q., Tibaldo, L., Acero, F., et al. 2021, in Proceedings of 37th International

Cosmic Ray Conference – PoS(ICRC2021), 395, 886
Taylor, G. 1950, Proc. R. Soc. London Ser. A, 201, 159
Terrier, R., & Donath, A. 2022, PIG 23 - Gammapy release cycle and version

numbering
Tramacere, A. 2020, Astrophysics Source Code Library [record

ascl:2009.001]
Truelove, J. K., & McKee, C. F. 1999, ApJS, 120, 299
van der Walt, S., Schönberger, J. L., Nunez-Iglesias, J., et al. 2014, PeerJ, 2,

e453
Vercellone, S., Bigongiari, C., Burtovoi, A., et al. 2022, J. High Energy

Astrophys., 35, 1
Virtanen, P., Gommers, R., Oliphant, T. E., et al. 2020, Nat. Methods, 17, 261
Vuillaume, T., Al-Turany, M., Füßling, M., et al. 2023, Open Research Europe,

3, 46
Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J., et al. 2016, Sci. Data, 3,

160018
Wood, M., Caputo, R., Charles, E., et al. 2017, PoS, ICRC2017, 824
Yusifov, I., & Küçük, I. 2004, A&A, 422, 545
Zabalza, V. 2015, Int. Cosmic Ray Conf., 34, 922

1 Center for Astrophysics | Harvard and Smithsonian, USA
e-mail: gammapy-coordination-l@in2p3.fr

2 Université de Paris Cité, CNRS, Astroparticule et Cosmologie,
75013 Paris, France

3 Max-Planck-Institut für Kernphysik, PO Box 103980, 69029
Heidelberg, Germany

4 IPARCOS Institute and EMFTEL Department, Universidad Com-
plutense de Madrid, 28040 Madrid, Spain

5 Institut de Física d’Altes Energies (IFAE), The Barcelona Insti-
tute of Science and Technology, Campus UAB, Bellaterra, 08193
Barcelona, Spain

6 INAF/IASF Palermo, Via U. La Malfa, 153, 90146 Palermo PA, Italy
7 Instituto de Astrofísica de Andalucía-CSIC, Glorieta de la

Astronomía s/n, 18008 Granada, Spain
8 Point 8 GmbH Rheinlanddamm 201, 44139 Dortmund, Germany
9 Astroparticle Physics, Department of Physics, TU Dortmund Uni-

versity, Otto-Hahn-Str. 4a, 44227 Dortmund, Germany
10 Université Paris-Saclay, Université Paris Cité, CEA, CNRS, AIM,

91191 Gif-sur-Yvette, France
11 Departament de Física Quàntica i Astrofísica (FQA), Universitat de

Barcelona (UB), c. Martí i Franqués, 1, 08028 Barcelona, Spain
12 Institut de Ciències del Cosmos (ICCUB), Universitat de Barcelona

(UB), c. Martí i Franqués, 1, 08028 Barcelona, Spain
13 Institut d’Estudis Espacials de Catalunya (IEEC), c. Gran Capità,

2-4, 08034 Barcelona, Spain
14 Departament de Física Quàntica i Astrofísica, Institut de Ciències

del Cosmos, Universitat de Barcelona, IEEC-UB, Martí i Franquès,
1, 08028 Barcelona, Spain

15 Deutsches Elektronen-Synchrotron (DESY), 15738 Zeuthen,
Germany

16 Institute of physics, Humboldt-University of Berlin, 12489 Berlin,
Germany

17 Université Savoie Mont-Blanc, CNRS, Laboratoire d’Annecy de
Physique des Particules - IN2P3, 74000 Annecy, France

18 Max Planck Institute for extraterrestrial Physics, Giessenbachstrasse,
85748 Garching, Germany

19 Laboratoire Univers et Théories, Observatoire de Paris, Université
PSL, Université Paris Cité, CNRS, 92190 Meudon, France

20 Max Planck Computing and Data Facility, Gießenbachstraße 2,
85748 Garching, Germany

21 School of Physics, University of the Witwatersrand, 1 Jan Smuts
Avenue, Braamfontein, Johannesburg 2050, South Africa

22 The Hong Kong University of Science and Technology, Department
of Electronic and Computer Engineering, PR China

23 Cherenkov Telescope Array Observatory gGmbH (CTAO gGmbH)
Saupfercheckweg 1, 69117 Heidelberg, Germany

24 Erlangen Centre for Astroparticle Physics (ECAP), Friedrich-
Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger
Strasse 2, 91058 Erlangen, Germany

25 IRFU, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
26 Stocadro GmbH Arthur-Hoffmann-Straße 95, 04275 Leipzig,

Germany
27 Meteo France International, 31100 Toulouse, France
28 Université Bordeaux, CNRS, LP2I Bordeaux, UMR 5797, France
29 Sorbonne Université, Université Paris Diderot, Sorbonne Paris Cité,

CNRS/IN2P3, Laboratoire de Physique Nucléaire et de Hautes
Energies, LPNHE, 4 Place Jussieu, 75252 Paris, France

30 Academic Computer Centre Cyfronet, AGH University of Science
and Technology, Krakow, Poland

31 Caltech/IPAC, MC 100-22, 1200 E. California Boulevard, Pasadena,
CA 91125, USA

32 Institut für Astro- und Teilchenphysik, Leopold-Franzens-
Universität Innsbruck, 6020 Innsbruck, Austria

A157, page 20 of 23

http://linker.aanda.org/10.1051/0004-6361/202346488/33
http://linker.aanda.org/10.1051/0004-6361/202346488/34
http://linker.aanda.org/10.1051/0004-6361/202346488/35
http://linker.aanda.org/10.1051/0004-6361/202346488/36
http://linker.aanda.org/10.1051/0004-6361/202346488/37
https://doi.org/10.5281/zenodo.1043886
http://www.ascl.net/2203.007
http://linker.aanda.org/10.1051/0004-6361/202346488/40
http://linker.aanda.org/10.1051/0004-6361/202346488/41
https://doi.org/10.5281/zenodo.1421099
https://doi.org/10.5281/zenodo.1421099
http://linker.aanda.org/10.1051/0004-6361/202346488/43
http://linker.aanda.org/10.1051/0004-6361/202346488/44
http://linker.aanda.org/10.1051/0004-6361/202346488/45
http://linker.aanda.org/10.1051/0004-6361/202346488/46
http://linker.aanda.org/10.1051/0004-6361/202346488/47
http://linker.aanda.org/10.1051/0004-6361/202346488/48
http://linker.aanda.org/10.1051/0004-6361/202346488/49
http://linker.aanda.org/10.1051/0004-6361/202346488/50
https://github.com/rodluger/showyourwork
http://linker.aanda.org/10.1051/0004-6361/202346488/52
http://linker.aanda.org/10.1051/0004-6361/202346488/53
http://linker.aanda.org/10.1051/0004-6361/202346488/54
https://arxiv.org/abs/1507.03989
http://linker.aanda.org/10.1051/0004-6361/202346488/56
http://linker.aanda.org/10.1051/0004-6361/202346488/57
http://linker.aanda.org/10.1051/0004-6361/202346488/58
https://doi.org/10.5281/zenodo.3838216
https://doi.org/10.5281/zenodo.3838216
http://linker.aanda.org/10.1051/0004-6361/202346488/60
http://linker.aanda.org/10.1051/0004-6361/202346488/60
http://linker.aanda.org/10.1051/0004-6361/202346488/61
http://linker.aanda.org/10.1051/0004-6361/202346488/61
http://linker.aanda.org/10.1051/0004-6361/202346488/63
http://linker.aanda.org/10.1051/0004-6361/202346488/63
http://linker.aanda.org/10.1051/0004-6361/202346488/64
http://linker.aanda.org/10.1051/0004-6361/202346488/64
http://linker.aanda.org/10.1051/0004-6361/202346488/65
http://linker.aanda.org/10.1051/0004-6361/202346488/66
http://linker.aanda.org/10.1051/0004-6361/202346488/66
http://www.ascl.net/2009.001
http://www.ascl.net/2009.001
http://linker.aanda.org/10.1051/0004-6361/202346488/68
http://linker.aanda.org/10.1051/0004-6361/202346488/69
http://linker.aanda.org/10.1051/0004-6361/202346488/69
http://linker.aanda.org/10.1051/0004-6361/202346488/70
http://linker.aanda.org/10.1051/0004-6361/202346488/70
http://linker.aanda.org/10.1051/0004-6361/202346488/71
http://linker.aanda.org/10.1051/0004-6361/202346488/72
http://linker.aanda.org/10.1051/0004-6361/202346488/72
http://linker.aanda.org/10.1051/0004-6361/202346488/73
http://linker.aanda.org/10.1051/0004-6361/202346488/73
http://linker.aanda.org/10.1051/0004-6361/202346488/74
http://linker.aanda.org/10.1051/0004-6361/202346488/75
http://linker.aanda.org/10.1051/0004-6361/202346488/76
mailto:gammapy-coordination-l@in2p3.fr

Donath, A., et al.: A&A, 678, A157 (2023)

Appendix A: Code examples’ output

Observation id: 23523
N events: 7613
Max. area: 699771.0625 m2
Observation id: 23526
N events: 7581
Max. area: 623679.5 m2
Observation id: 23559
N events: 7601
Max. area: 613097.6875 m2
Observation id: 23592
N events: 7334
Max. area: 693575.75 m2

Fig. A.1. Output from the code example shown in Figure 3.

MapDataset

Name : map-dataset

Total counts : 104317
Total background counts : 91507.70
Total excess counts : 12809.30

Predicted counts : 91507.69
Predicted background counts : 91507.70
Predicted excess counts : nan

Exposure min : 6.28e+07 m2 s
Exposure max : 1.90e+10 m2 s

Number of total bins : 768000
Number of fit bins : 691680

Fit statistic type : cash
Fit statistic value (-2 log(L)) : nan

Number of models : 0
Number of parameters : 0
Number of free parameters : 0

Fig. A.2. Output from the code example shown in Figure 6.

WcsNDMap

geom : WcsGeom
axes : [’lon’, ’lat’, ’energy’]
shape : (100, 80, 10)
ndim : 3
unit :
dtype : float32

HpxNDMap

geom : HpxGeom
axes : [’skycoord’, ’energy’]
shape : (3145728, 10)
ndim : 3
unit :
dtype : float32

RegionNDMap

geom : RegionGeom
axes : [’lon’, ’lat’, ’energy’]
shape : (1, 1, 10)
ndim : 3
unit :
dtype : float32

Fig. A.3. Output from the code example shown in Figure 5.

Excess: [4.2 0.5 1.]
Significance: [0.95461389 0.18791253 0.62290414]
Error Neg.: [4.3980796 2.56480097 1.50533827]
Error Pos.: [4.63826301 2.91371256 2.11988712]

Fig. A.4. Output from the code example shown in Figure 8.

A157, page 21 of 23

Donath, A., et al.: A&A, 678, A157 (2023)

5h40m 36m 32m 28m

23°00'

22°30'

00'

21°30'

00'

Right Ascension

De
cli

na
tio

n

Counts

5h40m 36m 32m 28m

23°00'

22°30'

00'

21°30'

00'

Right Ascension

De
cli

na
tio

n

Excess counts

5h40m 36m 32m 28m

23°00'

22°30'

00'

21°30'

00'

Right Ascension

De
cli

na
tio

n

Exposure

5h40m 36m 32m 28m

23°00'

22°30'

00'

21°30'

00'

Right Ascension

De
cli

na
tio

n

Background

0

1

2

3

4

5

6

0

1

2

3

4

5

0

1

2

3

4
m

2
s

1e9

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Fig. A.5. Output from the code example shown in Figure 7.

4° 2° 0° 358° 356°

3°

2°

1°

0°

-1°

-2°

-3°

Galactic Longitude

Ga
la

ct
ic

La
tit

ud
e

Energy 100 GeV - 1.00 TeV

4° 2° 0° 358° 356°
Galactic Longitude

Energy 1.00 TeV - 10.0 TeV

0

5

10

15

20

25

TS

0

5

10

15

20

25

TS

Fig. A.6. Output from the code example shown in Figure 10.

A157, page 22 of 23

Donath, A., et al.: A&A, 678, A157 (2023)

102 103 104 105 106

Energy [MeV]

10 11

2 × 10 11

3 × 10 11

4 × 10 11

e2
dn

de
 [e

rg
 /

(c
m

2
s)

]

2008-01-01 00:00:00

2010-01-01 00:00:00

2012-01-01 00:00:00

2014-01-01 00:00:00

2016-01-01 00:00:00

2018-01-01 00:00:00

2020-01-01 00:00:00

Time [iso]

10 7

flu
x

[1
 /

(c
m

2
s)

]

5.00e+01 MeV - 3.00e+05 MeV

Fig. A.7. Output from the code example shown in Figure 11.

SkyModel

Name : my-model
Datasets names : None
Spectral model type : PowerLawSpectralModel
Spatial model type : PointSpatialModel
Temporal model type : ConstantTemporalModel
Parameters:
index : 2.300 +/- 0.00
amplitude : 1.00e-12 +/- 0.0e+00 1 / (cm2 s TeV)
reference (frozen): 1.000 TeV
lon_0 : 45.600 +/- 0.00 deg
lat_0 : 3.200 +/- 0.00 deg

Fig. A.8. Output from the code example shown in Figure 9.

A157, page 23 of 23

	Gammapy: A Python package for gamma-ray astronomy
	1 Introduction3pt
	2 Gamma-ray data analysis
	2.1 DL3: events and instrument response functions
	2.2 From DL3 to DL4: data reduction
	2.3 DL4: binned data structures
	2.4 From DL4 to DL5/6: modeling and fitting

	3 Gammapy package
	3.1 Overview
	3.2 gammapy.data
	3.3 gammapy.irf
	3.3.1 Effective area
	3.3.2 Point spread function
	3.3.3 Energy dispersion
	3.3.4 Instrumental background

	3.4 gammapy.maps
	3.4.1 WCS maps
	3.4.2 HEALPix maps
	3.4.3 Region maps

	3.5 gammapy.datasets
	3.6 gammapy.makers
	3.7 gammapy.stats
	3.8 gammapy.modeling
	3.8.1 Models
	3.8.2 Fit

	3.9 gammapy.estimators
	3.10 gammapy.analysis
	3.11 gammapy.visualization
	3.12 gammapy.astro
	3.13 gammapy.catalog

	4 Applications
	4.1 1D analysis
	4.2 3D analysis
	4.3 Temporal analysis
	4.4 Multi-instrument analysis
	4.5 Broadband SED modeling
	4.6 Surveys, catalogs, and population studies

	5 The Gammapy project
	5.1 Organizational structure
	5.2 Technical infrastructure
	5.3 Software distribution
	5.4 Documentation and user-support
	5.5 Proposals for improving Gammapy
	5.6 Release cycle, versioning, and long-term support

	6 Paper reproducibility
	7 Summary and outlook
	Acknowledgements
	References
	Appendix A: Code examples' output

