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PISOT NUMBERS, SALEM NUMBERS,

AND GENERALISED POLYNOMIALS

JAKUB BYSZEWSKI AND JAKUB KONIECZNY

Abstract. We study sets of integers that can be defined by the vanishing of a generalised polynomial

expression. We show that this includes sets of values of linear recurrent sequences of Salem type and some

linear recurrent sequences of Pisot type. To this end, we introduce the notion of a generalised polynomial on
a number field. We establish a connection between the existence of generalised polynomial expressions for

sets of values of linear recurrent sequences and for subsemigroups of multiplicative groups of number fields.

1. Introduction

Generalised polynomials are expressions built up from ordinary polynomials with the use of the integer
part function, addition, and multiplication. In contrast with ordinary polynomials, generalised polynomial
sequences can be bounded or even finitely-valued without being constant. For instance, for any irrational
α ∈ (0, 1) and any real β, the generalised polynomial map g given by

(1) g(n) = bα(n+ 1) + βc − bαn+ βc

defines a Sturmian sequence, which takes on only the values 0 and 1, with density 1−α and α, respectively.
We define generalised polynomial sets to be the level sets of such maps. Equivalently, a generalised polynomial
set E ⊆ Z is a set such that the characteristic function 1E : Z→ {0, 1} is a generalised polynomial map.

It turns out that some sets of arithmetical or combinatorial interest are generalised polynomial sets.
One example is the set of Fibonacci numbers, in which case an appropriate generalised polynomial can be
constructed using the relation between the Fibonacci numbers and the golden mean together with some
classical properties of continued fractions. It is a difficult problem to determine the extent to which this
generalises to sequences (ni)

∞
i=0 that satisfy a linear recurrence

(2) ni+m =

m−1∑
j=0

ajni+j , i > 0,

for some a0, . . . , am−1 ∈ Z. One result in this direction concerns linear recurrent sequences whose charac-
teristic polynomial is the minimal polynomial of a Pisot number. Recall that the characteristic polynomial
of the recurrence (2) is Xm −

∑m−1
j=0 ajX

j , a (Galois) conjugate of an algebraic number β is any root of the

minimal polynomial of β over Q, and a Pisot number (or a Pisot–Vijayaraghavan number) is a real algebraic
number β such that β > 1, but all conjugates α of β except for β itself satisfy |α| < 1. An algebraic number
is a unit if both the number and its reciprocal are algebraic integers. An algebraic number is totally real if
all of its conjugates are real. The Dirichlet’s unit theorem implies that for a real algebraic number β, the
group of units O∗Q(β) in Q(β) has rank 1 if and only if β is either quadratic, or cubic and not totally real.

The following theorem has been proved in many cases in [BK18, Thm. B] and in full generality in [AK22].

Theorem 1.1. Let β be a Pisot unit such that O∗Q(β) has rank 1 and let (ni)
∞
i=0 be an integer-valued linear

recurrent sequence with characteristic polynomial the minimal polynomial of β. Then the set {ni | i ∈ N0}
is generalised polynomial.
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It seems considerably more difficult to prove results in the opposite direction, that is, to establish that the
set of values of a certain linear recurrent sequence is not generalised polynomial. Essentially the only known
examples of such sequences have been obtained in [Kon21], where it is shown that the set {ki | i ∈ N0} is
not generalised polynomial for any integer k > 2. Note that k is a Pisot number, but it is not a Pisot unit.

In this paper, we obtain several extensions of Theorem 1.1. The first of them concerns Salem numbers.
Recall that a real algebraic number β is a Salem number if β > 1, all conjugates α of β except for β itself
satisfy |α| 6 1, and there exists at least one conjugate α with |α| = 1. If β is a Salem number, then 1/β is
a conjugate of β, and for all remaining conjugates α we have |α| = 1 [Smy15, Lem. 1]. For background on
Salem numbers, we refer to [BDGGH+92] and [Smy15].

Theorem A. Let β be a Salem number and let (ni)
∞
i=0 be an integer-valued linear recurrent sequence with

characteristic polynomial the minimal polynomial of β. Then the set {ni | i ∈ N0} is generalised polynomial.

The proof of this result is most naturally phrased in terms of the notion of a generalised polynomial map
on a number field. A number field K is a finite extension of Q, and generalised polynomials on K can be
defined in terms of the coordinates of an element in some Q-basis of K; for example, a generalised polynomial
map g on Q(

√
2) is of the form g(x+ y

√
2) = h(x, y), where h is a generalised polynomial expression in two

variables x, y taking values in Q. We carefully introduce this concept in Section 2. Once the notion has
been introduced, it is rather immediate to see that the set {βi | i ∈ N0} of powers of a Salem number β is a
generalised polynomial subset of Q(β), and Theorem A can be deduced from this.

The special role of Pisot and Salem numbers in diophantine approximation is well recognized, even as
many of the characterisations of Pisot and Salem numbers by their diophantine properties remain conjectural.
In the context of generalised polynomials, we believe that Theorems 1.1 and A should provide an essentially
complete list of linear recurrent sequences whose set of values is generalised polynomial, and, similarly, an
essentially complete list of algebraic numbers β such that the set of powers {βi | i ∈ N0} is a generalised
polynomial subset of Q(β). The following result elucidates the connection between these two questions.

Theorem B. Let β be an algebraic integer. Suppose that there exists an integer-valued sequence (ni)
∞
i=0

with characteristic polynomial the minimal polynomial of β that is not identically zero and is such that the
set {ni | i ∈ N0} is generalised polynomial. Then the set

{
βi
∣∣ i ∈ N0

}
is a generalised polynomial subset of

Q(β).

The interest in the above result arises from the fact that it is likely easier to show that the set of powers
of an algebraic number is not generalised polynomial than to show that the corresponding result holds for
the set of values of a linear recurrent sequence. In particular, the methods of [Kon21] relied strongly on the
fact that the set of powers of an integer k forms a semigroup, and could conceivably be generalised.

Returning to Pisot numbers, we observe that we can strengthen the result obtained in Theorem 1.1. We
say that a set E is hereditarily generalised polynomial or that a generalised polynomial set is hereditary
if each subset E′ ⊆ E is generalised polynomial (this notion applies to generalised polynomial subsets of
integers, number fields, etc.). The following result shows that the the sets considered in Theorem 1.1 are in
fact hereditary. In particular, any set consisting of Fibonacci numbers is generalised polynomial.

Theorem C. Let β be a Pisot unit such that O∗Q(β) has rank 1, and let (ni)
∞
i=0 be an integer-valued linear

recurrent sequence with characteristic polynomial the minimal polynomial of β. Let I be an arbitrary subset
of N0. Then the set {ni | i ∈ I} is generalised polynomial.

The above result has the following counterpart for sets of powers of β.

Theorem D. Let β be a Pisot unit such that O∗Q(β) has rank 1. Let I be an arbitrary subset of N0. Then

the set
{
βi
∣∣ i ∈ I} is a generalised polynomial subset of Q(β).

In light of Theorems C and D, the following question arises naturally.

Question 1.2. Are the generalised polynomial sets considered in Theorem A hereditary?

It would be interesting to determine more generally which generalised polynomial sets are hereditary.
Since a generalised polynomial subset of the integers always has density, no positive density generalised
polynomial set of integers can be hereditary (see Section 7 for details), and so the question is only interesting
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for sets with density zero. The task of disproving that a set is hereditarily generalised polynomial is made
difficult by the fact that most tools available for showing that a given set E ⊆ Z with density zero is not
generalised polynomial also yield the same conclusion for all supersets E′ of E with density zero (see e.g.
[BK18, Thm. 3.1]). Nevertheless, it is not true that every generalised polynomial set of density zero is
hereditary.

Theorem E. There exists a set E ⊆ Z of density zero that is generalised polynomial but is not hereditary.

In the context of this paper, it is natural to consider generalised polynomial expressions with variables
taking rational, rather than integer, values. This corresponds to the notion of a generalised polynomial
subset of Q (rather than Z). In the introduction we have for simplicity stated the main results for subsets
of Z, rather than Q. This distinction is of no significance for Theorems A and C, since any rational-valued
linear recurrent sequence whose characteristic polynomial has integer coefficients is a rational multiple of an
integer-valued sequence. This is not the case, however, for Theorem B, and the formulation of this result
in Theorem 6.1 below is genuinely more general, and applies also to sequences of rational numbers such as
(3i/2i)∞i=0; the corresponding β = 3/2 is an algebraic number, but not an algebraic integer.

The plan of the paper is as follows. In Section 2, we introduce the notion of a generalised polynomial map
on a number field as well as its basic properties. In Sections 3 and 4, we study linear recurrent sequences
arising from Pisot numbers, and we prove Theorems D (see Theorem 3.3) and C (see Theorem 4.4). In
Section 5, we obtain a similar result for Salem numbers (Theorem A, see Theorem 5.4). In Section 6, we use
trace maps and finiteness results for S-unit equations to prove Theorem B. Finally, in Section 7, we construct
an example of a generalised polynomial subset of Z that is not hereditary (Theorem E, see Theorem 7.1).

Notation. We let N = {1, 2, 3, . . . } denote the set of positive integers and N0 = N∪{0} the set of nonnegative
integers. For a real number x, we let bxc, dxe = −b−xc, and bxe = bx+ 1/2c denote the floor, the ceiling,
and the nearest integer. We also let {x} = x − bxc and ‖x‖R/Z = min{{x} , 1 − {x}} denote the fractional

part and the distance to the nearest integer. All of these expressions are generalised polynomials in x.

Acknowledgements. The authors wish to thank Boris Adamczewski for helpful comments. The first-
named author was supported by National Science Centre, Poland grant number 2018/29/B/ST1/01340.
The second-named author works within the framework of the LABEX MILYON (ANR-10-LABX-0070) of
Université de Lyon, within the program ”Investissements d’Avenir” (ANR-11-IDEX-0007) operated by the
French National Research Agency (ANR).

2. Generalised polynomial maps on number fields

In this section, we introduce the notion of a generalised polynomial map in a couple of related contexts,
that is, for maps defined on finite dimensional real vector spaces and for maps defined on number fields. The
latter notion is new, and we carefully discuss its basic properties.

2.1. Finite-dimensional real vector spaces. Let V be a finite dimensional real vector space. The class
of real-valued generalised polynomial maps f : V → R is the smallest class of functions containing constant
maps and linear functionals, and closed under addition, multiplication, and taking the integer part of a map,
that is, replacing f by the map bfc given by bfc(x) = bf(x)c.

A complex-valued map f : V → C is a generalised polynomial map if the real and imaginary parts of
f are real-valued generalised polynomial maps. We can give an equivalent characterisation of this class
as follows. Let b·cC : C → Z[i] be the complex integer part (or complex floor), defined by the formula
bzcC = bRe zc + ibIm zc. One then easily checks that the class of generalised polynomial maps f : V → C
is the smallest class of functions containing complex-valued constant maps, (real-valued) linear functionals,
and closed under addition, multiplication, and taking the complex integer part of a map, that is, replacing
f by the map bfcC given by bfcC(x) = bf(x)cC.

2.2. Number fields. In this subsection we introduce the notion of a generalised polynomial map defined
on a number field. Even if a number field K is given as a subfield of the complex (or real) numbers, these
maps are not defined as restrictions of generalised polynomial maps on C; instead, this class consists, roughly
speaking, of a much wider family of maps that can be expressed using the basic algebraic operations (addition
and multiplication), the (complex) floor function, complex constants, and arbitrary embeddings of K into
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the complex numbers. Since the floor function and the fractional part function can easily be expressed in
terms of each other, replacing the floor with the fractional part leads to an alternative definition of the same
class. An example of a generalised polynomial map on K = Q(

√
2) is given by a+ b

√
2 7→ {a− b

√
2}. This

map cannot be obtained as a restriction to Q(
√

2) of a generalised polynomial map on R since it has infinitely
many discontinuities in the interval (0, 1), which is not possible for a generalised polynomial map on R.

We now state the definition. Let K be a number field. Consider the real vector space KR = K ⊗Q R with
the embedding ι : K → KR, ι(x) = x⊗ 1. Describing this embedding ι concretely, we get the usual map

K → Rr1 × Cr2 , x 7→ (σ1(x), . . . , σr1(x), τ1(x), . . . , τr2(x)),

where σ1, . . . , σr1 are all the real embeddings of K, and τ1, τ1, . . . , τr2 , τ r2 are all the complex embeddings
of K, grouped in pairs. A map f : K → C is a generalised polynomial map if there exists a generalised

polynomial map f̃ : KR → C (defined on the finite dimensional real vector space KR) such that f = f̃ ◦ ι.
For a number field L (regarded as a subfield of C) by a generalised polynomial map f : K → L we simply
mean a generalised polynomial map f : K → C whose image f(K) is contained in L.

In the following proposition we list some basic properties of generalised polynomial maps on number fields.

Proposition 2.1. Let K be a number field.

(i) The class of generalised polynomial maps f : K → C is the smallest class that contains constant maps,
field embeddings σ : K → C, and is closed under addition, multiplication, and taking the complex integer
part.

(ii) A map f : K → C is a generalised polynomial on K if and only if its real and imaginary parts are
generalised polynomial maps on K.

(iii) If f : K → C is a generalised polynomial map on K and ϕ : C→ C is any field automorphism of C,
then ϕ ◦ f : K → C is also a generalised polynomial map on K.

(iv) If f : K → C is a generalised polynomial map on K and g : L→ K is a generalised polynomial map
on a number field L taking values in K, then f ◦ g : L→ C is a generalised polynomial map on L.

(v) If f : K → L is a generalised polynomial map on K taking values in a number field L and α1, . . . , αm
is a basis of L over Q, then there exist generalised polynomial maps fi : K → Q on K such that f =

∑
i αifi.

(vi) If f : K → C is a generalised polynomial map on K, then the map g : K → C given by

g(x) =

{
1 if f(x) = 0;

0 otherwise

is a generalised polynomial on K.

Proof. The claims in (i) and (ii) follow from a similar claim for generalised polynomial maps on KR.
To prove (iii), fix an automorphism ϕ of C, and consider the class of maps f : K → C such that ϕ ◦ f

is a generalised polynomial map on K. It is clear that this class contains constant maps, field embeddings,
and is closed under addition, multiplication, and the complex integer part b·cC (the latter property is due to

the fact that σ ◦ bfcC is either bfcC or bfcC, depending on whether σ(i) = i or σ(i) = −i). Thus, the claim
follows from (i).

To prove (iv), fix a generalised polynomial map g : L→ K and consider the family of maps f : K → C such
that f ◦g is a generalised polynomial map on L. Using (i), (iii) and the fact that each complex embedding of
K can be extended to an automorphism of C, we verify that this family contains all generalised polynomial
maps on K.

To prove (v), we regard L as a subfield of C. Let σ1, . . . , σm denote all the embeddings of L into C, and
extend them in an arbitary way to automorphisms of C (denoted by the same letter). We can uniquely write
f in the form f =

∑
i αifi for some maps fi : K → Q. We need to prove that fi are generalised polynomial

maps on K. Applying the automorphism σj to the above equality, we get

σj ◦ f =
∑
i

σj(αi)fi, 1 6 j 6 m.

The matrix [σj(αi)]16i,j6m is nonsingular (see e.g. [Lan02, VI, §4]), and inverting the matrix, we can write
fi as linear combinations of σj ◦ f . Thus, the fact that fi are generalised polynomial maps on K follows
from (i) and (iii).
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To prove (vi), note first that (ii) reduces the claim to the case where f takes real values (with the map g
equal to the product of the maps corresponding to the real and imaginary parts of f). A real number y is

zero if and only if both y and
√

2y are integers; thus,

g(x) = b1− {f(x)}c · b1− {
√

2f(x)}c,
and so g is a generalised polynomial map. �

2.3. Sets of algebraic numbers. We say that a subset S of a number field K is a generalised polynomial
subset of K if its characteristic function 1S : K → R is a generalised polynomial map on K. We should pose
a warning here: sometimes, one talks about generalised polynomial subsets of R or C; these are defined as
the zero sets of generalised polynomial maps defined on (real vector spaces) R or C. However, even when
the number field K is given as a subfield of R or C, these notions do not coincide! In fact, in the above sense
no number field K is a generalised polynomial subset of C, while a number field K is clearly a generalised
polynomial subset of itself. Of course, a generalised polynomial subset of R that happens to be contained in
a number field K (for example, Q) is a generalised polynomial subset of K. For this reason, in this paper
we shall not talk about generalised polynomial subsets of R or C, but only about generalised polynomial
subsets of number fields (or, later, algebraic numbers).

Since 1S∩T = 1S1T and 1K\S = 1K − 1S , the class of generalised polynomial subsets of K is closed
under finite unions, finite intersections, and complements. Proposition 2.1(vi) says that the zero set of a
generalised polynomial map f : K → C is a generalised polynomial set. Moreover, whether a set is generalised
polynomial or not is invariant under translation, applying a bijective Q-linear map (or, more generally, a
generalised polynomial bijection K → K with generalised polynomial inverse), as well as adding or removing
finitely many elements. In the following proposition we list some examples of generalised polynomial subsets
of number fields.

Proposition 2.2. Let K be a number field. The following subsets of K are generalised polynomial:

(i) any Q-subvector space V of K;
(ii) any subfield L ⊆ K;
(iii) any lattice Λ ⊆ K;
(iv) the ring OK of algebraic integers in K;
(v) the group of units O∗K ;
(vi) any finite index subgroup of O∗K ;
(vii) the set of Pisot units in K;
(viii) the set of Salem numbers in K.

(The statements in (vii) and (viii) only make sense when K is given a subfield of R.)

Proof. For (i), we first note that since the family of generalised polynomial subsets is closed under taking
finite intersections, we may assume that V is of codimension 1; moreover, since the notion is stable under
applying a bijective Q-linear map, it is sufficient to prove that a single codimension 1 subspace V is generalised
polynomial. We may thus choose V to be {x ∈ K | TrK/Q(x) = 0}, in which case the claim follows from
Proposition 2.1(vi), since TrK/Q is a generalised polynomial map on K. This proves (i), and (ii) is an
immediate corollary.

For (iii), choose a basis v1, . . . , vm of Λ, and extend it to a basis v1, . . . , vn of KR. Let v∗1 , . . . , v
∗
n denote the

dual basis, i.e. linear maps v∗i : KR → R such that v∗i (vi) = 1 and v∗i (vj) = 0 for 1 6 i, j 6 m with i 6= j. Then
Λ is the common set of zeros of the generalised polynomial maps {v∗1} , {v∗2} , . . . {v∗m} , v∗m+1, v

∗
m+2, . . . , v

∗
n.

Item (iv) follows directly from (iii) since OK is a lattice.
For (v), we characterise the units as algebraic integers α of norm NK/Q(α) = ±1.For (vi), let H be a

subgroup of O∗K of finite index. By Chevalley’s theorem [Che51, Thm. 1], H is a congruence subgroup,
meaning that H = O∗K ∩Λ for some Λ that is a union of finitely many cosets of a lattice. It remains to recall
that O∗K and Λ are generalised polynomial.

For (vii), we characterize Pisot units α in K by requiring that: i) α be a unit; ii) α be positive; and iii)
|σ(α)|2 = σ(α)σ(α) lie in the interval (0, 1) for all nonidentity embeddings σ : K → C. The fact that the first
two conditions define a generalised polynomial subset follows from (v), since positive units form a subgroup
of the group of units of index 2; the last condition defines the common zero set of the generalised polynomial
maps n 7→ bσ(n)σ(n)c (with the element 0 removed).
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For (vii), we similarly characterise Salem numbers α in K by requiring that i) α be a unit; ii) α be
positive; iii) |σ(α)|2 = 1 for all but two embeddings σ; iv) 1/α be an algebraic conjugate of α. For the first
three conditions, we apply the same reasoning as before. The fourth condition says that there exist two
embeddings σ and τ of K is C with σ(α) = τ(α)−1, which is also easily expressed in terms of generalised
polynomial maps. �

It is worthwhile to note that the set of Pisot numbers is in general not a generalised polynomial subset;
in fact, when K = Q, the set of Pisot numbers is simply the set of integers > 2, which is not generalised
polynomial; this can be inferred, for instance, from the general fact that for a generalised polynomial set
E ⊆ Z the limit |E ∩ [M,M +N)| /N converges uniformly in M as N → ∞; cf. [Kon21, Ex. B.2]. On the
other hand, the set of Pisot numbers and their negatives is a generalised polynomial subset (by a similar
argument as for Pisot units).

Let Qalg denote the field of algebraic numbers. We say that a subset S of Qalg is generalised polynomial
if S ∩K is a generalised polynomial subset of K for every number field K. From Proposition 2.2 we get that
if S is itself a subset of some number field L, then S is a generalised polynomial subset of Qalg if and only
if it is a generalised polynomial subset of L. Proposition 2.2 also immediately implies the following result.

Proposition 2.3. The following sets of algebraic numbers are generalised polynomial:

(i) the ring of algebraic integers;
(ii) the group of algebraic units;
(iii) the set of Pisot units;
(iv) the set of Salem numbers.

3. Pisot numbers: Number fields

In this section we prove Theorem D. We begin with a basic observation.

Lemma 3.1. Let β be a Pisot unit and let K = Q(β). Assume that O∗K has rank 1. Then the set{
βi
∣∣ i ∈ N0

}
is a generalised polynomial subset of K.

Proof. The set
{
βi
∣∣ i ∈ Z

}
is a finite-index subgroup of the group of units O∗K , and hence it is a generalised

polynomial subset of K by Proposition 2.2(vi). The set of all Pisot units in K is also generalised polynomial
by Proposition 2.2(vii). It remains to observe that the intersection of these two sets is

{
βi
∣∣ i ∈ N

}
. �

For technical reasons, it is easier to prove Theorem D in the case where β is sufficiently large. Thus, we
will first prove an analogous result with β replaced with a sufficiently large power βm.

Proposition 3.2. Let β be a Pisot unit and let K = Q(β). Assume that O∗K has rank 1. Then there exists
m0 such that for every integer m > m0 and set I ⊆ N0, the set

{
βim

∣∣ i ∈ I} is a generalised polynomial
subset of K.

Proof. Since β is a Pisot number, we can find ρ > 1 such that ρ < β and for all conjugates α of β other than
β itself we have |α| < 1/ρ. Let m > m0 be a large integer, where m0 > 0 remains to be determined in the
course of the argument, and let γ := βm. Consider the real number

(3) ξ =
∑
i∈I

β

γi
.

For any integer i, the trace TrK/Q(βi) is an integer. This implies that
∥∥βi∥∥R/Z = O(1/ρi) for i > 0; on the

other hand, for i 6 0 we trivially have
∥∥βi∥∥R/Z = O(1/ρ|i|). Thus, for i, j ∈ N, we have the estimates

(4)
∥∥βγj−i∥∥R/Z =

∥∥∥β1+m(j−i)
∥∥∥
R/Z

=

{
‖β‖R/Z if i = j;

O(1/ρm|i−j|) if i 6= j,

where the constant implicit in the O(·)-notation depends on β, but not on m. As a consequence, taking the
sum over all i ∈ I, we obtain

(5)
∥∥γjξ∥∥R/Z = 1I(j) ‖β‖R/Z +O

( ∑
i∈I\{j}

1/ρm|i−j|
)

= 1I(j) ‖β‖R/Z +O (1/ρm) .
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Assume that m is large enough so that the error term in (5) is strictly smaller than ‖β‖R/Z /3. Then for

every j ∈ N we have the equivalence

(6) j ∈ I if and only if
∥∥γjξ∥∥R/Z > 2

3
‖β‖R/Z .

Let g : K → {0, 1} be given by

g(x) =

{
1 if

∥∥γjx∥∥R/Z ∈ [ 2
3 ‖β‖R/Z ,

1
2

]
;

0 otherwise.

We deduce from Proposition 2.1(vi) that g is a generalised polynomial map. By Lemma 3.1, the set{
γi
∣∣ i ∈ N0

}
is a generalised polynomial subset of K. It follows from the preceding discussion that for

all x ∈
{
γi
∣∣ i ∈ N0

}
we have g(x) = 1 if and only if x ∈

{
γi
∣∣ i ∈ I} =

{
βim

∣∣ i ∈ I}. �

Theorem 3.3 (= Theorem D). Let β be a Pisot unit such that O∗Q(β) has rank 1. Let I be an arbitrary

subset of N0. Then the set
{
βi
∣∣ i ∈ I} is a generalised polynomial subset of Q(β).

Proof. Let m be an integer that is sufficiently large for the conclusion of Proposition 3.2 to hold. Since
generalised polynomial sets are closed under finite unions, it suffices to show that for each 0 6 a < m, the
set
{
βi
∣∣ i ∈ I, i ≡ a mod m

}
is generalised polynomial. Since generalised polynomial sets are also invariant

under dilation, we may freely assume that a = 0. The statement now follows from Proposition 3.2. �

Remark 3.4. Similar techniques could also be applied in the situation where β is an arbitrary Pisot unit
without assumming that the unit group O∗Q(β) has rank 1. However, in this case we no longer know whether

or not the set
{
βi
∣∣ i ∈ N0

}
⊆ Q(β) is generalised polynomial. As a consequence, we would only obtain

a relative result; namely, for each set I ⊆ N0, the set
{
βi
∣∣ i ∈ I} is a generalised polynomial subset of{

βi
∣∣ i ∈ N0

}
. In other words, there exists a generalised polynomial set S ⊆ Q(β) such that for i ∈ N0 we

have βi ∈ S if and only if i ∈ I. Since it is not clear how interesting this generalisation is, we do not go into
the details at this point.

4. Pisot numbers: Integers

In this section, we prove Theorem C. We first recall a well known fact on linear recurrent sequences.

Lemma 4.1. Let β be an algebraic number, let K = Q(β), and let m = [K : Q] be the degree of β. Let
(ni)

∞
i=0 be a linear recurrent sequence with rational values and with characteristic polynomial the minimal

polynomial of β.

(i) There exists a unique x ∈ K such that

ni = TrK/Q(βix) for all i > 0.

(ii) Assume moreover that (ni)
∞
i=0 is not identically zero. Suppose that (n′i)

∞
i=0 is another linear recurrent

sequence with characteristic polynomial the minimal polynomial of β and taking values in some extension L of
Q. Then the sequence (n′i)

∞
i=0 can be written as a linear combination of the sequences (ni+j)

∞
i=0, 0 6 j < m,

with coefficients in L.

Proof. The vector space V of all rational-valued linear recurrent sequences with characteristic polynomial
the minimal polynomial of β is clearly m-dimensional. Since all sequences of the form (TrK/Q(βix))∞i=0 lie in
this space, (i) follows from the nondegeneracy of the bilinear map (x, y) 7→ TrK/Q(xy). To prove (ii), write
(n′i)

∞
i=0 as an L-linear combination of sequences in V , and apply (i). �

An elementary but key fact about integer-valued sequences satisfying a Pisot linear recurrence is that each
successive term can be computed by a simple generalised polynomial formula involving only the previous
term. We record this in the following lemma.

Lemma 4.2. Let (ni)
∞
i=0 be an integer-valued sequence satisfying a linear recurrence whose characteristic

polynomial is the minimal polynomial of a Pisot number β. Then for each j > 0 there exists some i0 such
that for all integers i > i0 we have ni+j =

⌊
βjni

⌉
.

7



Proof. Lemma 4.1(i) allows us to write the sequence (ni)
∞
i=0 in the form

ni =
∑
α

cαα
i,(7)

where the sum runs over all conjugates α of β, and cα are complex constants. Since β is Pisot, we have
αi → 0 as i→∞ for each α 6= β, and hence

ni − cββi → 0 as i→∞.(8)

It follows that

ni+j − βjni → 0 as i→∞.(9)

Thus, ni+j =
⌊
βjni

⌉
for sufficiently large i. �

Lemma 4.2 allows us to pass between the terms of any two linear recurrent sequences satisfying the same
Pisot linear recurrence by applying a generalised polynomial map.

Proposition 4.3. Let β be a Pisot number and let K = Q(β). Let (ni)
∞
i=0 and (n′i)

∞
i=0 be two sequences

taking values in Q(β) and satisfying a linear recurrence whose characteristic polynomial is the minimal
polynomial of β. Assume also that (ni)

∞
i=0 is not identically zero. Then there exists a generalised polynomial

map g : Q(β)→ Q(β) such that g(ni) = n′i for all but finitely many positive integers i.

Proof. Replacing ni with TrK/Q(ξni) for suitably chosen ξ ∈ K, we may freely assume that ni are integers
for all i. Let m denote the degree of β. By Lemma 4.1(ii), we may express (n′i)

∞
i=0 as

n′i =

m−1∑
j=0

wjni+j for all i ∈ N0,

where wj ∈ K, 0 6 j < m, are some coefficients. It follows from Lemma 4.2 that

n′i =

m−1∑
j=0

wj
⌊
βjni

⌉
for all sufficiently large i.

Thus, we may take g(n) =
∑m−1
j=0 wj

⌊
βjn

⌉
. �

We can now prove the following result, which is a slightly stronger version of Theorem C.

Theorem 4.4. Let β be a Pisot unit such that O∗Q(β) has rank 1, and let (ni)
∞
i=0 be a linear recurrent sequence

of rational numbers with characteristic polynomial the minimal polynomial of β. Let I be an arbitrary subset
of N0. Then the set {ni | i ∈ I} is a generalised polynomial subset of Q.

Proof. We may assume that (ni)
∞
i=0 is not identically zero. It follows from Proposition 4.3 that there exists

a generalised polynomial map g : Q → Q(β) such that g(ni) = βi for all sufficiently large i. The set{
βi
∣∣ i ∈ I} ⊆ Q(β) is a generalised polynomial set by Theorem 3.3, and the set {ni | i ∈ N0} is generalised

polynomial by Theorem 1.1. The claim follows from the fact that the class of generalised polynomial sets is
stable under taking preimages by generalised polynomial maps, finite intersections, and finite modifications.

�

5. Salem numbers

In this section, we prove Theorem A. As we have already pointed out, the notion of a generalised poly-
nomial subset is preserved by applying a bijective generalised polynomial map with generalised polynomial
inverse. The following lemma records a similar principle, but allowing for the inverse to be defined on a
case-by-case basis.

Lemma 5.1. Let K and L be number fields, let S ⊆ K be a generalised polynomial set, and let f : K → L
and g1, g2, . . . , gr : L→ K be generalised polynomial maps. Suppose that for each x ∈ S there exists 1 6 i 6 r
such that gi(f(x)) = x. Then f(S) is a generalised polynomial subset of L.
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Proof. Let 1 6 i 6 r and put

Si := {x ∈ S | gi(f(x)) = x} .
It follows from Proposition 2.1(vi) that Si is a generalised polynomial subset of K. We claim that

(10) f(Si) = {y ∈ L | gi(y) ∈ Si, f(gi(y)) = y} .

Indeed, if y ∈ f(Si), say y = f(x) for some x ∈ Si, then gi(y) = gi(f(x)) = x ∈ Si and f(gi(y)) =
f(gi(f(x))) = f(x) = y. Conversely, if y ∈ L, gi(y) ∈ Si and y = f(gi(y)) then clearly y ∈ f(Si). From (10)
we deduce that f(Si) is a generalised polynomial subset of L. Since f(S) =

⋃r
i=1 f(Si), we conclude that

f(S) is a generalised polynomial subset of L. �

For linear recurrent sequences of Pisot type, we proved that one can pass between the corresponding terms
of the sequences using a generalised polynomial map (see Proposition 4.3). For linear recurrent sequences of
Salem type an analogous result holds if we allow instead the use of a finite family of generalised polynomial
maps.

Proposition 5.2. Let β be a Salem number and let L be the splitting field of the minimal polynomial of β.
Let (ni)

∞
i=0 be a sequence of rational numbers satisfying a linear recurrence whose characteristic polynomial

is the minimal polynomial of β. Assume that (ni)
∞
i=0 is not identically zero. Then there exists a finite family

{gc}c∈C of generalised polynomial maps gc : Q → L such that for each i ∈ N0 there exists c ∈ C such that
gc(ni) = βi.

Proof. Let i ∈ N0. Using Lemma 4.1(i), we can write ni in the form ni = TrQ(β)/Q(βix) for some x ∈ Q(β),
which allows us to express ni in the form

ni =
∑
α

wαα
i,

where the sum runs over all conjugates α of β and wα ∈ L are constants. Since wα are images of x by
embeddings of Q(β) into C, and since x 6= 0 (otherwise the sequence (ni)

∞
i=0 would be identically zero), we

see that wα are all nonzero. Since all α 6= β have absolute value 1 or 1/β 6 1, we have for each j ∈ N0 the
estimate ∣∣⌊βjni⌋− ni+j∣∣ 6 1 +

∣∣∣∣∣βj∑
α

wαα
i −
∑
α

wαα
i+j

∣∣∣∣∣
6 1 +

∑
α 6=β

|wα|
(
βj + 1

)
= O(βj),

with the implicit constant depending on β and the sequence (ni)
∞
i=0, but not on j. It follows that there exist

constants c
(i)
j ∈ Z with

∣∣∣c(i)j ∣∣∣ = O(βj) such that

(11)
⌊
βjni

⌋
− c(i)j = ni+j =

∑
α

wαα
i+j .

Let m be the degree of β and consider the following system of linear equations in xα and yj :

(12) yj =
∑
α

wαα
jxα for 0 6 j < m.

Note that (12) holds for xα = αi and yj =
⌊
βjni

⌋
− c

(i)
j . The determinant of the matrix (wαα

j)α,j is

nonzero as the product of wα (which are nonzero) and a Vandermonde’s determinant. Thus (12) has a
unique solution, say

(13) xα =

m−1∑
j=0

γj,αyj ,

where γj,α ∈ L are some constants. Put Cj := maxi

∣∣∣c(i)j ∣∣∣ = O(βj). Consider the set

(14) C =
{

(cj)
2d−1
j=0

∣∣ cj ∈ Z, |cj | 6 Cj for all 0 6 j < m
}

9



and for each c = (cj)
2d−1
j=0 ∈ C the generalised polynomial

(15) gc(n) =

m−1∑
j=0

γj,α
(⌊
βjn

⌋
− cj

)
.

It follows from the preceding discussion that βi = gc(ni) for c ∈ C given by cj := c
(i)
j , 0 6 j < m. �

Lemma 5.3. Let K be a number field and let β ∈ K be a Salem number. Then
{
βj
∣∣ j ∈ N0

}
⊆ K is a

generalised polynomial subset of K.

Proof. The set of Salem numbers in Q(β) is of the form {γi | i ∈ N} for some Salem number γ [Sal45, p.
169]. From Chevalley’s theorem we deduce that the group 〈β〉 is a congruence subgroup of 〈γ〉, and hence
there exists some Λ that is a union of finitely many cosets of a lattice with the property that 〈β〉 = 〈γ〉 ∩Λ.
The fact that

{
βj
∣∣ j ∈ N0

}
is generalised polynomial follows then from Proposition 2.2. �

We can now deduce the following result, which is a slightly stronger version of Theorem A.

Theorem 5.4. Let β be a Salem number and let (ni)
∞
i=0 be a linear recurrent sequence of rational numbers

with characteristic polynomial the minimal polynomial of β. Then the set {ni | i ∈ N0} is a generalised
polynomial subset of Q.

Proof. Let K = Q(β) and let L be the splitting field of the minimal polynomial of β. We may suppose that
the sequence (ni)

∞
i=0 is not identically zero. Using Lemma 4.1(i), we write the sequence (ni)

∞
i=0 in the form

ni = TrK/Q(βix) for some x ∈ K. Let S =
{
βj
∣∣ j ∈ N0

}
⊆ K, let f : L → Q be the map given on K by

f(y) = TrK/Q(yx), and extended arbitrarily to a generalised polynomial map on L, and let gc : Q → L be
the maps satisfying the claim of Proposition 5.2. The result follows by applying Lemma 5.1 to S, f , and
{gc}c∈C . �

6. Generalised polynomial sets of powers

In this section, we prove the following result, which is a stronger variant of Theorem B.

Theorem 6.1. Let β be an algebraic number. Suppose that there exists a linear recurrent sequence (ni)
∞
i=0 of

rational numbers with characteristic polynomial the minimal polynomial of β that is not identically zero and
is such that the set of values {ni | i ∈ N0} is a generalised polynomial subset of Q. Then the set

{
βi
∣∣ i ∈ N0

}
is a generalised polynomial subset of Q(β).

Since the proof is somewhat lengthy and technical, we first sketch the main idea. Let K = Q(β). The
sequence (ni)

∞
i=0 can be written in the form

ni = TrK/Q(βiz)

for some z ∈ K. Let X be the set of values of (ni)
∞
i=0; by assumption, X is a generalised polynomial subset

of Q. We consider the set Y of all elements x ∈ K such that TrK/Q(βkxz) belongs to X for a large finite
number of values of k, 0 6 k < N . Such a set is clearly a generalised polynomial subset of K. We might
expect that any x ∈ Y is necessarily of the form x = βi for some i > 0; if true, this would conclude the proof.
Unfortunately, while this claim is quite close to being true, some caveats apply. First, some nondegeneracy
conditions are required for β; the claim is usually false if β is a root of unity, e.g. for β = i, z = 1, in which
case

X = {−2, 0, 2} and Y = {±1,±i,±(1 + i),±(1− i)}
provided that N > 2. Perhaps less obviously, the claim is also false when β has a conjugate of the form ωβ
with ω a root of unity, e.g. for β =

√
2, z = 1, in which case

X = {0}∪{2i+1 | i ∈ N0} and Y = {0}∪{2i | i ∈ N0}∪{2i−1
√

2 | i ∈ N0}∪{2i+2j−1
√

2 | i, j ∈ N0}

provided that N > 2. Second, the claim is false for a different reason if β and β−1 are conjugate, e.g. for
β = 2 +

√
3, z = 1, in which case TrK/Q(βi) = TrK/Q(β−i) and one can show that

Y = {βi | i ∈ Z}
10



provided that N > 3. Finally, a finite number of exceptions are possible, namely x = 0 and x = βi for some
negative values of i. Nevertheless, with these three situtations properly accounted for, the claim becomes
correct. To prove these results, we need to study when the values of traces coincide along certain geometric
progressions.

We begin by recalling two well known facts, whose proofs we include for lack of appropriate reference.

Lemma 6.2. Let β and γ be conjugate algebraic numbers that are neither zero nor roots of unity. Let k and
l be nonzero integers such that βk = γl. Then k = ±l and γ = ωβ±1 for some root of unity ω.

Proof. Let σ be an automorphism of the Galois closure of Q(β) that maps β to γ. For each integer t we
have σt(βl) = σt−1(βk). Hence, setting n to be the order of σ and applying n times the automorphism σ to
βl

n

, we get

βl
n

= σn(βl
n

) = βk
n

.

Since β is neither zero nor a root of unity, it follows that l = ±k. Thus, (βγ∓1)k = 1, and βγ∓1 is a root of
unity. �

Lemma 6.3. Let β be a nonzero algebraic number, let m denote the degree of β, let K = Q(β), and let
γ, x, y ∈ K.

(i) Suppose that TrK/Q(βix) = TrK/Q(βiy) for 0 6 i < m. Then x = y.

(ii) Suppose that TrK/Q(βix) = TrK/Q(γiy) for 0 6 i < 2m and that x 6= 0. Then there exists an
automorphism σ of K such that σ(β) = γ and σ(x) = y.

Proof. Item (i) follows from the fact that TrK/Q induces a nondegenerate quadratic form on K. Hence, it
remains to prove (ii).

Let r, s ∈ Q[[T ]] be the generating functions associated to the sequences (TrK/Q(βix))∞i=0 and (TrK/Q(γiy))∞i=0,
that is,

r =
∑
i>0

TrK/Q(βix)T i, s =
∑
i>0

TrK/Q(γiy)T i.

Since these sequences are linear recurrent and satisfy the same linear recurrences as (βi)∞i=0 and (γi)∞i=0,
respectively, we may write r = p/f , s = q/g, where f is the minimal polynomial of β, g is the minimal
polynomial of γ, and p, q ∈ Q[X] are polynomials of degree deg p < deg f = m, deg q < deg g 6 m. Our
assumption guarantees that pg − qf = fg(r− s), regarded as a power series in T , is divisible by T 2m. Since
pg − qf is also a polynomial of degree < 2m, we conclude that it is the zero polynomial, and hence r = s.
Since r is not identically zero, it follows that f = g, and so β and γ are conjugate. Let σ the automorphism
of K such that σ(β) = γ. Then

TrK/Q(γiσ(x)) = TrK/Q(βix) = TrK/Q(γiy).

The equality σ(x) = y now follows from (i). �

We will use two fundamental (and related) results: the finiteness of the number of solutions of the S-unit
equation and the Skolem–Mahler–Lech theorem. The first of these results was proved by Evertse [Eve84] and
van der Poorten–Schlickewei [vdPS91]. In the formulation of [vdPS91, Thm. 2] it says that if K is a field of
characteristic zero, G is a finitely generated subgroup of the multiplicative group of K, and a1, . . . , am are
nonzero elements of K, then the equation

n∑
i=1

aigi = 0

has, up to scaling, only finitely many solutions (gi)
n
i=1 with gi ∈ G such that no proper sub-sum

∑
i∈I aigi,

∅ 6= I ( {1, . . . ,m}, vanishes; here, considering solutions up to scaling means that we identify solutions (gi)
and (g′i) such that gi/g

′
i is indepedent of i. The Skolem–Mahler–Lech theorem [Sko34, Lec53, Mah56] says

that the set of zeros of a linear recurrent sequence over a field of characteristic zero is a union of a finite set
and finitely many arithmetic progressions. This implies that a non-constant linear recurrent sequence whose
characteristic polynomial is the minimal polynomial of an algebraic number β has only finitely many zeros
provided that β satisfies the following nondegeneracy property:

(†) α/α′ is not a root of unity for all conjugates α 6= α′ of β.
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(Alternatively, this could also be deduced directly from the S-unit equation.) Moreover, the number of zeros
is bounded by a constant that depends only on the field Q(β) [Sch96, Thm. 1.1].

The property (†) will appear several times in the remainder of this section. We note that (†) is equivalent
to saying that Q(β) = Q(βd) for all d ∈ N. (This is because the set of conjugates of βd is equal to the set of
d-th powers of conjugates of β.) Moreover, for each algebraic number γ, there exists an integer d ∈ N such
that (†) holds for β = γd.

Proposition 6.4. Let β be an algebraic number satisfying (†), let K = Q(β), and let a0, . . . , am ∈ K. Then
for all but finitely many nonnegative integer solutions (n0, n1, . . . , nm) ∈ Nm+1

0 of

(16) TrK/Q

(
m∑
i=0

aiβ
ni

)
= 0

there exists a nonempty subset I of {0, 1, . . . ,m} such that

(17)
∑
i∈I

aiβ
ni = 0.

Additionally, if β has no conjugates of the form ωβ−1 with ω a root of unity, then the same conclusion holds
for solutions (n0, n1, . . . , nm) ∈ Zm+1.

Remark 6.5. Before proceeding with the proof, observe that the assumptions in Proposition 6.4 are in
fact necessary for the claims to hold. In fact, if β fails to satisfy condition (†), then there exists an integer
d ∈ N such that Q(βd) is a proper subfield of K, and we can find some nonzero γ in the kernel of the map
TrK/Q(βd) : K → Q(βd). Let m = [K : Q] − 1, and write γ in the form γ =

∑m
i=0 aiβ

i, ai ∈ Q. For any
n ∈ N0 we have

TrK/Q(

m∑
i=0

aiβ
i+nd) = TrK/Q(βndγ) = TrQ(βd)/Q(βnd TrK/Q(βd)(γ)) = 0.

Note that no nonempty sub-sum of
∑m
i=0 aiβ

i+nd vanishes. This contradicts the first claim of Proposition
6.4.

Now suppose that β has a conjugate of the form ωβ−1 for some root of unity ω. Then βd is conjugate to
β−d for some d ∈ N, and so

TrK/Q(βnd − β−nd) = 0

for all n ∈ N. This contradicts the second claim of Proposition 6.4.

Proof of Proposition 6.4. Let N ⊆ Zm+1 be an arbitrary infinite family of solutions (ni)
m
i=0 to (16). We

further assume that either N is a subset of Nm+1
0 or that β has no conjugates of the form ωβ−1 with ω

a root of unity. Our aim is to show that under either of these assumptions we can find (ni)
m
i=0 ∈ N and

∅ 6= I ⊆ {0, 1, . . . ,m} such that (17) holds.
Let Σ be the set of all embeddings of K into C. We may rewrite (16) in the form

(18)
∑

(i,τ)∈{0,...,m}×Σ

τ(ai)τ(β)ni = 0.

For each (ni)
m
i=0 ∈ N , we partition {0, . . . ,m} × Σ into pairwise disjoint nonempty sets J that are minimal

with respect to the property that

(19)
∑

(i,τ)∈J

τ(ai)τ(β)ni = 0.

Applying the pigeon-hole principle and replacingN with an infinite subset, we may assume that this partition
is the same for all (ni)

m
i=0 ∈ N . Let J be a cell in this partition and let I be the set of all i ∈ {0, . . . ,m}

such that (i, τ) ∈ J for at least one τ ∈ Σ. Note that (19) only depends on ni with i ∈ I. Choosing J in a
judicious manner, we can also ensure that the set N ′ = {(ni)i∈I | (ni)

m
i=0 ∈ N} is infinite. It follows from the

definition of J that all proper sub-sums
∑

(i,τ)∈J′ τ(ai)τ(β)ni , ∅ 6= J ′ ( J , are nonzero for all (ni)i∈I ∈ N ′.
From the finiteness of the number of solutions of the S-unit equation [vdPS91, Thm. 2], we deduce that the

solutions (ni)i∈I of (19) produce up to scaling only a finite number of values of (τ(β)ni)(i,τ)∈J . Thus, applying
12



the pigeon-hole principle and replacing N ′ with an infinite subset, we may assume that (τ(β)ni)(i,τ)∈J takes
the same value, up to scaling, for all (ni)i∈I ∈ N ′. It follows that for each (ni)i∈I , (n

′
i)i∈I ∈ N ′ and for each

(i, τ), (j, σ) ∈ J we have τ(β)n
′
i−ni = σ(β)n

′
j−nj . From Lemma 6.2 it follows that

(20) n′i − ni = ±
(
n′j − nj

)
and τ(β) = ωσ(β)±1,

where ω is a root of unity that depends on τ and σ.
Identifying K with a subfield of C, we may assume that Σ contains the inclusion map id and that

(i0, id) ∈ J for some i0. In particular, taking (j, σ) = (i0, id) we see that τ(β) = ωβ±1. Partition J as
J+ ∪ J−, where J± is the set of those (i, τ) ∈ J for which τ(β) = ωβ±1.

We claim that our assumptions guarantee that the set J− is empty. This is immediate if β has no
conjugates of the form ωβ−1 with ω a root of unity. In the second case where N ′ is a subset of Nm+1

0 , we
deduce from equation (20) that for all (ni)i∈I , (n

′
i)i∈I ∈ N ′ and all (i, τ) ∈ J we have

n′i =

{
ni + (n′i0 − ni0) if (i, τ) ∈ J+,

ni − (n′i0 − ni0) if (i, τ) ∈ J−.
(21)

If J− were nonempty, this would show that for a given (ni)i∈I there are only finitely many possibilities for
(n′i)i∈J since ni > n′i0 − ni0 > −ni0 for any i such that (i, τ) ∈ J− for some τ ∈ Σ. This would contradict
the fact that N ′ is infinite. Thus J− is empty.

Since β satisfies (†) and since an embedding of K into C is uniquely determined by its value on β, the set
J = J+ takes the form J = I × {id}. Equation (19) now takes the form∑

i∈I
aiβ

ni = 0,

which gives the claim. �

Proposition 6.6. Let β be an algebraic number satisfying (†), let K = Q(β), and let Y ⊆ K be a finite set.
Then there exists an integer N such that for each nonzero x ∈ K, if for each integer k with 0 6 k < N there
exists j(k) ∈ N0 and y(k) ∈ Y such that

(22) TrK/Q(βkx) = TrK/Q(βj(k)y(k)),

then there exists an integer l ∈ Z, z ∈ Y , and an automorphism σ of K and a root of unity ω such that
σ(β) = ωβ±1 and x = βlσ(z).

Proof. Removing if necessary redundant elements of Y , we may assume without loss of generality that the
ratio y/y′ is not a power of β for any y, y′ ∈ Y .

Let N be a large integer, to be determined in the course of the proof. Let Xm + am−1X
m−1 + · · · + a0

be the minimal polynomial of β over Q, and put am = 1. Note that for any k > 0 we have

(23)

m∑
i=0

ai TrK/Q(βk+ix) = 0.

For any nonempty proper subset I of {0, . . . ,m}, the sequence (f
(I)
k )∞k=0 given by

f
(I)
k =

∑
i∈I

ai TrK/Q(βk+ix)

is a nondegenerate linear recurrence sequence (and is not identically zero by the nondegeneracy of TrK/Q), and
so by the Skolem–Mahler–Lech Theorem it has only finitely many zeros. By the results of Schlickewei [Sch96,
Thm. 1.1], the number of these zeros is bounded by a constant C that depends only on K. Thus, replacing

N with b(N − C)/(C + 1)c and x with x′ = βk0x for suitably chosen k0, we may assume that f
(I)
k 6= 0

for 0 6 k < N . Repeating this procedure for all I, we may assume that the sum
∑
i∈I ai TrK/Q(βk+ix) is

nonzero for each 0 6 k < N and each nonempty proper subset I of {0, . . . ,m}.
Combining (22), (23) and the reduction above, for 0 6 k < N −m we have

(24)

m∑
i=0

ai TrK/Q(βj(k+i)y(k + i)) = 0,
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and no proper nonempty sub-sum of (24) vanishes. Applying Proposition 6.4 with a′i = aiyi for all possible
choices of (yi)

m
i=0 ∈ Y m+1, we conclude that there exists a finite set J ⊆ Nm+1

0 such that for each 0 6 k <
N −m we have

(25)

m∑
i=0

aiβ
j(k+i)y(k + i) = 0

unless (j(k + i))mi=0 ∈ J . Furthermore, no proper nonempty sub-sum of (25) vanishes.
As a consequence of Lemma 6.3(i), for each (ji)

m
i=0 ∈ Nm+1

0 and (yi)
m
i=0 ∈ Y m+1, there exists at most one

value of k with 0 6 k < N −m such that (j(k+ i))mi=0 = (ji)
m
i=0 and (y(k+ i))mi=0 = (yi)

m
i=0. Replacing once

more N with
⌊
(N − |J | · |Y |m+1

)/(|J | · |Y |m+1
+ 1)

⌋
, we may assume that (25) holds for all 0 6 k < N−m.

It follows from the finiteness of the number of solutions of S-unit equations that the number of (m+ 1)-
tuples (βj(k+i)y(k+i))mi=0 that satisfy (25), regarded up to scaling, is bounded by a constant C ′ that depends

only on β and Y . Of course, the number of (m + 1)-tuples (y(k + i))mi=0 is bounded by |Y |m+1
. Letting

C ′′ = C ′ |Y |m+1
and assuming, as we may, that N > C ′′ + m, we can find k1, k2 with 0 6 k1 < k2 6 C ′′

such that

(26) j(k1 + i)− j(k1) = j(k2 + i)− j(k2) and y(k1 + i) = y(k2 + i)

for all i with 0 6 i 6 m. It follows from (25) that, if for some k we are given j(k+1)−j(k), . . . , j(k+m−1)−
j(k) and y(k), y(k+ 1), . . . , y(k+m−1), then we can uniquely determine the value of βj(k+m)−j(k)y(k+m),
and hence also the values of j(k+m)− j(k) and y(k+m). As a consequence, (26) holds, more generally, for
all i with 0 6 i < N − k2. Setting d := k2− k1 and e := j(k2)− j(k1), for all k with k1 6 k < N − d we have

(27) j(k + d) = j(k) + e and y(k + d) = y(k).

Iterating (27), we conclude that for any k and l > 0 we have

(28) j(k + ld) = j(k) + le,

provided that k1 6 k < N − ld. Recalling how j(k) was defined, we conclude from (28) that

(29) TrK/Q(βk+ldx) = TrK/Q(βj(k)+ley(k)).

Let µ be the order of the (cyclic) group of roots of unity contained in K. Choose k to be an integer
such that k > k1 and k is divisible by µ. Assume moreover, as we may, that N is sufficiently large so that
k + (2m − 1)d < N . We conclude from (29) and Lemma 6.3(ii) that there exists an automorphism σ of K
with σ(βd) = βe and σ(βkx) = βj(k)y(k). By Lemma 6.2 we have e = ±d and σ(β) = ωβ±1 for some root
of unity ω. Since k is divisible by µ, we have σ(βk) = β±k, and so σ(x) = βj(k)∓ky(k). This concludes the
proof. �

We have now all the technical tools necessary for the proof of Theorem 6.1.

Proof of Theorem 6.1. We may assume that β 6= 0. Put K = Q(β) and let X denote the set of values of
the sequence (ni)

∞
i=0. If it were the case that |τ(β)| 6 1 for all embeddings τ of K into C, then X would

be a bounded subset of Q. Since a generalised polynomial map on a bounded real interval has only a finite
number of discontinuities, X would then be finite, and β would be a root of unity, in which case the claim
would be clear. Thus, we may assume that there exists an embedding τ0 of K into C such that |τ0(β)| > 1.

Let d ∈ N be the lowest common multiple of the orders of all roots of unity that may occur as quotients
or products of two conjugates of β. Then, γ = βd satisfies (†) and has no conjugates of the form ωγ−1 with
ω a root of unity except possibly for ω = 1. Put M = Q(γ)

Using Lemma 4.1(i), we choose z ∈ K so that

ni = TrK/Q(βiz) for all i ∈ N0.

Let S =
{

TrK/M (βrz)
∣∣ 0 6 r < d

}
. Using the transitivity of the trace, we may write each TrK/Q(βiz) in

the form
TrK/Q(βiz) = TrM/Q(γjs) for j = bi/dc, s = TrK/M (βi−djz).

Thus, the set X takes the form

X =
{

TrM/Q(γis)
∣∣ i ∈ N0, s ∈ S

}
.
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Observe that S contains some nonzero element, since otherwise (ni)
∞
i=0 would be identically zero.

Claim: The set
{γls | l ∈ N0, s ∈ S}

is a generalised polynomial subset of M .

Proof: Let N be a large integer, to be determined shortly, and consider the set

A = {x ∈M | TrM/Q(γkx) ∈ X for all 0 6 k < N}.
Since X is a generalised polynomial subset of Q, and since the family of generalised polynomial subsets of
M is closed under finite intersections and taking preimage by a generalised polynomial map, we see that A
is a generalised polynomial subset of M .

It is clear that {
γls

∣∣ l ∈ N0, s ∈ S
}
⊆ A.

In the opposite direction, observe that if x belongs to A, then for every 0 6 k < N there exists some
j(k) ∈ N0 and s(k) ∈ S such that

TrM/Q(γkx) = TrM/Q(γj(k)s(k)).

Choosing N to be sufficiently large for the claim of Proposition 6.6 to hold, we infer that x = γlσ(s) for some
s ∈ S, l ∈ Z, and automorphism σ of K with σ(γ) = γ±1. We will consider two cases depending whether or
not γ and γ−1 are conjugate.

Case I: (Suppose that γ is not conjugate to γ−1). The above reasoning shows that{
γls

∣∣ l ∈ N0, s ∈ S
}
⊆ A ⊆

{
γls

∣∣ l ∈ Z, s ∈ S
}
.

Suppose that x = γls belongs to A for some l ∈ Z, l < 0, s ∈ S. Then in particular

TrM/Q(γls) = TrM/Q(γjs′) for some j ∈ N0, s
′ ∈ S.

From the second part of Proposition 6.4 we deduce that there are only finitely many possibilities for x.
Indeed, except for finitely many possible values of l, we have one of three possibilities: γls = 0, in which
case x = 0; γls = γjs′ 6= 0, in which case γ|l| 6 s/s′ and hence there are only finitely many possibilities for
x; or γjs′ = 0, in which case TrM/Q(γls) = 0, and another application of Proposition 6.4 shows that there

are only finitely many possibilities for x. Thus the set
{
γls

∣∣ l ∈ N0, s ∈ S
}

is generalised polynomial since
it differs from A only on a finite subset.

Case II: (Suppose that γ is conjugate to γ−1). Let σ be the automorphism of M such that σ(γ) = γ−1.
Since

TrM/Q(γls) = TrM/Q(σ(γls)) = TrM/Q(γ−lσ(s)),

we deduce that{
γls

∣∣ l ∈ N0, s ∈ S
}
∪
{
γ−N+1−lσ(s)

∣∣ l ∈ N0, s ∈ S
}
⊆ A ⊆

{
γls

∣∣ l ∈ Z, s ∈ S ∪ σ(S)
}
.

Suppose that x = γls belongs to A for some l ∈ Z, l < 0, s ∈ S. Then in particular

TrM/Q(γls) = TrM/Q(γjs′) for some j ∈ N0, s
′ ∈ S.

On the other hand, we have

TrM/Q(γls) = TrM/Q(σ(γls)) = TrM/Q(γ−lσ(s)).

Applying the first part of Proposition 6.4 to the equality

TrM/Q(γ−lσ(s)) = TrM/Q(γjs′),

we deduce as before that except for finitely many possible values of x we have σ(x) = γ−lσ(s) = γjs′, so
x = γ−jσ(s′). A similar (simpler) reasoning shows that if x = γlσ(s) belongs to A for some l ∈ N0, s ∈ S,
then except for finitely many possible values of x we have x = γjs′ for some j ∈ N0, s′ ∈ S. We conclude
that the set

A′ =
{
γls

∣∣ l ∈ N0, s ∈ S
}
∪
{
γ−lσ(s)

∣∣ l ∈ N0, s ∈ S
}

is generalised polynomial since it differs from A only on a finite subset. Let C be the generalised polynomial
subset of M consisting of the elements x ∈ M such that |τ0(x)| < 1. Removing C from A′ retains all the
elements x = γls with s ∈ S, s 6= 0, and l ∈ N0 sufficiently large, and eliminates x = 0 and all the elements
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x = γ−lσ(s) with s ∈ S, and l sufficienly large. Thus, the set
{
γls

∣∣ l ∈ N0, s ∈ S
}

is generalised polynomial
since it differs from A′ \ C only on a finite subset. 4

Let S0 be the set obtained from S by performing the following operations: if 0 ∈ S, replace S by S \ {0};
replace S by s−1S for some s ∈ S; remove any s ∈ S such that s = γjs′ for some j ∈ N, s′ ∈ S. We obtain in
this manner a finite set S0 with 0 /∈ S0, 1 ∈ S0, and such that D0 =

{
γls

∣∣ l ∈ N0, s ∈ S0

}
is a generalised

polynomial subset of M . Consider the set

D1 = {x ∈M | sx ∈ D0 for all s ∈ S0}.

By construction, D1 is a generalised polynomial subset of M and can be written in the form

D1 = {γls | l ∈ N0, s ∈ S1}

for some finite set S1 such that 0 /∈ S1, 1 ∈ S1, and the quotient of two different elements of S1 is not an
integral power of γ. Moreover, we have |S1| 6 |S0|, with equality occuring only if for any s, s′ ∈ S0, the
product ss′ is equal to γts′′ for some t ∈ Z and s′′ ∈ S0. This latter condition is equivalent to the condition
that the image of S0 in the quotient group M∗/〈γ〉 is closed under multiplication, and hence is a finite group.

Continuing this procedure, we obtain a sequence of finite sets (Sn)∞n=0 with |S0| > |S1| > · · · and
corresponding generalised polynomial sets D0 ⊃ D1 ⊃ · · · . Let m be such that |Sm| = |Sm+1|. This means
that Sm is such that 0 /∈ Sm, 1 ∈ Sm, the quotient of two different elements of Sm is not an integral power
of γ, and the image of Sm in M∗/〈γ〉 is a finite group. It follows that any s ∈ Sm is a rational power of γ.
Let G be the subgroup of M∗ generated by Sm and γ. Then G is finitely generated and 〈γ〉 is its subgroup
of finite index. Hence, by Chevalley’s theorem [Che51, Thm. 1], 〈γ〉 is a congruence subgroup of G, meaning
that 〈γ〉 = G ∩ Λ for some Λ ⊆M that is a union of finitely many cosets of a lattice. Thus, the set

Dm ∩ Λ = {γls | l ∈ N0, s ∈ Sm} ∩ Λ = {γl | l ∈ N0}

is a generalised polynomial subset of M . Since generalised polynomial sets are closed under dilations and
finite unions, this also implies that {βl | l ∈ N0} is a generalised polynomial subset of M , and hence by
Proposition 2.2(ii) also of K. �

7. Non-hereditary generalised polynomial setshere

In light of Theorem C, it is natural to ask which generalised polynomial sets of integers are hereditary. It
is not hard to see that each set E ⊆ Z with positive density

(30) d(E) := lim
N→∞

|E ∩ [−N,N ]|
2N + 1

> 0

has a subset E′ that does not have density, meaning that

lim inf
N→∞

|E ∩ [−N,N ]|
2N + 1

=: d(E) < d(E) := lim sup
N→∞

|E ∩ [−N,N ]|
2N + 1

.

Since the density exists for each generalised polynomial set, no generalised polynomial set with positive
density is hereditary. When it comes to sets with zero density, it remains the case that we expect most of
them to not be hereditary, but proving this becomes more difficult. However, we can at least show that not
all of them are hereditary.

Theorem 7.1. There exists a generalised polynomial set E ⊆ Z with d(E) = 0 as well as a subset E′ ⊆ E
that is not a generalised polynomial set.

Our proof of Theorem E relies on two components from [AK22]. The first ingredient is a polynomial
bound on subword complexity of finitely-valued generalised polynomials. Recall that the subword complexity
pa of a sequence a : Z→ Σ taking values in a finite alphabet Σ is the map that assigns to a positive integer
N the number of distinct length-N subsequences of a:

(31) pa(N) :=
∣∣∣{(a(m+ n))

N−1
n=0

∣∣∣ m ∈ Z
}∣∣∣ .

The subword complexity of a sequence N → Σ is defined analogously. If |Σ| = k, we have the trivial upper
bound pa(N) 6 kN .
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Theorem 7.2 ([AK22, Thm. A]). Let g : Z → Σ be a generalised polynomial taking values in a finite set
Σ ⊆ R. Then there exists a constant C = C(g) > 0 such that pg(N) = O(NC) as N →∞.

The second ingredient is the existence of generalised polynomial sets E with zero density, but with the
expression in (30) converging to 0 arbitrarily slowly. The following result was originally stated for subsets
of N, but the adaptation to Z is immediate.

Theorem 7.3 ([AK22, Prop. 8.12]). Let f : N→ [0, 1] be a sequence with f(N)→ 0 as N →∞. Then there
exists a generalised polynomial set E ⊆ Z such that d(E) = 0 and |E ∩ [0, N)| > f(N)N .

The following consequence of Theorem 7.3, juxtaposed with Theorem 7.2, will almost immediately yield
a proof of Theorem E.

Proposition 7.4. Let h : N → [0, 1] be a sequence with h(L) → 0 as L → ∞. There exists a generalised
polynomial set E ⊆ Z with d(E) = 0 and a subset F ⊆ E such that p1F

(L) > 2h(L)L for all L ∈ N.

Proof. Replacing h(L) with dh(L)Le /L, we may freely assume that h(L)L is an integer for all L ∈ N. Let
ML, NL be sequences of integers satisfying N0 = M0 = 0 and, for L > 1,

(32) NL := NL−1 + L ·ML, ML >
NL−1 + 2(1+h(L))LL

(h(L)− h(L)2)L
.

Let f : N→ [0, 1] be a sequence satisfying

(33) f(NL) > 2h(L)− h(L)2 and f(N)→ 0 as N →∞.

Let E be a set whose existence is asserted in Theorem 7.3. We will construct F as the intersection of a
descending sequence of sets EL, where E0 := E. Pick a positive integer L. We can decompose the interval
[0, NL) as

[0, NL) = [0, NL−1) ∪
ML−1⋃
m=0

[NL−1 +mL,NL−1 + (m+ 1)L).

Let M+
L denote the number of integers m ∈ [0,ML) such that

|E ∩ [NL−1 +mL,NL−1 + (m+ 1)L)| > h(L)L,

Then

f(NL)NL 6 |E ∩ [0, NL)| 6 NL−1 +M+
L L+MLh(L)L.

Combined with (32) and (33), this implies that

M+
L > 2(1+h(L))L.

Put H := 2h(L)L. Applying the pigeonhole principle, we conclude that there exists a set A ⊆ [0, L) with
|A| > h(L)L and positions 0 6 m0 < m1 < · · · < mH−1 < ML such that

E ∩ [NL−1 +mjL,NL−1 + (mj + 1)L) = NL−1 +mjL+A for all 0 6 j < H.

Let A0, A1, . . . , AH−1 be H different subsets of A. Put Bj := A \Aj and

EL := EL−1 \
H−1⋃
j=0

(NL−1 +mjL+Aj) .

In particular, for each 0 6 j < H we have

(EL − (NL−1 +mjL)) ∩ [0, L) = Bj .

In particular, 1Bj
is a subsequence of 1EL

, and thus the indicator function of EL has at least 2h(L)L length-L

subsequences, all of which appear at positions between NL−1 and NL. We put F :=
⋂∞
L=0EL. It follows

from the construction above that the subword complexity of F satisfies p1F
(L) > 2h(L)L for all L ∈ N. �

Proof of Theorem E. Let h(L) := 1/
√
L, and let E,F be some sets satisfying the claim of Proposition 7.4.

Then F is not a generalised polynomial set by Theorem 7.2. �
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