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ARE STRIPS REALLY THE ONLY OPEN CONVEX SETS THAT DISCONNECT THE PLANE?

We determine that the number of complementary components of an open convex set in the plane is 0, 1, or 2 by showing that isometric images of strips R × I (where I is a bounded open interval) are the only open convex sets in R 2 with disconnected complement.

It is well-known that any open convex set C in R 2 is simply connected, that is, C has no bounded complementary components, since every closed curve in C can be shrinked/contracted within C to a point. But how many unbounded complementary components an open convex set (different from R 2 ) may have? 1, 2, 3, . . . ∞? This is especially interesting due to the fact that the slitted simply connected domain

R 2 \ (r cos θ, r sin θ) ∈ R 2 : r ≥ 1, θ ∈ {0, 1, 1 2 , 1 3 , • • • }
has infinitely many complementary components (see figure 1).

Figure 1. A simply connected domain with infinitely many complementray components

It is the aim of our note to affirm the question in the title. As usual, a strip S in the plane is a domain bounded by two parallel lines. It can formally be defined as the image of a "standard strip"

{(x, y) ∈ R 2 : s 1 < y < s 2 } , -∞ < s 1 < s 2 < ∞, 1
with respect to a rotation centered at the origin and a translation (see figure 2). Let us also recall that a component of an open set U in R 2 is a maximal connected subset of U . Our proof will be based on two well-known facts: Fact I if {S λ : λ ∈ Λ} is a collection of connected subsets in R n and if all S λ meet some S λ 0 , then their union λ∈Λ S λ is connected (see e.g. [3, p.

54]).

The second fact is Minkowski's separation theorem (see e.g. [2, p. 59] or [1, Cor. 2.1.13]):

Fact II if C ⊂ R 2 is
open and convex and b ∈ R 2 \ C, then there is a closed half-plane, H(b), (not necessarily uniquely determined) containing b and that is disjoint with C; in other words, H(b) separates the point b from the convex set C (see figure 3). We call H(b) a Minkowski half-plane. It is easy to see that

R 2 \ C = b∈R 2 \C H(b).
So let us now start the proof of our proposition above. Suppose that the open convex set C has at least two complementary components. Take a point b 0 in the boundary ∂C of C. Let H(b 0 ) be a Minkowski half-plane associated with b 0 so that C ⊆ R 2 \ H(b 0 ). We may assume (via translation and rotation) that b 0 = 0 and that

H(0) = {(x, y) ∈ R 2 : y ≥ 0};
that is, C is contained in the lower half plane L := {(x, y) ∈ R 2 : y < 0}. Since we assumed that C has at least two complementary components, C cannot coincide itself with L. So it is reasonable to think that there exists Note that s 0 < 0. It is apparent now that C ∩ L s 0 = ∅, since C is open (see figure 3). From the steps above, we conclude that

C ⊆ S := {(x, y) ∈ R 2 : s 0 < y < 0}.
Note that S is a strip. It remains to show that C = S. To this end, it obviously suffices to prove that S \ C = ∅. Again we proceed via contradiction. So assume that S \ C = ∅. Take an arbitrary point d ∈ S \ C and consider the boundary ∂H(d) of H(d). Can this line be parallel to the x-axis? No, it can't. In fact, assume the contrary and take a point (e 1 , e 2 ) ∈ ∂H(d).

Then, due to the definition of s 0 and the fact that 0 ∈ ∂C ∩ H(0), there are points (a 1 , a 2 ) and (b 1 , b 2 ) ∈ C with a 2 < e 2 and b 2 > e 2 . Therefore, C contains points in both half-planes generated by ∂H(d). In particular, C ∩ H(d) = ∅; a contradiction. We conclude that ∂H(d) cannot be parallel to the x-axis. Now we arrive at the end of our proof. Recall that for each

d ∈ R 2 \ C, C ∩ H(d) = ∅. As the strip S coincides with R 2 \ (H(0) ∪ L s 0 ), we have (1) R 2 \ C = H(0) ∪ L s 0 ∪ d∈S\C H(d).
But since the boundary of H(d) with d ∈ S \ C = ∅ is not parallel to the x-axis, the half-plane H(d) cuts both the half planes H(0) and L s 0 . Hence the right side of ( 1) is connected by Fact I. Hence R 2 \ C is connected. Since we have assumed that C admits at least two complementary components, we arrive at a contradiction. We conclude that S = C. Obviously H(0) and L s 0 are the only connected components of R 2 \ C. This finishes the proof.

A similar result with verbatim the same proof holds for open convex sets in R n : here strips have to be replaced by isometric images of cartesian products I × R n-1 for n ≥ 2, (where 
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 3 Figure 3. Separating convex sets from points by half-planes

  is an arbitrary bounded open interval) and for n = 1 we just have bounded open intervals I: Proposition 0.2. Let C be an open convex set in R n , n ≥ 2. Then either the complement of C is connected or C has two complementary components, and in that case C is isometric to I × R n-1 for some bounded open interval I.