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Side-Channel Attacks are powerful attacks which can recover secret information in a cryptographic device by analysing physical quantities such as power consumption. Masking is a common countermeasure to these attacks which can be applied in software and hardware, and consists in splitting the secrets in several parts. Masking schemes and their implementations are often not trivial, and require the use of automated tools to check for their correctness. In this work, we propose a new practical tool named VerifMSI which extends an existing verification tool called LeakageVerif targeting software schemes. Compared to LeakageVerif, VerifMSI includes hardware constructs, namely gates and registers, what allows to take glitch propagation into account. Moreover, it includes a new representation of the inputs, making it possible to verify three existing security properties (Non-Interference, Strong Non-Interference, Probe Isolating Non-Interference) as well as a newly defined one called Relaxed Non-Interference, compared to the unique Threshold Probing Security verified in LeakageVerif. Finally, optimisations have been integrated in VerifMSI in order to speed up the verification. We evaluate VerifMSI on a set of 9 benchmarks from the literature, focusing on the hardware descriptions, and show that it performs well both in terms of accuracy and scalability.

INTRODUCTION

Side-Channel Attacks (SCA) exploit the relationship between physical quantities such as power consumption, electromagnetic emissions, or timing information and secret data manipulated by cryptographic implementations, in order to retrieve the secret data. Since the first published differential power attack [START_REF] Kocher | Differential power analysis[END_REF], many other such attacks have proven to be very effective when the device contains no specific countermeasure [START_REF] Mangard | Power analysis attacks: Revealing the secrets of smart cards[END_REF][START_REF] Batina | Mutual information analysis: a comprehensive study[END_REF][START_REF] Chari | Template attacks[END_REF]. With the advent of the Internet-of-Things, many embedded devices now use cryptographic implementations and are potential targets for these attacks (smart cards, mobile phones, or RFID tags). Protecting these devices against SCA has thus become a significant concern. a https://orcid.org/0000-0001-8848-8079

Masking is a protection technique against SCA, with a goal to remove the statistical dependency between intermediate computations and secret data manipulated by the program [START_REF] Trichina | Combinational logic design for aes subbyte transformation on masked data[END_REF][START_REF] Ishai | Private circuits: Securing hardware against probing attacks[END_REF]. The rationale behind masking is that intermediate computations' values are correlated to the power consumption, therefore a masked program should have no statistical dependency between the secret data and the observable physical quantities. Masking can be applied at any order, and masking at order d consists in splitting each secret variable into n = d + 1 parts, called shares. The higher the order, the better the security, as any recombination of up to d shares should not allow to deduce any information on the secret, and the recovery becomes exponentially hard with the number of shares as each observation comes with noise. The most practical and common way of achieving masking for a secret x is the linear masking: it consists in drawing d uniformly and in-dependently distributed variables and computing the n th share by recombining x with the first d shares using the bitwise xor operation ⊕ in the boolean case. Splitting the secrets is not the main part however, as the original program must then be transformed into a masked equivalent, using shares only, and avoiding any recombination of the secret variables. While this is quite straightforward for linear operations w.r.t. the xor, the transformation is more complicated for the nonlinear parts of the program. When done manually, several security flaws may appear. Consequently, a critical need for automatic masking verification has emerged to check the correctness of masked implementations, both in hardware or software.

Masking is popular as masked implementations can theoretically be proven secure, and several methods have been proposed for proving the security of such implementations. They are all based on analyzing the intermediate expressions manipulated by the circuit or program and try to answer the question: does the distribution of a specific subset of intermediate computation results depend on secret data? The implementation is considered insecure if two different secret values lead to two different distributions. This requires enumerating all possible subsets of internal variables of the program and testing their independence from the secret. The sizes and the number of sets depend on the considered property. One way of testing the independence of a given subset of internal variables is to compute the actual distribution of the variables for each possible realization of the secret inputs. In order to avoid this non-scalable approach, recent works on masking verification use symbolic computation. These methods can be categorized into two families: methods by inference [START_REF] El Ouahma | Symbolic approach for side-channel resistance analysis of masked assembly codes[END_REF][START_REF] El Ouahma | Side-channel robustness analysis of masked assembly codes using a symbolic approach[END_REF][START_REF] Zhang | Sc infer: refinement-based verification of software countermeasures against side-channel attacks[END_REF]Gao et al., 2019a;[START_REF] Gao | Verifying and quantifying side-channel resistance of masked software implementations[END_REF], and methods by substitution [START_REF] Barthe | Verified proofs of higher-order masking[END_REF][START_REF] Barthe | maskverif: Automated verification of higherorder masking in presence of physical defaults[END_REF][START_REF] Meunier | Sela: a symbolic expression leakage analyzer[END_REF][START_REF] Meunier | Leakageverif: Scalable and efficient leakage verification in symbolic expressions[END_REF]. In the former, the analysis of a symbolic expression relies on the results of analysing the sub-parts of the expression using inference rules. These results usually contain a distribution type and additional information, such as variable occurrences. In the latter, the analysis of a symbolic expression consists in iteratively replacing masked sub-parts of the expressions until there is no more secret occurrence. The verification can fail to conclude on some given expressions with either method. In this case, the set of expressions is considered to be "possibly leaking". Using an enumerative technique to determine the distribution type may help to conclude in this case, but this workaround is limited to small expressions and variable sizes due to the inherent non-scalability of distribution enumeration. Consequently, verification methods must be as accurate as possible to conclude for as many leakage-free expressions as possible and give as few false positives as possible.

LeakageVerif [START_REF] Meunier | Leakageverif: Scalable and efficient leakage verification in symbolic expressions[END_REF]) is a substitution verification method implemented in an open-source tool, and provided as a python library.

Compared to other tools, it has a good scalability and accuracy, while being easily adapted for different use cases (verification of algorithms, assembly code, hardware modules). In this work, we propose to extend LeakageVerif to overcome some of the limitations of this tool. We thus introduce VerifMSI for Verification of Masking Schemes Implementations. We claim VerifMSI to be a single tool including state-of-the-art techniques gathering all common masking verification types. If VerifMSI does not make a major breakthrough in masking verification techniques, it encompasses a wide range of use cases with optimized and scalable algorithm implementations, making it a very practical open tool for hardware and software masking verification. Compared to LeakageVerif, VerifMSI makes the following contributions:

• Addition of hardware circuits constructs (gates, registers) allowing for circuits description, taking into account glitches.

• Possibility to use shares for the masking scheme description, allowing to choose between the classical description using secrets and masks, and the share description. In the former, the program explicitly uses secrets and masks, e.g. a secret a is replaced with expressions ma and ma ⊕ a. The rest of the article is organised as follows: section 2 presents some background on masking verification and existing security properties; section 3 presents our verification tool VerifMSI and the different optimizations we designed; section 4 presents an experimental evaluation of VerifMSI on 9 benchmarks from the literature; section 5 compares VerifMSI to other existing approaches; finally, section 6 concludes.

SECURITY PROPERTIES FOR MASKING VERIFICATION

Existing Properties

Since the seminal work of [START_REF] Ishai | Private circuits: Securing hardware against probing attacks[END_REF] which introduced the first definition of a security property, many other properties were proposed and used. We recall in the following the most important security notions for hardware circuits.

Threshold Probing Security (TPS). The most common security property targeted with masking is known as Threshold Probing Security, for a given order t ( [START_REF] Barthe | Verified proofs of higher-order masking[END_REF]. An implementation achieves t-order threshold probing security if any tuple of intermediate values of size t has a distribution of values which is independent from all secret variables. This security property can reason either on secrets and masks, or on sharebased expressions. In the latter case, an expression using shares can be verified by replacing arbitrarily the shares with the corresponding expressions using the secret and masks. The general substitution algorithm is given in algorithm 1. For example, considering two secrets a and b split in two shares (a0, a1) and (b0, b1), the expression a0 ⊕ a1 ⊕ b0 is 1-threshold probing secure since b0 can be replaced with mb or b ⊕ mb. A replacement in this context is the fact to replace a sub-expression bijective in a mask with the mask itself, which requires the mask to not appear in the sub-expression (step 2 of algorithm 1). In either case, the whole expression of this example is masked with the mask mb, guaranteeing secret independence.

Non-Interference (NI). Another common security property is known as t-order Non Interference, or t-NI [START_REF] Barthe | maskverif: Automated verification of higherorder masking in presence of physical defaults[END_REF]. It is defined informally as the following: an implementation is t-NI if all tuples of t observations (corresponding to internal or output values) have a distribution of values which depends at most on t input shares, for each input. Since we consider the distribution, this allows to make an observation independent from an input share by masking it. Algorithm 1 can also be used for verifying NI with a modified stopping condition, but requires a share description in the implementation. The previous example expression, a0 ⊕ a1 ⊕ b0 is not 1-NI, as it contains two shares of the secret a.

Strong Non-Interference (SNI). Non-Interference can be strengthened to achieve composition, by limiting the number of authorized input shares in each tuple to the number of probes in the tuple which correspond to internal values (as opposed to output values) [START_REF] Barthe | maskverif: Automated verification of higherorder masking in presence of physical defaults[END_REF]. Probe Isolating Non-Interference (PINI) is a composable security notion introduced in [START_REF] Cassiers | Trivially and efficiently composing masked gadgets with probe isolating non-interference[END_REF], which is less restrictive than SNI: a tuple must depend on at most k arbitrary input shares, k being equal to the number of internal probes in the tuple (like SNI), but can also depend on the input shares with the same index as the output shares contained in the tuple.

Relaxed Non-Interference

The problem with the NI property is that it ignores the masking order when looking at the verification order. Thus, an implementation comprising, among all its expressions, a single one with 2 shares will not even be considered secure at order 1, since for 1-NI, all single expressions should contain at most 1 share occurrence (after masks replacement). This is true even if all inputs are on 3, 4 or more shares, whereas in this case, there cannot be a secret leakage by looking at a single expression. We thus introduce Relaxed Non-Interference (RNI) to solve this problem: informally, it states that for achieving t-order security, all tuples of size t should not contain at least one of the shares for every input (after masks replacement). This definition also allows to remove an implicit condition of Non-Interference which is that all the inputs are split using the same number of shares. As such, we see RNI as an extension of the NI property when the security order is different from the masking order. This is for example the case in Threshold Implementations [START_REF] Nikova | Threshold implementations against side-channel attacks and glitches[END_REF] or the Generalized Masking Scheme [START_REF] Reparaz | Consolidating masking schemes[END_REF].

More formally, we consider an implementation Algorithm 1 Substitution algorithm for verifying threshold probing security, from [START_REF] Barthe | maskverif: automated analysis of software and hardware higher-order masked implementations[END_REF].

procedure ThresholdProbingSecurity(e) Inputs: tuple of expressions V = (v1, ..., vn), flag simplified = 0, set of masks M = ∅

Step 1: if a secret k is involved in the computation of at least one expression in V then go to Step 2. Otherwise return True.

Step 2: while there exists a mask m / ∈ M involved in the computation of an expression vi of V , then find a sub-expression e in vi such that m → e + m is bijective and substitute m by e + m in all expressions. Extend M with {m}.

If at least such a transformation occurred, go to Step 1. Otherwise go to Step 3.

Step 3: if simplified ̸ = 0, then return False. Otherwise, mathematically simplify the expressions in V . Then, set simplified to one and go back to Step 1.

comprising N inputs I k , each input I k being split into d k +1 shares I k0 , ..., I k d k . Such an implementation is RNI at order t if and only if any tuple of t observations can be perfectly simulated using at most d k shares for each input I k (following the notion of perfect simulation in [START_REF] Belaïd | Randomness complexity of private circuits for multiplication[END_REF]). For a hardware implementation, it is RNI with glitches if each observation is replaced with the set of input variables it contains in the same combinatorial logic set.

VERIFMSI

Overview

VerifMSI is a verification method implementing the substitution algorithm in a python library, seeking to overcome some of the limitations of LeakageVerif. It can thus be seen as an evolution of this tool. Compared to the latter, VerifMSI first adds hardware circuit constructs, allowing to describe circuits with gate and registers, and to take into account glitches in the verification. Second, VerifMSI allows to simply switch between a share-based and a secrets and masks based description, allowing to verify the NI, SNI, PINI and the proposed RNI properties as well as TPS. Third, VerifMSI implements optimizations in order to reduce the number of probes in the circuit, allowing it to efficiently perform higher order verifications.

Figure 1 shows a code fragment of a VerifMSI program for implementing a first order Domain Oriented Masking (DOM) AND circuit [START_REF] Groß | An efficient side-channel protected aes implementation with arbitrary protection order[END_REF], and the associated circuit in Figure 2. Secrets are declared on lines 1 and 2, while their sharing is done on lines 6 and 7. The getRealShares function returns a specified number of shares of a secret, which are not equivalent to a secret and mask representation. Alternatively, one can use the getPseudoShares func-tion, which does a sharing using secret and masks (typically (m0, k ⊕ m0) at order 1). The latter representation is useful for verifying TPS. Line 3 declares a 1-bit mask, while lines 10 to 14 create input gates associated to the inputs. Lines 17-20 make all the cross products between shares; note the gates are n-ary and can take an arbitrary number of parameters. Lines 23 to 30 implement the remaining gates and registers: registers stop the propagation of glitches. Indeed, without registers, a gate can leak all of its input wires (cf. Figure 2). Finally, line 33 checks the NI property on the outputs c0 and c1, at order order (here order should be 1), with or without glitches according to the withGlitches parameters.

Optimisations

In order to reduce the number of tuples verified, especially for higher orders, VerifMSI implements some optimisations for hardware descriptions consisting in removing some of the observations, which for the most part are based on the optimisations made in [START_REF] Belaïd | Ironmask: Versatile verification of masking security[END_REF]. These optimisations are based on the fact that we do not just verify expressions, but a circuit, or gadget, allowing us to make additional assumptions. For instance, it is always possible to observe single input shares, what allows us to remove them when enumerating the tuples, by considering partial tuples [START_REF] Belaïd | Ironmask: Versatile verification of masking security[END_REF]. The optimisations implemented are the following:

• Removal of observations constituted of at most one share per input and no random (optimisation v0). This optimisation includes the two optimisations of IronMask consisting in removing observations made of input shares (optimisation i0) and input share products (optimisation i1), and also comprises other cases not covered by IronMask. • Removal of observations which are redundant with some others (optimisation v1). An ex- Figure 2: Order 1 DOM AND circuit from [START_REF] Groß | An efficient side-channel protected aes implementation with arbitrary protection order[END_REF], with the leakage associated to each wire when glitches are considered pression e0 is considered redundant and is omitted when there exists an expression e1 such that:

• all the mask occurrences in e0 (resp. e1) are bijective occurrences w.r.t. e0 (resp. e1); • e0 and e1 have the same mask occurrences;

• All the input shares appearing in e0 also appear in e1.

This optimization is also implemented in IronMask with minor differences (optimisation i3).

An optimisation implemented in IronMask which is not implemented in VerifMSI is the removal of observations comprising a single random (optimisation i2). This is because IronMask imposes a constraint on how masks are used, which is not the case in VerifMSI. However, in practice, such observations will often be removed with the removal of redundant expressions.

Table 1 compares the optimisations implemented in VerifMSI and IronMask, taking as example the ISW AND.

We can notice that all the expressions in the table can be removed in both approaches, and that both end up with the same number of observations before starting enumeration. This step is crucial, as for example with 7-share inputs, it allows to go from 168 intermediate values to 56.

Besides, we can notice that when glitches are considered, the number of probes to keep for enumeration is largely reduced, as the probes corresponding to wires which are not preceding a register can be ignored: the leakage associated with them will be part of the leakage associated with the output of the next gate.

Reducing the number of tuples

In order to reduce the number of tuples to verify, we implemented the pairwise splitting algorithm from [START_REF] Barthe | Verified proofs of higher-order masking[END_REF]. It tries to build larger tuples until the verification fails, what allows to skip the verification of all sub-tuples. Taking the algorithm from the article, preliminary results showed a speedup factor of 2. However, we noticed a probable error in the algorithm, and when we corrected it, the overall time was the same as without this optimisation -basically, the gain in the reduction of the number of tuples to verify was compensated by the overhead of the approach. The description of the error and our proposed correction is described in appendix A. In the end, even if VerifMSI still implements this optimisation, we did not use it in our experiments.

Table 1: Comparison of simplifications based on observations removal in IronMask and VerifMSI for the ISW AND implementation, for N-share inputs. The first column gives the expression forms which can be removed for one of the presented simplifications, the second column gives the number of occurences, and the following columns which simplification rules allow to remove the corresponding expressions.

Expression form

# occurrences v0 v1 i0 i1 i2 i3

a i , b i 2N ✓ ✓ a i .b j N 2 ✓ ✓ z i,j N(N -1) / 2 ✓ ✓ a i .b j ⊕ z i,j N(N -1) / 2 ✓ ✓ a 0 .b j ⊕ a j .b 0 ⊕ z 0,j N -1 ✓ ✓ a 0 .b 0 ⊕ z 0,1 1 ✓ ✓ Removable Observations 2N(N + 1) Total Observations 2N + N 2 + 5N(N -1)/2
Remaining Observations N(3N -5)/2

Improving the Mask Choice for Replacements

While running through the process of benchmarking, we encountered a few false positives in the verification of one benchmark (ISW AND), i.e. a potential leakage was reported by VerifMSI while there was actually none. After investigation, it appeared that in these cases, the sequence of mask selections for replacement led to the impossibility to conclude, whereas another sequence of choices would allow it.

Going into the details, we noticed two distinct problems. First, the algorithm in Figure 1 allows a mask to be taken only once, in order to guarantee termination. Yet, we encountered some cases in which taking an already taken mask is necessary in order to conclude. This can happen when the mask originally has several occurrences, and after some replacements and simplifications, only has a single occurrence (see appendix B, step 6 of first scenario for example). In order to take this into account while still guaranteeing termination, we authorize a mask to be taken several times only if it has a single occurrence. Since the expression necessarily decreases in size during a replacement using a mask having a single occurrence, this can happen only a finite number of times.

The second false positive problem we noticed happened when selecting for a replacement a mask being itself an element of the tuple. Such a scenario is described in the first scenario of appendix B. However, when removing entirely the possibility to select such masks for replacements, other failures were reported, as illustrated in the second scenario of appendix B.

Finally, we modified the mask selection algorithm to make it possible to select such masks for replacement, but with the lowest priority. Using this heuristic, no false positives due to mask selection arose in any benchmark.

EXPERIMENTAL EVALUATION

We perform an evaluation of VerifMSI on several benchmarks from the literature. We focus the evaluation on hardware circuits as the software implementations descriptions are similar to those of LeakageVerif. The experiments comprise the following programs:

• ISW AND: The logical AND masking scheme [START_REF] Ishai | Private circuits: Securing hardware against probing attacks[END_REF] • ISW AND refresh: A combination of the ISW AND with a circular refresh on one of the input [START_REF] De Cnudde | Masking aes with shares in hardware[END_REF] • DOM AND: The Domain Oriented Masking implementation of the AND gate [START_REF] Groß | An efficient side-channel protected aes implementation with arbitrary protection order[END_REF], resistant to glitches;

• Refresh N log N: The N log N refresh scheme [START_REF] Battistello | Horizontal side-channel attacks and countermeasures on the isw masking scheme[END_REF];

• NI Mult and SNI Mult: The NI and SNI multiplication schemes [START_REF] Bordes | Fast verification of masking schemes in characteristic two[END_REF];

• PINI Mult:

The PINI multiplication scheme [START_REF] Wang | Efficient private circuits with precomputation[END_REF];

• GMS AND: Two implementations of the AND gate using the Generalized Masking Scheme, described in the article, using respectively 3 and 5 shares [START_REF] Reparaz | Consolidating masking schemes[END_REF];

• TI AND: The balanced Threshold Implementation of the AND gate [START_REF] Nikova | Threshold implementations against side-channel attacks and glitches[END_REF].

All benchmarks were run on a single core on a server with an Intel CPU Xeon E5-2637v2@3.5GHz, under the CentOS 9 operating system. For all benchmarks, we set a timeout to 6 hours, and a memory limit to 110 GB (which was never reached).

Table 2 presents the verification results of the different circuits we implemented. All of these circuits implementations are provided along with the code of VerifMSI. Only the configurations for which the verified property was known to be true were run, and only the configurations which did not exceed the 6 hours timeout are presented in the table. The verification order is set to the designed security order: this is always the number of shares minus one, except for GMS AND with 3 shares (order 1), GMS AND with 5 shares (order 2) and TI AND (order 1).

From the results in table 2, we can make the following observations: VerifMSI can verify all the preselected hardware masking schemes, up to a certain order (between 5 and 7 shares). We notice that the verification of the TPS property scales significantly less than the other properties, due to the fact that the optimisation targeting the reduction in the number of probes do not apply with a representation using secrets and masks.

We also notice that the GMS AND and TI AND circuits can only be verified with TPS and RNI, as the order of security is not equal to the number of shares minus one -they typically contain tuples of size 1 depending on several input shares. This underlines the interest of the RNI property, which is the only property based on shares adapted to the verification of such masking schemes.

Finally, we can see that there are a few false positives on PINI mult with five shares or more. Analysing them in more details reveals that the tuple does not contain anymore mask, and that the problem occurs because VerifMSI is not able to factorize an expression and make some products disappear. We currently do not know how to take this into account as the factorization in the failing tuples requires to temporarily develop the expression and make its size grow, which is against the simplification rules design.

RELATED WORKS

A certain number of tools target the verification of security properties in masked software or hardware implementations. LeakageVerif. LeakageVerif [START_REF] Meunier | Leakageverif: Scalable and efficient leakage verification in symbolic expressions[END_REF] is a flexible and open-source verification tool achieving good accuracy and scalability, provided as a python library. LeakageVerif can verify implementations at different abstraction levels (algorithmic, code, assembly, circuit), but can only verify threshold probing security on a description using secrets and masks. Moreover, it cannot take glitches into account in hardware descriptions. The fact that the tool is provided as a python library allows to have simulable descriptions, and to support all python's control mechanisms. MaskVerif. maskVerif [START_REF] Barthe | maskverif: Automated verification of higherorder masking in presence of physical defaults[END_REF]) is a tool written in OCaml designed for the verification of circuits, which proposes a software scenario for the verification of algorithms, in which glitches can be considered, and in which the sequential aspect of the program is simulated using a register-like behaviour: each expression computed by the program is written into a register. The strength of maskVerif is its ability to scale well with higher orders. However, it is not very well adapted for some masking schemes implementations. In particular, it lacks support for arithmetic operations or array accesses. It also does not support arbitrary size variables and expressions, since the only possible sizes for variables are 1, 8 and 32 bits, and there are no bit concatenation and extraction operations. Finally, maskVerif does not permit to express a non-linear control flow, allowing only for function calls. IronMask. IronMask [START_REF] Belaïd | Ironmask: Versatile verification of masking security[END_REF] is an open-source tool designed for the verification of masked hardware implementations. The tool has an excellent scalability due to its optimized writing in C, and can verify many security properties. On the downside, it is not able to verify TPS, and is limited to certain types of implementations in which the masks must be linearly added to given shares. SILVER. SILVER [START_REF] Knichel | Silver-statistical independence and leakage verification[END_REF] is a tool able to verify common security properties on hardware descriptions. It takes as input either a Verilog implementation or an instruction list and checks the TPS, NI, SNI and PINI notions with or without glitches, as well as the uniformity of some output sharing. The tool suffers however from a limited scalability. If VerifMSI is not the fastest of these tools for most hardware implementations and configurations at high orders, it is the only tool which can verify all common security properties, using both share-based and secrets and masks descriptions, for both hardware and software masking schemes, and having the benefits of using all of the python constructs.

CONCLUSION AND FUTURE WORK

We presented VerifMSI, a practical tool implemented as a python library for verifying masking schemes implementations. It extends the existing LeakageVerif tool with constructs targeting hardware implementations, and enriches it with the verification of four security properties (NI, SNI, RNI, PINI). The experiments presented in the article, focusing on 9 hardware schemes, show that VerifMSI is able to successfully verify many implementations from the literature, for masking orders of up to 7 shares. Future work includes enriching the software side of VerifMSI with support for Galois Field operations, as well as implementing less common security properties, and in particular the ones defined in the random probing model. We also plan to write the core of VerifMSI in a compiled language to reduce the cost of enumeration.

A Error found in [START_REF] Barthe | Verified proofs of higher-order masking[END_REF] and proposed correction

We recall in algorithm 2 the pairwise splitting algorithm from [START_REF] Barthe | Verified proofs of higher-order masking[END_REF].

Algorithm 2 Pairwise splitting algorithm, from [START_REF] Barthe | maskverif: automated analysis of software and hardware higher-order masked implementations[END_REF]. The algorithm contains the following invariant: |x | + d = t, t being the verification order. In the original article, it is written: After line 5, we know that all t-tuples of variables in ŷ are independent, jointly with x, from the secrets. However, it is not necessarily the case as the extension from y to ŷ does not consider x . The following example shows how some tuples are missed. We consider an order of verification t = 3. Let us suppose that when entering the function, x = { e0 }, d = 2, and e = { e1, e2, e3, e4 }. When exiting this function call, all tuples of size 3 containing e0 should have been checked. Suppose that y ← (e1, e2) (line 3). We then verify that (e0, e1, e2) is independent from the secrets (line 4). Suppose next that ŷ extends y to e, i.e. ŷ = (e1, e2, e3, e4) (line 5). The call to check line 6 will not verify anything since e \ ŷ = ∅, and x contains a single expression. Then the series of calls to check line 9 will be made with i = 1, so u will contain a single element, resulting in calls in which the parameter x contains two expressions, and e = ∅. As a consequence, tuples (e0, e1, e3), (e0, e1, e4), (e0, e2, e3), (e0, e2, e4) and (e0, e3, e4) have been missed.

We propose a modified version in algorithm 3 in order to take into account the missing tuples.

The main idea is to extend not only y but (x , y ) to ŷ . Then, in the nested loops lines 9-11, the x parameter of the call to check is made with the current x and expressions from ŷ \ x . 

B Mask Selection Scenarios

This appendix contains two scenarios, taken from the verification of ISW AND with 5 shares for the TPS property. The first scenario illustrates the fact that when selecting a mask for a replacement, selecting a mask appearing as an element of the tuple can prevent the verification to conclude. This scenario is as follows:
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 1 Figure 1: Example of VerifMSI program implementing a first order DOM AND circuit

Algorithm 3

 3 Modified pairwise splitting algorithm 1: function check(x , d, e) ▷ every x , y with y ∈ P d (e) is independent from the secrets 2: if d ≤ |e| then 3: y ← choose(P d (e)) 4: hx,y ← NI((x , y )) 5: ▷ if NI((x , y )) fails, return false 6: ŷ ← extend((x , y ), e \ y , hx,y ) 7: ▷ We have e \ y = e \ (x , y ) 8: check(x , d, e \ ŷ ) 9: for 0 < i < d do 10: for u ∈ Pi(ŷ \ x ) do 11: check((x , u), d -i, e \ ŷ ) 12: else 13: return true
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 2 Verification times and number of tuples verified with VerifMSI, for higher order hardware masking schemes from the literature. Column #Sh. indicates the number of shares. Values between parenthesis indicate the number of tuples for which the verification failed (false positives).
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			PINI	8m36s	667927			PINI	47m53s	5358577
			TPS	<1s	741			TPS	13s	24804
			NI	<1s	325		4	NI	<1s	469
		3	SNI	<1s	325			RNI	<1s	469
			RNI	<1s	325			PINI	<1s	469
			PINI	<1s	325	PINI		TPS	26m36s	2024785 (98)
			TPS	27s	45760	Multi-plica-	5	NI	7s	15275 (1)
	ISW		NI	5s	17343	tion		RNI	7s	15275 (1)
	AND	4	SNI	6s	17343			PINI	7s	15275 (1)
	refresh		RNI	5s	17343			NI	7m24s	667927 (77)
			PINI	5s	17343		6	RNI	7m20s	667927 (79)
			TPS	1h1m	3921225			PINI	7m29s	667927 (79)
			NI	10m54s	1356201			TPS	10m21s	916895
		5	SNI	12m3s	1356201		5	NI	<1s	385
			RNI	10m49s	1356201			RNI	<1s	385
			PINI	10m46s	1356201			PINI	<1s	385
			TPS NI	45m36s 25s	4780230 59535	NI Mul-tiplica-tion	6	NI RNI	36 36s	55454 55454
			SNI	26s	59535			PINI	37s	55454
			RNI	25s	59535			NI	28m19s	2007327
		5	PINI	26s	59535		7	RNI	28m34s	2007327
			TPS w/ g.	15s	12650			PINI	28m52s	2007327
			NI w/ g.	8s	12650			TPS	26m18s	2024785
			RNI w/ g.	9s	12650			NI	7s	15275
			PINI w/ g.	9s	12650		5	SNI	8s	15275
	DOM		NI	35m19s	3505050	SNI		RNI	7s	15275
	AND		SNI	36m18s	3505050	Multi-plica-		PINI	8s	15275
			RNI	35m42s	3505050	tion		NI	1m59s	174436
		6	PINI	38m1s	3505050		6	SNI	2m7s	174436
			TPS w/ g.	11m35s	376992			RNI	2m1s	174436
			NI w/ g.	6m11s	376992			PINI	2m2s	174436
			RNI w/ g.	6m11s	376992		3	TPS	<1s	30
			PINI w/ g.	6m23s	376992	GMS		RNI	<1s	9
			NI w/ g.	5h13m	13983816	AND	5	TPS	1s	3570
		7	RNI w/ g.	5h11m	13983816			RNI	<1s	630
			PINI w/ g.	5h15m	13983816	TI AND	4	TPS	<1s	34
								RNI	<1s

Secret a = a0 ⊕ a1 ⊕ a2 ⊕ a3 ⊕ a4 Secret b = b0 ⊕ b1 ⊕ b2 ⊕ b3 ⊕ b4 Masks: z0_4,z1_4,z2_4,z3_4,a0,a1,a2,a3,b0,b1,b2,b3 Initial tuple:

2. Selecting mask a2 (appears as a tuple element)

3. Selecting mask z1_4 (occurrence in third line) (After simplification)

No mask can be selected and the secret a is remaining: a possible leakage is detected. Alternatively, if we forbid to select a mask which appears as an element of the tuple, this scenario becomes: 2'. Selecting mask z1_4 (occurrence in third line) (After simplification)

No more secret in tuple: Threshold Probing Secure!

The second scenario illustrates the fact that selecting a mask appearing as an element of the tuple is still necessary in some cases: Masks: z0_4,z1_4,z2_4,z3_4,a0,a1,a2,a3,b0,b1,b2,b3 Initial tuple:

1. Selecting mask b2 (single occurrence)

3. Selecting mask z1_4 (third line) (After simplification)

If z3_4 cannot be selected, the secret a is remaining! Otherwise: 5. Selecting z3_4 (After simplification):

(b2.a3) ⊕ z1_4 ⊕ z3_4, z3_4, z1_4, ((a2 ⊕ a).b3) ⊕ z3_4 6. Selecting mask a2 (single occurrence) (b2.a3) ⊕ z1_4 ⊕ z3_4, z3_4, z1_4, (a2.b3) ⊕ z3_4

No more secret, Threshold Probing Secure!