
HAL Id: hal-04192515
https://hal.science/hal-04192515

Submitted on 8 Sep 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Machine Learning Based Efficient QT-MTT Partitioning
Scheme for VVC Intra Encoders

Alexandre Tissier, Wassim Hamidouche, Souhaiel Belhadj Dit Mdalsi, Jarno
Vanne, Franck Galpin, Daniel Menard

To cite this version:
Alexandre Tissier, Wassim Hamidouche, Souhaiel Belhadj Dit Mdalsi, Jarno Vanne, Franck Galpin,
et al.. Machine Learning Based Efficient QT-MTT Partitioning Scheme for VVC Intra Encoders.
IEEE Transactions on Circuits and Systems for Video Technology, 2023, 33 (8), pp.4279-4293.
�10.1109/TCSVT.2022.3232385�. �hal-04192515�

https://hal.science/hal-04192515
https://hal.archives-ouvertes.fr

Accepted manuscript

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 1

Machine Learning based Efficient QT-MTT
Partitioning Scheme for VVC Intra Encoders
Alexandre Tissier, Wassim Hamidouche, Souhaiel Belhadj Dit Mdalsi, Jarno Vanne, Franck Galpin

and Daniel Menard

Abstract—The next-generation Versatile Video Coding (VVC)
standard introduces a new Multi-Type Tree (MTT) block parti-
tioning structure that supports Binary-Tree (BT) and Ternary-
Tree (TT) splits in both vertical and horizontal directions.
This new approach leads to five possible splits at each block
depth. It thereby improves the coding efficiency of VVC over
that of the preceding High Efficiency Video Coding (HEVC)
standard, which only supports Quad-Tree (QT) partitioning with
a single split per block depth. However, MTT also has brought a
considerable impact on encoder computational complexity. This
paper proposes a two-stage learning-based technique to tackle
the complexity overhead of MTT in VVC intra encoders. In our
scheme, the input block is first processed by a Convolutional
Neural Network (CNN) to predict its spatial features through
a vector of probabilities describing the partition at each 4×4
edge. Subsequently, a Decision Tree (DT) model leverages this
vector of spatial features to predict the most likely splits at each
block. Finally, based on this prediction, only the N most likely
splits are processed by the Rate-Distortion (RD) process of the
encoder. In order to train our CNN and DT models on a wide
range of image contents, we also propose a public VVC frame
partitioning dataset based on existing image dataset encoded with
the VVC reference software encoder. Our solution relying on the
top-3 configuration reaches 47.4% complexity reduction for a
negligible bitrate increase of 0.79%. A top-2 configuration enables
a higher complexity reduction of 70.4% for 2.49% bitrate loss.
These results emphasize a better trade-off between VTM intra-
coding efficiency and complexity reduction compared to the state-
of-the-art solutions. The source code of the proposed method and
the training dataset are made publicly available at GitHub.

Index Terms—VVC, MTT, complexity reduction, CNN, DT.

I. INTRODUCTION

T he emerging video formats such as 4K/8K and 360-
degree videos alongside the explosion of IP video traf-

fic [1] pushed organizations such as ISO/IEC, ITU-T Joint
Video Experts Team (JVET) and Alliance for Open Media
(AOM) to propose new video compression standards. AOM
developed the AV1 codec released in 2018 as a successor to
VP9 and JVET developed Versatile Video Coding (VVC) ITU-
T H.266 | MPEG-I - Part 3 (ISO/IEC 23090-3) [2, 3] in July
2020 as a successor to High Efficiency Video Coding (HEVC).

These two standards share the same hybrid video coding
structure. Therefore, during standardization, different coding
tools were integrated to improve the intra and inter predictions,
the in-loop filtering, or to enhance the partitioning of the

A. Tissier, W. Hamidouche, S. Belhadj Dit Mdalsi and D. Menard are with
Univ. Rennes, INSA Rennes, CNRS, IETR - UMR 6164, 20 Avenue des Buttes
de Coesmes, 35708 Rennes, France. (emails: whamidou@insa-rennes.fr and
dmenard@insa-rennes.fr).

J. Vanne is with with Tampere University, Korkeakoulunkatu 10, Tampere,
33720, Finland (email: jarno.vanne@tuni.fi).

F. Galpin is with with InterDigital, Cesson-Sévigné, 35510, France.

block of pixels. The selection of specific coding tools leads to
different coding efficiencies and computational costs. Several
comparison studies were conducted between VVC and AV1 [4]
based on subjective and objective quality metrics including
Peak Signal-to-Noise Ratio (PSNR) and Video Multi-method
Assessment Fusion (VMAF). This latter is a Machine Learning
(ML)-based quality metric leveraging detail loss metric, visual
information fidelity measure, and averaged temporal frame
difference. Both works conclude that VVC outperforms AV1 in
terms of both objective and subjective quality scores. However,
the computational cost of AV1 fluctuates around the VVC
complexity depending on the considered coding configuration.

The VVC reference software, named VVC Test Model
(VTM), implements all normative VVC coding tools allowing
rate-distortion-complexity evaluation and conformance testing.
As the successor to HEVC, the VTM implementation brings
25.32% and 36.95% bitrate reductions at the expense of
a significant increase in encoder computational complexity
estimated to 2630% and 859% compared to the HEVC test
Model (HM) 16.22 [5] in All Intra (AI) and Random Access
(RA) configurations, respectively.

Compared to HEVC, which is based on a Quad-Tree (QT)
block partitioning, VVC integrates a nested Multi-Type Tree
(MTT) partitioning scheme allowing in addition to QT, hor-
izontal and vertical Binary-Tree (BT) and Ternary-Tree (TT)
splits [6]. This new partitioning scheme is the most efficient
tool integrated in VVC [7] with 8.5% coding efficiency gain
reached in RA configuration compared to HEVC. Neverthe-
less, this coding efficiency improvement is brought at the
expense of a significant complexity increase. At each level
of the hierarchical partitioning process, up to five splits are
tested by the encoder, compared to the one split (i.e., QT
split) for HEVC. Authors in [8] have shown that disabling
BT and TT splits, decreases the encoding time by 91.7%
in AI. Therefore, the partitioning process offers the highest
opportunity in terms of complexity reduction compared to
other coding tools. In [9], up to 97.5% complexity reduction
was reported when only the optimal split was tested by
the intra encoder at each level of the partitioning process,
compared to an exhaustive search. To reach a real-time VVC
encoding, the complexity of the QT-MTT partitioning process
must be significantly reduced. This work aims to maximize
the complexity reduction while minimizing the Bjøntegaard
Delta Bit Rate (BD-BR) loss. A large body of literature has
investigated the problem of block partitioning for HEVC [10–
14] and VP9 [15]. For instance, Xu et al. [16] proposed a
Convolutional Neural Network (CNN) to predict a hierarchical
partition map to avoid exploring improbable block depths.

https://github.com/Souhailkudo/VTM_intra_CNN_LGBM_patch

Accepted manuscript

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 2

However, those approaches cannot be directly applied to VVC
as the new partitioning scheme is significantly different and
more complex with the multiplication of available partitions.
Therefore, predicting the optimal block depth becomes more
challenging due to the high number of divisions leading to
the same depth. Recently, a number of complexity reduction
methods tailored for VVC have emerged through fast en-
coder strategies [17], probabilistic approach [18] or machine
learning-based approach [19]. These techniques can leverage
adaptive resolution as pre-processing [20], or the prediction of
the intra perdition mode [21] and the partitioning mode [19].
Deep learning techniques [22] provided a breakthrough in
video coding, especially in the complexity reduction domain.
Li et al. [22] proposed a CNN that predicts the most probable
split through a multi-classification at each block depth. One
of the drawbacks of this technique is the time overhead
related to the CNN inference at each depth. Indeed, the
CNNs computational complexity must be carefully controlled
to not annihilate the gain obtained by the complexity reduction
technique. Authors in [23] have recently proposed a CNN
that processes a block to predict its partition through a vector
of probabilities. The average probability over the split edges
is then compared to a fixed threshold to decide whether to
perform the split or not at each depth. The main drawbacks
of this solution are, first, its local decision, which does not
leverage all probabilities of the block edges, and second,
comparing the average probability of the split edges to a fixed
threshold.

In this paper, we propose an efficient complexity reduction
technique for the QT-MTT partitioning. Our approach com-
bines a moderate complexity CNN that extracts spatial features
of the block of pixels with multi-class classifiers to derive the
best partitions for testing in the Rate-Distortion Optimization
(RDO) process. A single CNN is used to process a 64 × 64
block and predicts the probability of each boundary of all the
4×4 pixel blocks within the input 64×64 block. At each level
of the hierarchical partitioning process, a multi-class classifier
is used to predict from the set of boundary probabilities the
N -most likely splits to explore by the encoder. One classifier
is trained for each size of the 16 different sub-blocks. At each
depth, the number of explored partitions N can be adjusted
from one to the total number of possible splits. Controlling
the parameter N allows exploring many trade-offs between
complexity reduction and quality loss. The proposed solution
with top-N = 3 configuration reaches 47.4% complexity
reduction for a negligible BD-BR loss of 0.79%, while the
top-N = 2 configuration enables in average a complexity
reduction of 70.4% for 2.49% BD-BR loss.

The rest of this paper is organized as follows. Section II
introduces the partitioning background and the state-of-the-
art of complexity reduction techniques. Section III describes
the proposed two-stage method that combines two machine
learning algorithms. The used dataset to train our models is
detailed in Section IV, followed by the experimental setup
and the training process for both CNN and Decision Tree
(DT) models, presented in Section V. Section VI presents
the performance of the two machine learning models and a
comparison of our method against state-of-the-art techniques

Split QT

Split BT-VSplit BT-H

Split TT-V Split TT-H

No Split

(b)(a)

Fig. 1. CTU partitioning in VVC. (a) VVC split types. (b) Example of a
CTU partition in MTT.

in terms of complexity reduction and BD-BR loss. The com-
plexity of the ML techniques are assessed and analysed in
Section VII. Finally, Section VIII concludes the paper.

II. BACKGROUND AND RELATED WORK

In this section, we first describe the frame partitioning in the
VVC standard, and then we give a brief review of complexity
reduction techniques for both HEVC and VVC encoders.

A. Frame partitioning in VVC

The new block partitioning scheme proposed in VVC is the
most efficient coding tool integrated into the standard [24]. The
partitioning process starts from a root block named Coding
Tree Unit (CTU), i.e., a block of 128×128 pixels in the VTM
AI configuration. The blocks resulting from the partitioning
process are named Coding Units (CUs) and may have a size
between 64× 64 and 4× 4. Fig. 1(a) presents the split modes
supported by VVC. As HEVC, QT divides a CU into four
equal sub-CUs. Moreover, VVC allows a rectangular shape
for CU with its novel splits BT and TT. The BT divides a
CU into two sub-CUs while the TT divides a CU into three
sub-CUs with the ratio 1:2:1. Both BT and TT can split a
CU horizontally or vertically. Fig. 1(b) presents the splits of a
CTU processed by the VTM RDO. The RDO process relies on
an exhaustive search that calculates the Rate-Distortion (RD)-
cost for each CU, then selects the CTU partition that results in
the lowest RD-cost. In AI configuration, the VTM forces the
first split of the CTU to be a QT. Additional constraints are
also applied to CUs, such as QT split is not allowed after a
BT or a TT split. Excluding the VTM restrictions, the encoder
performs all possible splits on each CU to select the optimal
partition with the lowest RD-cost.

B. Existing techniques for encoder complexity reduction

A brief review of complexity reduction methods proposed
to speed up the reference software encoders of the HEVC
and VVC standards is provided in this section. Authors in [9]
have studied the complexity reduction opportunities in the
VTM3.0 under the AI configuration. Several tools have been
identified to reduce the encoding complexity, such as the

Accepted manuscript

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 3

partitioning process, the intra mode prediction, and multiple
transform selection. This study showed that the partitioning
process has the highest impact on encoder computational
complexity with 97.5% complexity reduction, followed by the
intra mode prediction with 65.2% and the multiple transform
selection with 55.2%. This study motivated the work of this
paper that tackles the complexity reduction of the partitioning
process. Meanwhile, several works have studied the com-
plexity reduction of the intra mode prediction [25] and the
multiple transform selection [26]. To reduce the complexity
of the partitioning process, state-of-the-art solutions rely on
different approaches to compute features relevant to this
problem, including handcrafted and learning-based techniques.
The computed features are then fed to a classifier such as DT,
Support Vector Machine (SVM), or dense layers. It should
be noted that the performance of the following techniques is
provided under the AI coding configuration unless otherwise
specified.

1) HEVC complexity reduction techniques: The complexity
reduction of the HEVC recursive block partitioning has been
widely investigated in the literature. Min et al. [27] defined a
complexity score metric that predicts the spacial complexity of
a block. The complexity score is computed as the l1 norm of
the differences between the luminance pixel value at a position
and the mean luminance value. This complexity score is com-
puted for the two sub-blocks obtained by dividing the block
into horizontal, vertical, or two diagonals. Then, the difference
between the two complexity values of the resulting sub-blocks
is computed. This value is then compared to a predefined
threshold to decide whether the block should be split, not split,
or undetermined. This solution reaches 52% of complexity
reduction at the expense of a slight BD-BR increase of 0.8%.
Correa et al. [10] used three sets of a decision tree trained
with features such as RD-cost, gradient, the sum of pixels, or
variance of pixels. These decision trees predict whether the
CU, Prediction Unit (PU), or Transform Unit (TU) must be
split or not. By predicting these partitioning specific to HEVC,
this solution achieves a 65% of computational complexity
reduction for 1.36% BD-BR loss. CNNs have already been
exploited for HEVC encoding complexity reduction [11, 16].
Xu et al. [16] first used a CNN to predict a hierarchical
CU partition map which provides an efficient representation
of the CU partitioning in intra mode. A Long-Short Term
Memory (LSTM) network was then integrated to predict the
partition in inter prediction mode. In AI configuration, this
solution reduces the complexity by 62% for 2.25% BD-
BR increase. Under the low delay P coding configuration,
it reaches 54.2% of computational complexity reduction for
1.5% BD-BR increase. Li et al. [11] claimed a real-time CTU
partition prediction based on their previous proposed complex-
ity reduction method presented in [16]. They simplified the
CNN by pruning the weights at different levels to perform
multiple approximations. These different configurations allow
complexity control at CTU level by selecting the proper CNN.
An estimation of the CNN run time is performed at the frame
level to enhance the stability of complexity control. The CNN
run time speed up is improved by 17 to 20 times with a
complexity control error of 2%.

2) Joint Exploration Model (JEM) complexity reduction
techniques: The JEM software was developed in early 2014
to study the potential coding gain behind developing a new
standard with coding performance beyond HEVC. The JEM
software is based on HM with new coding tools such as
Multiple Transform Selection (MTS), and BT proposed to
enhance the partitioning efficiency at the cost of higher com-
putational complexity. Wang et al. [18] proposed a novel RD-
cost estimation scheme relying on the motion divergence field.
Based on the estimated RD-cost, a probabilistic framework is
developed to skip unnecessary splits. The proposed algorithm
reduces the complexity by 54.7% for a 1.15% BD-BR increase
in RA configuration. The same authors proposed in [28]
the choice of a dynamic parameter at CTU level based on
neighboring partitions as the first step. In the second step,
QT and BT decision tree classifiers predict the probability of
the different splits to derive the proper partition. These two
techniques enable 67.6% complexity reduction for a 1.34%
BD-BR increase in AI configuration. Jin et al. [29] designed
a multi-classification CNN that predicts the partition depth of
a 32×32 CU. This method enables skipping unnecessary splits
for the partition depth predicted outside the candidate depth
range. As a result, the encoder computational complexity is
reduced by 42.8% for a BD-BR increase of 0.65%.

3) VVC complexity reduction techniques: Although VVC
was recently standardized, several techniques have already
been proposed to tackle the problem of encoder complexity.
Indeed, the extension of the partitioning process with QT,
BT, and TT splits considerably increases the computational
encoding complexity. Predicting a split at each CU becomes a
real challenge due to the number of partition possibilities that
have increased significantly compared to HEVC. This situation
raises the need for a lightweight partitioning process that
decreases the encoder complexity while preserving its coding
efficiency for live applications. Lei et al. [34] proposed a
two-step look-ahead prediction method for the intra prediction
mode and the partitioning process. This solution computes the
rate-distortion cost of only 7 intra modes out of 67, and if a
CU has multiple partitions, the RD-cost of partitioned CU is
computed from the parent CU. Moreover, this solution approx-
imates the RD-costs of different partition directions in order to
skip unnecessary directions. Intra mode technique combined
with partitioning prediction technique allows a computational
complexity reduction of 45.8% for a 1.03% BD-BR increase.
Amestoy et al. [19] proposed a cascade framework through
random forest classifiers to determine the probability of each
split. To improve the accuracy of their classifiers, the impact
of each feature is evaluated, such as Quantization Parameter
(QP), variance, and mean of the block gradients. Furthermore,
the thresholds applied to the different classifiers are optimized.
A risk interval was proposed to limit the RD-cost increase
by computing both splits of the classifier output when the
probability falls in this risk interval. In RA configuration, this
solution enables from 30.1% to 61.5% of complexity reduction
for respectively 0.61% to 2.22% BD-BR increase depending
on the risk interval configuration. Another cascade framework
was proposed by Yang et al. [30] with one binary classifier for
each split mode. The authors used three categories of features,

Accepted manuscript

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 4

TABLE I
MAIN FEATURES OF THE EXISTING STATE-OF-THE-ART COMPLEXITY REDUCTION TECHNIQUES IN ALL INTRA CODING CONFIGURATION. CR:

COMPLEXITY REDUCTION

Solution Handcrafted Decision Tree Neural network Software CR (%)↑ BD-BR (%)↓ CR/BD-BR ratio↑

Biao et al. [27] X 7 7 HM 10.0 52.0% 0.80% 65.00
Xu et al. [16] 7 7 X HM 16.5 62.0% 2.25% 27.55
Wang et al. [28] X X 7 HM 13.0 QTBT 67.6% 1.34% 50.44

Jin et al. [29] 7 7 X JEM 3.1 42.8% 0.65% 65.84

Yang et al. [30] X X 7 VTM 2.0 52.0% 1.59% 32.70
Chen et al. [31] X X 7 VTM 4.0 51.2% 1.62% 31.60
Li et al. [22] 7 7 X VTM 7.0 45.8% 1.32% 34.69
Zhao et al. [32] X 7 X VTM 7.0 39.4% 0.87% 45.28
Saldanha et al. [33] X X 7 VTM 10.0 48.8% 1.01% 48.31
Tissier et al. [23] 7 7 X VTM 10.2 54.0% 1.40% 38.57
Ours (Top-3) 7 X X VTM 10.2 47.4% 0.79% 60.00

including global texture information, local texture information,
and context information, as input for their classifiers. A fast
intra mode decision using a one-dimensional gradient descent
search is combined with the CTU structure decision. This fast
partitioning solution achieves 52% of complexity reduction for
a 1.59% BD-BR increase. The intra mode decision technique
enhances the complexity reduction to 62.5% for 1.93% BD-BR
loss. Chen et al. [31] also used a supervised learning method.
Instead of a cascade framework, they designed six SVM
models depending on the CU sizes, which are trained to skip
vertical and horizontal splits. SVM features are derived from
entropy, texture contrast, and Haar wavelet of the current CU.
This solution reaches a 51.2% of computational complexity
reduction for a 1.62% BD-BR increase. Li et al. [22] proposed
a deep learning approach to predict the CTU partition with
a binary or multi-classification at each CU depth. To train
the CNN, they designed an adaptive loss function that defines
penalty weights based on a split proportion that penalizes the
high difference between the RD-cost for the split predicted
and the minimum RD-cost of the parent CU. Based on the
prediction accuracy of the CU size, an adaptive threshold is
compared to the output of the CNN. This technique enables
the reduction of the complexity by 45.8% for a 1.32% BD-
BR increase. Another CNN model is proposed by Zhao et al.
in [32]. First, the standard deviation of CU pixels is compared
to an adaptive threshold based on QP and CU depth in order
to classify a block into complex or homogeneous CU. The
CUs defined as homogeneous are no more split. Second, for
complex CU, a CNN is trained to predict whether or not the
current CU must be early terminated. This solution achieves a
39.4% computational complexity reduction for a 0.87% BD-
BR increase. Saldanha et al. [33] presented a configurable
partitioning decision using a LightGBM (LGBM) model. Five
LGBM binary classifiers are trained offline, exploiting hand-
crafted features such as QP, width, or variance. The classifiers
predict a split probability which is compared to a threshold to
skip the split. This technique obtains several trade-offs with
a complexity reduction from 35.2% to 61.3% and a BD-BR
increase from 0.46% to 2.43%.

Table I summarizes the features and performance of the
VVC complexity reduction techniques mentioned above. Com-
pared to the state-of-the-art solutions, the contributions of
our paper are summarized as follows: 1) Training decision

tree classifiers by CU size instead of performing a simple
thresholding decision. 2) Dataset balancing and enhancing
with integrating more screen content video sequences. 3)
Assess the complexity of the CNN and DT models on different
CPU and GPU platforms as a first step toward integrating our
model in professional VVC encoders. The proposed solution
outperforms state-of-the-art methods enabling the highest ratio
between complexity reduction and BD-BR loss.

III. PROPOSED TWO-STAGE VVC PARTITION PREDICTION
SOLUTION

As described in Section I, VVC introduces BT and TT splits
at the cost of a high increase in computational complexity.
In addition, this recursive partitioning process computes the
rate-distortion cost for a set of coding tools for each CU.
The proposed partitioning prediction technique is composed
of a CNN for spatial features extraction followed by a set of
multi-class classifiers based on DTs to predict the appropriate
partitioning decision at different depths of the partitioning tree.
Fig. 2 illustrates the flow diagram of the proposed partitioning
prediction solution.

A. Overall presentation

Our method is a top-down solution that early terminates
unlikely splits, i.e., it follows the hierarchical process of the
VVC encoder and skips split modes that have a low probability
of belonging to the optimal partitioning. Our complexity
reduction method comprises two components: spatial features
extraction and DT classifiers. The features extraction block
consists of a CNN that processes an input luminance block
B to predict a vector of probabilities p̃ of splits at the 4× 4
block edges:

p̃ = fθ(B). (1)

where fθ is a parametric function of the CNN with trainable
parameters θ and B is the input block of size 68× 68.

The block B consists of the current CU of size 64 × 64
padded with four rows and four columns on the top and left
of the block resulting in a block size of 68 × 68. The left
and top neighbor pixels are used as reference samples in the
intra prediction through the Multiple Reference Line (MRL)
intra prediction [35]. Indeed, their pixels are used to derive the
intra mode of the current block. Therefore, it is necessary to

Accepted manuscript

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 5

64
 +

 4
64 + 4

Coding unit 2 to 6 split
probabilities

BTH

TTH

.

.

.

p̃
Np c ̃

c̃
c̃
c̃
c̃
c̃

c̃

Split Decision

N
p̃
p̃
p̃
p̃

p̃

1

2

3

4

based on LightGBM
the encoder
 tested by
Final splits Multi-class Classifiers

Neural Network
with Convolutional
Feature extraction

Encoder constraints

Fig. 2. Workflow diagram of the proposed block partitioning scheme for glsvvc in AI coding configuration. A CNN first processes the input luminance block
to predict p̃, a vector of Np probabilities describing all edges at each 4×4 sub-block. The vector p̃ is then processed by a decision tree LightGBM to predict
the probabilities of the six partitioning modes through the vector c̃. The top-N splits with highest probabilities are tested by the RD process of the encoder
to select the optimal split in terms of RD-cost.

Fig. 3. Correspondence between the CNN output vector and a 64× 64 CU
partition.

include these samples in the features extraction stage, i.e., the
CNN. The CNN predicts for each NB ×NB CU a vector of
Np probabilities of a split at each 4×4 edge of the block. The
length Np of the predicted probabilities vector p̃ is computed
as follows:

Np =
NB
2

(
NB
4
− 1

)
. (2)

In the case of CU size of 64× 64, Np is the length of the
vector p̃ which is equal to 480. Fig. 3 presents the connections
between the probability vector components and the 480 4× 4
edges of an input CU. As this figure highlights, the first p1

and the third p3 components of the vector correspond to the
horizontal bottom edges of the first and second 4× 4 blocks,
respectively. For an accurate partitioning prediction, these two
components must have a value (probability) close to 1 as a TT
split is performed to split the sub-block. The last component
of the vector pNp has a value (probability) close to 0 since
no split is performed at this final @vertical edge of the CU
as illustrated in Fig. 3.

The classifiers are then fed with the probabilities vector p̃
derived from the CNN to predict the split decision to perform
at each tree depth

c̃ = gωi
(p̃), ∀i ∈ {1, . . . ,M}, (3)

where gωi
is a parametric function of classifier i, ωi is its

trainable parameters, and M is the number of considered
classifiers.

A separate multi-class classifier based on DT model is
applied for each CU size. The classifier takes as an input the

probability vector p̃ and predicts a vector c̃ of six probabilities
that correspond to the six possible split modes performed by
the VVC encoder at each tree depth. This approach results in
M separate DT models that are trained separately to enhance
the prediction performance and enable better model conver-
gence the with a reduced number of trainable parameters. Once
the split probabilities are derived for the CU, a selection of the
highest probabilities is made based on the selected configura-
tion. The configuration specifies the N value, which defines
the number of tested splits by the encoder. Thus, the encoder
tests only the N first splits corresponding to the highest
probabilities (Top-N) predicted by the DT model. The encoder
then skips the remaining splits with lower probabilities than
the top-N candidates to reduce the encoding computational
complexity. The proposed spatial features extraction CNN
model and the DT classifiers are described in more detail in
the following two sections.

B. Spatial features extraction CNN model

Fig. 4 presents the adopted CNN architecture, which is in-
spired by the ResNet network [36]. The orange layers represent
convolution layers with 3 × 3 kernel (Conv 3 × 3), whereas
the yellow layers denote convolutions with 1×1 kernel (Conv
1×1) that transform the input feature map matrix to match the
dimension of the next layer which are then summed up (green
plus). The red layers correspond to the max pooling (Max
Pool) that subsample the input features map with a window
of 2× 2 by selecting the maximum over four values. The last
layer in purple is a fully connected layer (Dense) that predicts
the 480 components vector. The sigmoid activation function
is used to predict the output values within the interval [0, 1].
All these layers result in a network with 226,088 trainable
parameters. The input consists of 68 × 68 luminance pixels
of the CU currently processed plus the QP value that highly
influences the final partition. The QP is provided as an external
input to the last fully connected layer. The QP parameter is
crucial for saving the memory bandwidth as it leads to only
one model shared for all QP values instead of adopting one
model by QP value. Therefore, our model can be efficiently
used with a rate control mechanism that adapts the QP value to
the target bandwidth. The output is a 480 components vector
representing the fine-grain partitions (4 × 4) of the 64 × 64

Accepted manuscript

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 6

16

68

Conv
3x3

16
34

M ax
Pool

2424
34

2424
34

24 1
1
3232 1

1
3232 1

1 32 4 48 48 4 48 48 4 48 2 480 1
Dense

+ + + + + +

24
34

Conv
1x1

32 1
1

48 4

QP

68

68

Fig. 4. The CNN architecture with convolution layers in orange and yellow, max-pooling layers in red and fully connected layer in purple.

CU. This solution has the advantage of predicting the whole
CU spatial features in one shot, which is very convenient for
reducing the complexity overhead and latency introduced by
this step. Moreover, the architecture of the network is less deep
than state of the art CNN architectures [37, 38] and thus will
require less time to predict the output vector.

C. Multi-class classifiers based on DT models

The decision approach adopted in our previous work [23]
relied only on the probability at the spatial location of a
specific split. The pixel level characteristics of the input
CU are well exploited by the CNN and are represented in
the output vector p̃. Nevertheless, the partitioning decision
considered in [23] uses only information in the split edges
(local), while the DT may benefit from information of all
edges in the CU (the whole vector of probabilities, i.e., global).
The maximum convolution kernel size may limit the CNN
extracting these global features in a CU.

The vector of probabilities p can be considered as spatial
features relevant to the block partitioning process. Therefore,
the CNN inference is carried out once for each CU of size
64 × 64 to predict the corresponding probability vector p,
then a specific DT model processes this vector at each level
of the partitioning tree to derive a set of N more likely splits
to explore by the encoder. To predict split probabilities at
various CU depths, we consider multiple models covering all
possible sizes of the rectangular sub-blocks from 64 × 64
to 4 × 4 excluded. Table II illustrates that the sixteen CU
sizes can be further split into two to six different partition
modes, including the no split mode. The DT model is fed
with the probability vector p̃ and the QP value. The probability
vector is then cropped into a sub-vector that includes only the
probabilities of the sub-block edges. The DT model performs
a multi-class classification by predicting a probability vector
c̃ of six components corresponding to the probabilities of the
six possible splits. Therefore, the probabilities of non-possible
splits are set to zero during the training process.

Several machine learning models were tested to solve
this multi-class classification problem including DT, random
forest, SVM with different kernels, and LGBM model [39].
However, this latter was considered based on its excellent
classification performance and low complexity at both training
and inference stages.

TABLE II
POSSIBLE SPLITS ACCORDING TO THE CU SIZE

Height
Width 64 32 16 8 4

64 QT -
32

-

All BT, TT BT
TTH

BTH
TTH16 BT, TT All

8 BT, TTV BT BTH
4 BTV, TTV BTV -

IV. PROPOSED DATASET FOR TRAINING

In this section, we present the dataset in its soft and hard
representations and its balancing process.

A. Dataset for the learning process

The lack of a public dataset providing encoded blocks
with the VTM, and their corresponding partitions drives us
to construct our training dataset to optimize the proposed
models’ weights. Our work focuses on AI configuration,
thus the temporal relationship between adjacent frames is not
considered. Five public image datasets were selected including
Div2k [40], 4K images [41], jpeg-ai [42], HDR Google [43]
and flickr2k [44]. The resulting dataset presents a high di-
versity of still image contents. However, since these datasets

TABLE III
BREAKDOWN OF OUR DATASET BY RESOLUTION.

Resolution 240p 480p 720p 1080p 4K 8K Total

Nb images 500 500 579 2557 654 418 5208

Accepted manuscript

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 7

1

0
1

0

.

.

.

(a) (b)

1

0
1

0

.

.

.

1 QT split
0 BTH split
0 BTV split
0 TTH split
0 TTV split
0 No split

(c)
p

c

K vectors

Fig. 5. Representation of our dataset. (a) is a luminance 68×68 input block
B. (b) is the optimal partitioning of the block represented by a tree and
transformed to the soft representation, i.e. a 480 elements vector p. (c) is the
hard representation, K vectors c of 6 probabilities, that define the optimal
split for each of the K blocks in the tree. K is the decision tree depth.

include more images in high-resolution (Full HD and 4K
resolutions), a set of high-resolution images are downscaled
to lower resolutions with a bilinear filter and added to the
dataset. The resulting dataset includes around 5208 images at
different resolutions as detailed in Table III, which gives the
number of pictures per resolution. Images of similar resolution
are then concatenated to build a pseudo-video sequence. This
latter is encoded with the VTM encoder in AI configuration
at different QP values, QPs ∈ {22, 27, 32, 37}.

It should be noted that the VTM encoder includes multiple
speed-up techniques, reducing the complexity brought by the
VVC partitioning process [17]. However, to achieve a high
coding efficiency by testing more partitioning configurations,
these speed-up techniques have been disabled to build our
dataset. Compared to the VTM anchor, disabling these speed-
up techniques leads to more accurate partitioning configura-
tions, enhancing the coding efficiency. Nevertheless, a higher
encoding time is needed to create the ground truth, but only
one encoding pass is required, so increasing the encoding time
is not critical at this stage. The VTM in AI configuration
relies on the dual-tree tool that performs separate partitioning
for luminance and chrominance components. The partitioning
information of both components is recorded, while only the
prediction of luminance partitioning is considered in this paper
since it takes most of the encoding complexity with more than
85% of the total encoding time [8].

The optimal partitions computed by the VTM encoder is
first saved as a tree. Therefore, to integrate the dataset into
our proposed method, two data representations are defined as
soft and hard representations, as illustrated in Fig. 5. Fig. 5-(a)
shows a block B processed by the VTM encoder which is a
64×64 luminance block plus 4 rows and columns on top and
left of the block. These extra pixels are required for the MRL
intra prediction tool. Fig. 5-(b) illustrates the partition tree of
the this block which is converted to a 480 components vector.
This soft representation of the tree depicts the 64× 64 block
luminance partition in 4× 4 blocks in a single vector p.

The hard representation of our dataset is a succession of K
vectors that defines all splits at each depth. Fig. 5-(c) presents
one of those vector c which defines the optimal split for a
specific CU size. The vector size is set to six as the maximum
number of splits defined by VVC. For instance, the 64 × 64
CU size has only two possible splits with QT and no split, and
thus the four remaining components of the vector are set to

Class 0 (0)

Class 1 (1-63)

Class 2 (64-100)

Class 3 (101-150)

Class 4 (151-200)

Class 5 (201-240)

Class 6 (241-280)

Class 7 (281-480)

Fig. 6. Breakdown of our dataset by partition classes. (a) Unbalanced dataset.
(b) Balanced dataset.

zero. Instead, for a CU size of 32×32, all splits are available,
so the vector size is 6 with QT, the two BTs, the two TTs and
no split.

B. Dataset processing

Our dataset includes more than 26 million instances of
64 × 64 block partition, excluding any Common Test Con-
ditions (CTC) sequence to ensure a fair comparison of our
method against state-of-the-art techniques. To analyze the
dataset disparity, we first randomly select 2 million instances.
Furthermore, to address the data heterogeneity issue, several
classes are defined with eight levels of depth partition, from
no partition to deep partition. Fig. 6 gives the number of
instances in the dataset at each of these eight depth levels,
which are defined based on the number of edges activated
in the 64× 64 CUs. Fig. 6-(a) represents the class repetitions
through 2 million instances before the dataset balancing. It can
be noticed that class 0 without any split contains more than
a third of the 2 million 64 × 64 CUs instances. In contrast,
the last two classes, which illustrate deep partition, are under-
represented and must be increased.

Fig. 6-(b) illustrates the depth distribution of block par-
titioning over the eight classes after the dataset balancing.
1,200,000 instances (64 × 64 block) were selected at each
QP value with a homogeneous representation over the eight
classes. The two last classes are slightly under-represented as
highly deep partitions are derived by the encoder only for
extremely complex blocks encoded at low QP values.

The hard representation is composed of sub-datasets sepa-
rated by the different CU sizes. These sub-datasets are also
balanced to enhance their representation. Indeed, we individ-
ually balanced each sub-dataset over the available splits and
the QPs. For instance, the 4× 16 CU size dataset is balanced
between the proportion of BTH, TTH and no split but also
among the 4 QPs.

V. TRAINING PROCESS AND EXPERIMENTAL SETUP

A. CNN model

The CNN is trained from scratch with the proposed dataset
described in Section IV, relying on the Keras framework [45]
running on top of the Tensorflow module [46]. The weights θ
of the CNN are updated at each batch iteration with the ADAM
stochastic gradient descent optimizer [47]. The loss function
is defined to optimize those weights by minimizing the mean

Accepted manuscript

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 8

squared error between the predicted probability vector p̃ and
the corresponding ground truth vector p as follows:

Lcnn = ||p− p̃||22. (4)

The batch size is set to 128 instances (64× 64 CUs) and the
learning rate is equal to 10−3. The training is performed on a
hundred epochs with a random shuffle of the dataset at each
epoch. The CNN training was carried out on a RTX 2080 Ti
Graphics Processing Unit (GPU).

B. DT LGBM model

The DT models are implemented under the LGBM frame-
work [39] version 2.3.1. This latter is a gradient boosting
framework based on a decision tree developed by Microsoft.
LGBM has many advantages, such as low memory usage,
the capacity to handle large-scale data, and low inference
computational time. This last advantage is essential for our
problem as the inference is carried-out at each CU level.

LGBM is a DT method that sums the predictions of all the
trees to reach high accuracy. The trees are optimized in a stage-
wise way by adding or updating a new tree based on the error
of the whole ensemble learned so far. For DT classification,
the used cross-entropy loss function is defined as follows:

Ldt = −
6∑
i=1

ci log c̃i, (5)

where ci is the vector of ground truth split probabilities and
c̃i is the vector of split probabilities predicted by the model.

C. Evaluation procedure and implementation details

All experiments are conducted with the VVC Test Model
(VTM) version 10.2 in AI coding configuration. We consider
test video sequences defined in the VVC Common Test Condi-
tions (CTC) [48]. The CTC video sequences are separated into
seven classes as follows: A1 (3840×2160), A2 (3840×2160),
B (1920×1080), C (832×480), D (416×240), E (1280×720),
and F (832×480 to 1920×1080). These video sequences are
encoded at four QP values: 22, 27, 32, and 37.

The proposed solution is assessed in terms of coding effi-
ciency and computational complexity. The coding efficiency
is measured with the BD-BR metric [49] that computes the
bitrate loss over four QPs in percentage with respect to the
anchor (i.e., VTM10.2) for the same PSNR objective quality.
The BD-BR is calculated across the three components, Y, U,
and V. The computational complexity reduction compared to
the anchor is assessed by computing the ∆ Encoding Time
(∆ET) as follows:

∆ET =
1

4

∑
QPi∈{22,27,32,37}

TR(QPi)− TC(QPi)

TR(QPi)
, (6)

where TR is the reference encoding time of the VTM anchor,
and TC is the encoding time of the VTM with the proposed
complexity reduction method.

Our complexity reduction technique was integrated into the
VTM10.2 encoder, which is developed in C++ programming
language. The CNN is built and trained with Python under

CNN model

0.865

A
ccuracy

0.860

0.855

0.850

0.845

Training set
Validation set

Fig. 7. Decreasing loss (in X) and increasing accuracy (in Y) as a function
of epoch for the training and validation set.

the Keras framework, and then the model is converted to C++
code with the frugally deep framework [50]. The DT models
are also trained in Python, and then converted to C++ with
the LGBM framework [39].

All encoding operations were carried out sequentially on an
Intel Xeon E5-2603 v4 processor running at 1.70 GHz under
Ubuntu 16.04.5 operating system (OS).

VI. EXPERIMENTAL RESULTS

In this section, the performance of the proposed method
is assessed and analysed. The CNN performance is analysed
through its accuracy and Receiver Operating Characteristic
(ROC) curves. The multi-class DT classifiers’ accuracy is pre-
sented through its top-N accuracy. The complexity reduction
proposed method is then assessed in terms of both compu-
tational complexity reduction and BD-BR loss compared to
the VTM. Multiple configurations of our method are explored
depending on the tested top-N DT LGBM output splits.
Several existing techniques have investigated the complexity
reduction of the new MTT partitioning. We compare our
proposed solution with four best-performing state-of-the-art
methods, including solutions proposed by Saldanha et al. [33],
Chen et al. [31], Yang et al. [30], and Li et al. [22]. Finally, we
assess the inference overheads of both CNN and DT models.

A. CNN performance

Fig. 7 shows the loss and accuracy of the CNN model
versus the training epochs on both training and validation
datasets. The blue and orange curves correspond to the losses
computed by Eq. (4) over a hundred training epochs. The green
and red curves represent the binary accuracy computed after
a shrinkage with a fixed threshold of 0.5. The accuracy is
computed between the ground truth and the predicted vector
of probabilities. The two curves in blue and green are from the
training set, and those in orange and red are from the validation
set. The goal of the training is to update the model weights
to minimize the loss at each iteration. We notice that the loss

Accepted manuscript

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 9

ROC QT 64x64

Tr
u
e
 P

o
si

ti
v
e
 R

a
te

False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

AUC = 0.93

ROC QT 32x32

Tr
u
e
 P

o
si

ti
v
e
 R

a
te

False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

AUC = 0.92

ROC BTH 4x8

Tr
u
e
 P

o
si

ti
v
e
 R

a
te

False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

AUC = 0.61

ROC BTV 8x16

Tr
u
e
 P

o
si

ti
v
e
 R

a
te

False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

AUC = 0.68

Fig. 8. Several CNN ROCs for different splits and sizes on the CTC video
sequences.

curves decrease from 0.105 to 0.094 over 100 epochs for both
training and validation sets. The validation curve follows the
training curve, which means the model generalizes well on the
validation set. The model accuracy reaches more than 86% of
true prediction, i.e., 86% of the estimated probabilities with a
threshold of 0.5 are equal to the ground truth.

The CNN prediction performance is also analyzed under
VTM with the ROC curves. The ROC curves represent the
true positive rate versus the false positive rate. The split
probabilities required to plot these ROCs are determined by
averaging all probabilities at the exact spatial position of the
split. Fig. 8 presents the ROC curves of QT, BTH and BTV
splits at different CU sizes computed on the CTC sequences.
The QT ROC curves show that the average probability is able
to reach 0.8 of true positive for approximately false positive
rate of 0.1, for both 64 × 64 and 32 × 32 CU sizes. Instead,
the BT ROC curves are closer to the random guess curve,
which is the diagonal one in blue. Indeed, the CNN pays more
attention to those probabilities. Moreover, the high CU sizes
more easily determine the split choice as it concerns many
pixels. The ROC area under the curve values are given as a
single score to compare the results of the graphs. As shown by
the curves, the ROC area under the curve confirms the results
by reaching scores higher than 0.9 for the QT and less than
0.7 for the BT splits.

Visual illustrations of 64 × 64 CU partitions from ground
truth and CNN prediction are given on the first and second
rows of Fig. 9, respectively. On the top row, the optimal
partitions, derived by the VTM anchor, are the ground truth.
On the bottom row, the partitions predicted by the CNN
are displayed with color codes based on their probabilities.
The color code varies from red to blue with a probability
ranging between 0.3 and 1, and the gray color represents
probabilities below 0.3. The partitions for QP 37 is shallow
with a maximum of three depths and two CUs of size 32×32.
Its CNN prediction is relevant, with each edge defined as a
split with a probability higher than 0.9. For the other edges that
are not defined as a split, the probability values are lower than
0.3 except for six edges predicted with probabilities between

TABLE IV
PERFORMANCE THE DT LGBM MODELS WITH THEIR DEFINED SIZE AND

NUMBER OF OUTPUT THROUGH TOP-1, TOP-2 AND TOP-3 ACCURACY
COMPUTED ON THE VALIDATION SET.

Width Height #classes Top-1 acc. Top-2 acc. Top-3 acc.

64 64 2 91.69% - -
32 32 6 59.94% 78.38% 88.87%
32 16 5 58.50% 77.96% 89.85%
16 32 5 56.55% 77.48% 89.24%
32 8 4 54.80% 80.22% 94.11%
8 32 4 54.91% 80.45% 94.40%

32 4 3 66.64% 87.80% -
4 32 3 68.80% 87.38% -

16 16 6 50.95% 71.27% 84.60%
16 8 4 62.89% 82.74% 94.05%
8 16 4 62.36% 83.25% 94.39%

16 4 3 68.96% 90.12% -
4 16 3 68.95% 88.54% -
8 8 3 81.46% 93.05% -
8 4 2 82.16% - -
4 8 2 86.26% - -

Average

2 86.70% - -
3 70.96% 89.38% -
4 58.74% 81.67% 94.24%
5 57.53% 77.72% 89.55%
6 55.45% 74.83% 86.74%
- 67.24% 82.97% 91.19%

0.3 and 0.4. Compared to the QP 37 partitions, the QP 27
configuration is partitioned deeper and is harder to predict
efficiently. The figure shows that each edge determined as a
split has a probability higher than 0.3 except the TT split, and
some CUs are predicted deeper.

The CNN output is not directly used in the VTM. It is
considered as spatial features and used as an input for the
DT LGBM models. The DT LGBM will benefit from all the
probabilities that impact the partition.

B. DT LGBM performance

The second part of the proposed solution includes DT
LGBM models that take advantage of all spatial features pre-
dicted by the CNN to derive split probabilities. As presented in
Section IV, multiple models are trained to handle the different
CU sizes. The input element range starts from one probability
plus the QP for 4× 8 or 8× 4 CU sizes to 480 probabilities
plus the QP for 64 × 64 CU size. The output is a vector of
six classes with QT, the two BTs, the two TTs and no split.
For CUs with fewer splits available due to VTM restrictions, a
mask is applied on the predicted vector to restrict the unsuited
splits.

Table IV presents the accuracy of the DT LGBM models
on the CTC dataset. Three values are reported to analyse
the DT LGBM results based on the top-N accuracy with
N ∈ {1, 2, 3}. Top-N accuracy is a metric that measures
how often the correct class falls in the top-N highest predicted
probabilities. Top-1 accuracy reaches, on average, 67.24% of
correct predictions. Based on the number of available splits,
the prediction accuracy is different, decreasing from 86.7%
to 55.45% for 2 and 6 classes, respectively. The highest top-
1 accuracy is achieved with the 64 × 64 block size binary
classification between QT and no split with 91.69%. All DT

Accepted manuscript

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 10

QP 37QP 27QP 22 QP 32

Probabilities

Ground truths

CNN predictions

0.3<p<0.4
0.4<p<0.5
0.5<p<0.6
0.6<p<0.7
0.7<p<0.8
0.8<p<0.9
p>0.9

Fig. 9. Ground truth partitions on top and their corresponding CNN predictions on the bottom for the sequence MarketPlace with QPs 22, 27, 32 and 37.

LGBM models have more than 50% top-1 accuracy even
with multi-class classification. The top-2 accuracy is given for
models with at least three classes, which reaches, on average,
82.97%. The lowest accuracy is 71.27% obtained with the
smallest block size available for six classes decision, i.e.,
16× 16. Finally, top-3 accuracy achieves 91.19% accuracy on
average over the model with at least four classes. By skipping
half of the available splits, the top-3 configuration achieves
86.74% accuracy for six classes. This accuracy performance
reduces the complexity by a factor of two, with high confi-
dence in predicting the right split. These results exhibit that
the accuracy of DT models with three classes depends on the
available splits. Higher accuracies are reached for the 8 × 8
block size model in top-1 and top-2 by at least +12% and +3%,
respectively, compared with other models with three classes.
In addition to the no split mode, two splits are in competition:
either BT and TT in the same direction or BT horizontal and
vertical. As shown by the results, the direction of a split is
easier to predict than the difference between BT and TT in
the same direction.

C. Complexity reduction performance under the VTM

The two-stage proposed model is integrated in the VTM10.2
encoder configured in AI setting. For a fair comparison, the
reference used to compute the BD-BR loss and the complexity
reduction is the classical VTM encoder, including multiple na-
tive speed-up techniques [17] for the tree partitioning process.
These speed-up techniques significantly reduce the execution
time with a slight BD-BR degradation compared with an
exhaustive RDO process. Thus, these experiments exhibit the
gain provided by our approach compared with the common
configuration of the VTM encoder.

We compare our method to the best-performing state-of-
the-art methods in complexity reduction and BD-BR loss.
These state-of-the-art methods rely on different VTM versions;
meanwhile, the tree partitioning tool has not significantly
changed during the standardization.

Table V presents the BD-BR and complexity reduction
performance of our method compared with the state-of-the-

art techniques proposed by Saldanha et al. [33], Chen et
al. [31], and Li et al. [22]. In this table, two configurations
are presented based on the top-2 and top-3 configurations. The
results are illustrated for the CTC sequences from class A1 to
class F. The average is given for each class independently, and
all the sequences from class A1 to class E. However, class F
is not considered in the average computation as it includes
specific video sequences such as screen content.

On average, our top-3 configuration through all sequences
reaches 0.79% BD-BR loss for a complexity reduction of
47.4%. Compared with Li et al. [22] method, our solution
achieves better performance in both BD-BR and complexity
reduction. Chen et al. [31] solution reduces 4.2% more com-
plexity but at the expense of a significant increase in BD-BR
loss of 0.83% compared with our top-3 configuration. This
low gain in the complexity reduction is not relevant compared
with the loss in BD-BR, which is almost doubled. The method
proposed by Saldanha et al. [33] enhances the complexity
reduction by 1.5% but for a 0.22% more BD-BR loss. The
second configuration with top-2 achieves, on average, 2.49%
BD-BR loss with 70.4% of complexity reduction.

High-resolution videos are the main interest in the VVC
development. Tackling the complexity reduction of high-
resolution videos is particularly important as the encoding
time is proportional to the sequence resolution. Classes A and
B represent high-resolution sequences with 4K and full HD,
respectively. Our top-3 and top-2 configurations are able to
reach 47.6% and 68.9% complexity reductions for 0.66% and
1.80% BD-BR losses on class A sequences, respectively. In
both BD-BR and complexity reduction metrics our method
is better than Chen et al. [31] and Li et al. [22] techniques.
Compared with these two techniques, our top-3 configuration
solution achieves, on average, a lower BD-BR loss of 0.69%
and 0.85% and a higher computational complexity reduction
by 1.5% and 2.3%, respectively. Saldanha et al. [33] solution
obtains slightly lower complexity reduction with a a 0.12%
BD-BR loss compared to our top-3 configuration. Concerning
the class B sequences, our top-3 configuration can halve the
complexity with 51% of complexity reduction for a 0.8% BD-

Accepted manuscript

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 11

TABLE V
∆ET↑ AND BD-BR↓ PERFORMANCE OF THE PROPOSED SOLUTION IN COMPARISON WITH STATE OF THE ART TECHNIQUES IN AI CODING

CONFIGURATION.

Class Sequence Saldanha et al. [33], VTM10.0 Chen et al. [31], VTM4.0 Li et al. [22], VTM7.0 Ours top-3, VTM10.2 Ours top-2, VTM10.2

BD-BR ∆ET BD-BR ∆ET BD-BR ∆ET BD-BR ∆ET BD-BR ∆ET

Class A1
Tango2 0.71% 53.1% 1.38% 48.7% 1.52% 40.8% 0.50% 48.5% 1.48% 80.9%
FoodMarket4 0.69% 46.5% 0.84% 30.3% 1.26% 42.2% 0.46% 46.7% 1.4% 67.5%
Campfire 0.83% 43.8% 1.29% 49.1% 2.02% 48.7% 0.72% 48.2% 2.02% 67.4%

Average 0.74% 47.8% 1.17% 42.7% 1.6% 43.9% 0.56% 47.8% 1.63% 71.9%

Class A2
CatRobot1 0.9% 44.1% 1.99% 50.4% 2.16% 45.4% 0.95% 46.6% 2.56% 62.9%
DaylightRoad2 1.1% 53.7% 2% 54.1% 1.16% 49.4% 1.00% 52.1% 2.47% 73.7%
ParkRunning3 0.45% 41.4% 0.8% 40.6% 1.15% 41.7% 0.32% 43.3% 0.91% 60.9%

Average 0.82% 46.4% 1.6% 48.4% 1.49% 45.5% 0.76% 47.4% 1.98% 65.9%

Class B

MarketPlace 0.6% 54.5% - - 0.8% 46.6% 0.46% 55.0% 1.29% 75.7%
RitualDance 1.09% 53.5% - - 1.07% 44.9% 0.80% 51.4% 2.41% 73.4%
Cactus 1.04% 50% 1.73% 49.8% 1.12% 49.3% 0.84% 49.5% 2.6% 72.8%
BasketballDrive 1.26% 57.1% 1.54% 50.1% 1.64% 52% 0.88% 52.1% 2.51% 76.0%
BQTerrace 1.11% 48.3% 1.4% 56% 1.11% 45.6% 1.02% 47.0% 2.76% 75.1%

Average 1.02% 52.7% 1.56% 52% 1.15% 47.7% 0.80% 51.0% 2.31% 74.6%

Class C

RaceHorses 0.75% 46.9% 1.35% 50.6% 0.96% 46.5% 0.61% 45.3% 1.97% 69.2%
BQMall 1.4% 51% 2.12% 58.9% 1.17% 49.8% 0.94% 46.8% 3.08% 71.1%
PartyScene 0.77% 48.3% 1.01% 51% 0.61% 45.2% 0.54% 43.7% 2.16% 69.3%
BasketballDrill 1.52% 40.3% 2.05% 54.8% 1.63% 39.3% 1.48% 44.7% 4.69% 67.7%

Average 1.11% 46.6% 1.63% 53.8% 1.09% 45.2% 0.89% 45.1% 2.97% 69.3%

Class D

RaceHorses 0.72% 45% 1.28% 54.7% 1.2% 41.6% 0.60% 43.9% 2.29% 66.5%
BQSquare 0.57% 40.7% 0.75% 52.8% 0.74% 44.5% 0.55% 44.0% 2.43% 70.0%
BlowingBubbles 0.82% 43.7% 1.4% 54.9% 0.92% 41.6% 0.60% 40.2% 2.37% 64.7%
BasketballPass 1.32% 49.3% 1.77% 53.1% 1.41% 44.5% 0.84% 44.5% 2.86% 67.2%

Average 0.86% 44.7% 1.3% 53.9% 1.07% 43.1% 0.64% 43.1% 2.49% 67.1%

Class E
FourPeople 1.71% 54.1% 2.71% 56.3% 1.33% 49.9% 1.10% 49.9% 3.46% 73.1%
Johnny 1.65% 55.3% 2.77% 55.8% 2.33% 48.2% 1.34% 50.5% 3.71% 72.9%
KristenAndSara 1.26% 53% 2.17% 52.8% 1.76% 50.5% 0.97% 49.0% 3.32% 71.8%

Average 1.54% 54.1% 2.55% 55% 1.81% 49.5% 1.14% 49.8% 3.5% 72.6%

Average 1.01% 48.8% 1.62% 51.2% 1.32% 45.8% 0.79% 47.4% 2.49% 70.4%

Class F

ArenaOfValor - - - - - - 1.00% 44.9% 3.28% 66.2%
BasketballDrillText - - 2.09% 56.3% - - 1.57% 43.3% 4.69% 67.7%
SlideEditing - - 0.52% 45.4% - - 0.95% 46.1% 4.14% 69.7%
SlideShow - - 2.11% 45.8% - - 1.39% 44.4% 4.56% 68.0%

Average - - 1.57% 49.2% - - 1.23% 44.7% 4.17% 67.9%

BR loss. The closest to our method is Saldanha et al. [33]
solution which achieves slightly more complexity reduction
score but for an increase of 0.22% BD-BR loss. Our top-2
configuration enables 74.6% complexity reduction for 2.31%
BD-BR loss. The highest performance in complexity reduction
and BD-BR loss is achieved for the MarketPlace sequence.
Indeed, the top-3 and top-2 configurations reach 55% and
75.7% complexity reductions for 0.46% and 1.29% BD-BR
losses, respectively.

For lower resolution classes C to E, the top-3 configuration
achieves less than 1% BD-BR loss for a maximum of 50.5%
complexity reduction. Compared to Saldanha et al. [33], our
method has approximately the same complexity reduction but
obtains lower BD-BR loss under classes C and D. For class
E, their solution achieves 4.3% higher complexity reduction
but with an increase of 0.4% BD-BR loss. Li et al. [22]
has a higher BD-BR loss for lower complexity reduction for
classes C and D compared with our top-3 configuration. For
class E, Li et al. [22] solution achieved the same complexity
reduction but at the cost of 0.53% BD-BR loss compared with
our method. Chen et al. [31] almost doubled the BD-BR loss
for a complexity reduction increase of 3.8% compared with

our top-3 configuration through low resolution classes. In the
case of the top-2 configuration, the performance is lower on
low resolutions than on high-resolution. This approach on low-
resolution contents, including classes C, D, and E reaches the
complexity of high-resolution contents (classes A1, A2, and B)
of 69.66% for a higher BD-BR loss of 2.98% which is higher
by approximately 1% compared with the BD-BR loss of high
resolutions contents (1.97%). Low-resolution contents result in
deeper partitions, so the more the complexity is reduced, the
less space is available to skip splits. Therefore, as the global
partition is composed of more splits, the impact on BD-BR is
more significant at high complexity reductions.

Class F has specific sequences with screen contents such
as slides or gaming content. Our method still achieves 44.7%
complexity reduction for 1.23% BD-BR loss. The work of
Chen et al. [31] is the only one that reported results on class
F with three out of four sequences. Our solution performs a
slightly lower complexity reduction with a less BD-BR loss.

Fig. 10 illustrates the performance of our method in com-
plexity reduction versus BD-BR jointly with state-of-the-art
methods in a 2D plan averaged on the CTC classes exclud-
ing class F. Saldanha et al. [33] proposed different trade-

Accepted manuscript

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 12

0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50
BD-BR (%)

35

40

45

50

55

60

65

70

75

80
ET

 (%
)

C1

C2

C3

C4

 =30

 =40

[21]

[30]
[32]

[29]

>10% complexity gain

1% bitrate gain

Mean on CTC classes
Interpolation of our solution
Our solution
Tissier et al. [22], VTM6.1
Li et al. [21], VTM7.0
Chen et al. [30], VTM4.0
Saldanha et al. [32], VTM10.0
Yang et al. [29], VTM2.0

Fig. 10. Complexity reduction versus BD-BR performance comparison
between the proposed method and state of the art techniques on CTC
classes except class F (AI configuration). An interpolation cure over our four
configurations is plotted in a blue dot line.

offs depicted in this figure. In addition to the configurations
presented in Table V, two new configurations are included.
The selection of the top-3 modes for the multi-classification
with 6 outputs (classes) and top-4 modes for the other DT
LGBM models is defined as C1. The top-3 configuration is
defined as C2. The top-3 for all DT LGBM models except
the multi-classification with 6 outputs for which top-2 is used
in configuration C3, and finally, top-2 for all DT models
is defined as C4. These configurations reach different trade-
off points between complexity reduction and BD-BR loss,
allowing us to draw an interpolation curve over these four
configurations. This interpolation helps us to compare the
results since the rate-distortion-complexity trade-off points
are not linear. As explained in Table V, the figure confirms
that our solution outperforms the best-performing state-of-
the-art techniques. The points representing the state-of-the-art
solutions are below our approach’s interpolation curve.

To illustrate the gains brought by introducing DT models
and dataset balancing, we show in Fig. 10 two configurations
of our previous solution [23] relying on decision thresholds
with β = 30 and β = 40. Our C3 and C4 configurations are
better than the β = 30 and β = 40 solutions with a gain
in complexity reduction of approximately 10% for a similar
BD-BR loss. Compared with β = 40 which reaches 58.8%
complexity reduction, our solution C3 affords a significant
BD-BR gain of 1.02%.

D. Ablation study

Table VI shows the contributions of the DT LGBM models
and the dataset balancing on the top of the baseline model that
considers only the CNN prediction with a simple threshold
β = 30 [23]. We can notice that using the DT LGBM models
enhance the ∆ET/BD-BR ratio on average from 35.24 to
54.18. Furthermore, dataset balancing enables consistent gains,
reaching the highest ∆ET/BD-BR ratios over all CTC classes.

TABLE VI
ABLATION STUDY OF THE PROPOSED METHOD. PERFORMANCE IN TERMS

OF ∆ET↑, BD-BR↓ AND THE RATIO ∆ET/BD-BR↑. THE BASELINE
MODEL IS THE CNN PREDICTION WITH A THRESHOLD β = 30, BASELINE
+ DT INCLUDES THE DT MODELS FOR THE PREDICTION, AND OURS USES

THE DATASET BALANCING. THE BEST RATIO IS HIGHLIGHTED IN BOLD.

Class Baseline (β = 30) [23] Baseline + DT Ours (C3)

A1 1.55/62.9 (40.58) 0.61/47.5 (79.17) 0.56/47.8 (85.35)
A2 1.47/60.0 (40.81) 0.80/46.4 (58.00) 0.76/47.4 (62.36)
B 1.41/61.1 (43.33) 0.85/51.0 (60.00) 0.80/51.0 (63.75)
C 1.20/37.9 (29.37) 0.96/45.7 (47.60) 0.89/51.1 (57.41)
D 0.83/32.5 (39.15) 0.70/43.3 (61.86) 0.64/43.1 (67.34)
E 2.29/54.4 (23.75) 1.23/43.9 (35.69) 1.14/49.8 (43.68)

Ave. 1.45/51.1 (35.24) 0.86/46.6 (54.18) 0.79/47.4 (60.00)

F 1.61/36.3 (22.54) 1.34/24.5 (18.28) 1.23/44.7 (36.34)

VII. COMPLEXITY ANALYSIS

In this section we assess the complexity overhead of the
CNN and DT inferences under the VTM. Then, optimizations
are proposed to reduce the complexity of the ML prediction
models.

A. Complexity overhead

Table VII presents the time spent in the CNN and in the DT
predictions for the C2 configuration in comparison with the
VTM10.2 anchor encoding time. These values are obtained
by computing the ratio between the CNN or DT time and
the VTM reference encoding time. The execution time of the
CNN inference is, on average lower than the execution time
of the DT model. Indeed, even if the CNN inference is more
complex, the DT infers at each CU size unlike the CNN which
is carried-out only once for each 64 × 64 CU. The run-time
ratio of the CNN is higher for the Ultra High Definition (UHD)
classes, primarily class A1. This is caused by the early skip
methods integrated into the VTM that lead to shallow partition,
resulting in a faster encoding process. Moreover, the results for
the DT inference time is homogeneous through all the CTC
classes. On average, the run-time of both the CNN and DT
is under 2%, taken together; they require less than 3% of the
encoding time. These results show that the prediction times are
negligible, especially since the CNN and DT models can be
optimized, accelerated, or run in parallel with the encoding.
Indeed, the execution time of the CNN can be significantly
reduced by targeting a GPU or on multi-core processors with
optimizations, as presented below.

B. CNN inference optimisation

CNN-based complexity reduction methods have achieved
outstanding results for the VTM encoder. However, CNN
complexity needs to be carefully optimized to minimize the
complexity overhead of the prediction. The proposed CNN
processes as input a luminance block of size 68 × 68 with
ten convolution layers and a final fully connected layer. The
proposed CNN model consists of 226 088 training parameters.
The execution time of the CNN inference is evaluated on
Central Processing Unit (CPU) and GPU platforms as detailed
below.

Accepted manuscript

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 13

TABLE VII
COMPLEXITY OVERHEAD OF THE CNN AND DT LGBM (IN %) FOR C2

CONFIGURATION COMPARED TO THE RUN TIME OF THE VTM ANCHOR.

CNN coml. overhead DT coml. overhead Total

Class A1 2.7% 2.0% 4.7%
Class A2 1.2% 1.7% 2.9%
Class B 1.0% 1.7% 2.7%
Class C 0.6% 1.6% 2.2%
Class D 0.5% 1.6% 2.1%
Class E 1.4% 1.8% 3.2%
Class F 1.2% 1.6% 2.8%

Average 1.2% 1.7% 2.9%

a) Optimisation on Central Processing Unit: As pre-
sented previously, the frugally-deep framework was considered
to generate the C++ source code for the CNN inference,
which is then integrated into the VTM. The proposed solution
computed one CNN inference for each 64×64 block of pixels
to predict the partitions. The CNN execution time depends on
the targeted CPU.

The CNN inference compiled without specific compilation
options and with one thread lasts 153ms for a 64× 64 block.
The inference complexity is also studied under the TensorFlow
framework with different CPUs.

Table VIII lists the different CPUs and GPUs used to
infer with our CNN through the TensorFlow framework and
provides their respective inference times. The inference time
depends mainly on the CPU clock rate. Indeed, with the Xeon
W-2125 (8 cores - 4 GHz), the inference time to predict the
partition of a 64 × 64 block is 2.13ms. The slowest CPU is
the I5-10300H (4 cores - 2.5 GHz) with 3.36ms per inference.
The inference time under the frugally-deep framework is at
least 50× higher than under the TensorFlow framework, which
includes single instruction multiple data optimizations.

b) Optimisation on Graphics Processing Unit: The GPU
is more adapted to train and infer CNN as most of the com-
putations are matrix based and can be computed in parallel.
Furthermore, the CUDA Application Programming Interface
(API) that manages parallel computing along the cuDNN
framework that optimizes standard operation for CNN are
available to improve the inference execution time. Different
versions of TensorFlow and CUDA are tested, impacting
the performance of the CNN. For these experiments, the
GPU selected is the Nvidia GTX 1650 Max Q. Under the
TensorFlow framework specialized for GPU version 2.0.0 and
the CUDA version 10.0, the CNN infers at 254.65µs for a
64× 64 block partition, resulting in a 7.7 Frames per Second
(fps) on full HD resolution.

Optimizing the CNN model is proposed to improve the
inference execution time. The TensorRT framework proposed
by Nvidia defined different optimizations like layer or tensor
fusion to optimize the GPU memory, bandwidth, and precision
refinement by quantizing the CNN model.

Table VIII details the inference time under the TensorRT
framework with the GPU Nvidia GTX 1650 Max Q with
different versions of the TensorRT framework with 32-bit and
16-bit floating-point data types. The fastest configuration is the
TF-TRT 2.0.0 with FP16, which can predict the partition of the

TABLE VIII
INFERENCE TIME UNDER THE TENSORFLOW FRAMEWORK UNDER
DIFFERENT CPU AND GPU PLATFORMS. THE INFERENCE TIME IS

COMPUTED ON A 64×64 BLOCK , AND THE FRAME RATE ON A FULL HD
RESOLUTION VIDEO.

Platform Inference time Frame rate (fps)

C
PU

Xeon W-2125 (8 cores - 4 GHz) 2.13 ms 0.92
Ryzen 5 2600X (6 cores - 3.6 GHz) 2.53 ms 0.78
I7-8700 (6 cores - 3.2 GHz) 2.66 ms 0.74
I5-10300H (4 cores - 2.5 GHz) 3.36 ms 0.59

G
PU

TF-TRT 2.4.0 259.49 µs 7.6
TF-TRT 2.0.0 (FP32) 135.17 µs 14.5
TF-TRT 2.0.0 (FP16) 120.80 µs 16.2

64×64 block at 120.8µs, which leads to 16.2 fps on a full High
Definition (HD) sequence, while with FP32 configuration,
the inference reaches 135.17µs. These optimizations show
impressive results using a GPU with TensorRT. Moreover, a
dedicated processor can be used for inference, such as neural
processing units proposed by Huawei or tensor processing
units offered by Google, to reach even higher performance.
Another option is to change the CNN architecture to limit the
number of parameters and computations to reduce its inference
run time.

VIII. CONCLUSION

In this paper we have proposed a two stage CNN and
DT method to reduce the complexity of the VTM encoder
in AI configuration. The CNN is designed to predict a CU
partition through a vector of probabilities based on the local
activity of pixels in a block. This vector considered as spatial
features is then passed as input to the DT model that predicts
the split probabilities at each CU depth. The DT method
integrated after the CNN benefits from all the probabilities
inside the computed CU instead of taking only the probabilities
at the spatial location of the split. Depending on the selected
configuration, a top-N probability selection is performed on
the DT output to skip the unlikely splits.

Our proposed method outperforms state-of-the-art tech-
niques regarding the trade-off between complexity reduction
and coding loss. Concerning the top-3 configuration, our
proposal assessed on the VVC CTC sequences enabled on
average 47.4% complexity reduction for a negligible BD-BR
loss of 0.79%. The top-2 configuration was able to reach
a higher complexity reduction of 69.8% for 2.57% BD-BR
loss. The complexity of the ML model has been carefully
optimized. The CNN is able to predict the partition of the
64 × 64 block partition at 120.8µs, resulting in 16.2 fps on
a full HD sequence. These promising results motivated us to
extend our method to the RA configuration. This extension,
investigated as future work, will require taking advantage of
the motion flow among adjacent frames.

ACKNOWLEDGMENTS

This work is supported by the Hubert Curien Partnerships
(PHC) Maghreb 2021, No 45988WG (Eco-VVC project),
and Région Bretagne through the TRISTRAM collaborative
project and the Allocations de Recherche Doctorale (ARED)
program.

Accepted manuscript

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 14

REFERENCES

[1] Cisco, “Cisco visual networking index: Forecast and trends, 2017-2022,”
in https://www.cisco.com/c/en/us/solutions/collateral/ service-provider/
visual-networking-index-vni/white-paper-c11-741490.html, Feb. 2019.

[2] B. Bross, Y. Wang, Y. Ye, S. Liu, J. Chen, G. Sullivan, and J. Ohm,
“Overview of the versatile video coding (vvc) standard and its applica-
tions,” IEEE Transactions on Circuits and Systems for Video Technology,
vol. 31, no. 10, pp. 3736–3764, 2021.

[3] W. Hamidouche, T. Biatek, M. Abdoli, E. François, F. Pescador, M. Ra-
dosavljević, D. Menard, and M. Raulet, “Versatile video coding standard:
A review from coding tools to consumers deployment,” IEEE Consumer
Electronics Magazine, vol. 11, no. 5, pp. 10–24, 2022.

[4] D. Garcı́a-Lucas, G. Cebrián-Márquez, and P. Cuenca, “Rate-
distortion/complexity analysis of HEVC, VVC and AV1 video codecs,”
Multimedia Tools and Applications.

[5] F. Bossen, X. Li, and K. Suehring, “AHG report: Test model software
development (AHG3),” JVET-T0003.

[6] Y. Huang, J. An, H. Huang, X. Li, S. Hsiang, K. Zhang, H. Gao, J. Ma,
and O. Chubach, “Block partitioning structure in the vvc standard,” IEEE
Transactions on Circuits and Systems for Video Technology, vol. 31,
no. 10, pp. 3818–3833, 2021.

[7] E. François, M. Kerdranvat, R. Jullian, and C. Chevance, “VVC PER-
TOOL PERFORMANCE EVALUATION COMPARED TO HEVC,”
p. 14.

[8] M. Saldanha, G. Sanchez, C. Marcon, and L. Agostini, “Complexity
analysis of VVC intra coding,” in 2020 IEEE International Conference
on Image Processing (ICIP). IEEE, pp. 3119–3123.

[9] A. Tissier, A. Mercat, T. Amestoy, W. Hamidouche, J. Vanne, and
D. Menard, “Complexity reduction opportunities in the future VVC intra
encoder,” in 2019 IEEE 21st International Workshop on Multimedia
Signal Processing (MMSP). IEEE, pp. 1–6.

[10] G. Correa, P. Assuncao, L. Agostini, and L. da Silva Cruz, “Fast hevc
encoding decisions using data mining,” IEEE Transactions on Circuits
and Systems for Video Technology, vol. 25, no. 4, pp. 660–673, 2015.

[11] T. Li, M. Xu, X. Deng, and L. Shen, “Accelerate CTU partition to real
time for HEVC encoding with complexity control,” IEEE Transactions
on Image Processing, vol. 29, pp. 7482–7496.

[12] A. Mercat, F. Arrestier, M. Pelcat, W. Hamidouche, and D. Menard,
“Machine learning based choice of characteristics for the one-shot
determination of the HEVC intra coding tree,” in 2018 Picture Coding
Symposium (PCS), pp. 263–267.

[13] L. Shen, Z. Zhang, and Z. Liu, “Effective cu size decision for hevc
intracoding,” IEEE Transactions on Image Processing, vol. 23, no. 10,
pp. 4232–4241, 2014.

[14] ——, “Adaptive inter-mode decision for hevc jointly utilizing inter-level
and spatiotemporal correlations,” IEEE Transactions on Circuits and
Systems for Video Technology, vol. 24, no. 10, pp. 1709–1722, 2014.

[15] S. Paul, A. Norkin, and A. Bovik, “Speeding up VP9 intra encoder with
hierarchical deep learning based partition prediction,” IEEE Transactions
on Image Processing, vol. 29, pp. 8134–8148.

[16] M. Xu, T. Li, Z. Wang, X. Deng, R. Yang, and Z. Guan, “Reducing
complexity of HEVC: A deep learning approach,” IEEE Transactions
on Image Processing, vol. 27, no. 10, pp. 5044–5059.

[17] A. Wieckowski, J. Ma, H. Schwarz, D. Marpe, and T. Wiegand, “Fast
partitioning decision strategies for the upcoming versatile video coding
(VVC) standard,” in 2019 IEEE International Conference on Image
Processing (ICIP), pp. 4130–4134.

[18] Z. Wang, S. Wang, J. Zhang, S. Wang, and S. Ma, “Probabilistic decision
based block partitioning for future video coding,” IEEE Transactions on
Image Processing, vol. 27, no. 3, pp. 1475–1486.

[19] T. Amestoy, A. Mercat, W. Hamidouche, D. Menard, and C. Bergeron,
“Tunable VVC frame partitioning based on lightweight machine learn-
ing,” IEEE Transactions on Image Processing, vol. 29, pp. 1313–1328.

[20] K. Choi, T. V. Le, Y. Choi, and J. Y. Lee, “Low-complexity intra coding
in versatile video coding,” IEEE Transactions on Consumer Electronics,
vol. 68, no. 2, pp. 119–126, 2022.

[21] X. Dong, L. Shen, M. Yu, and H. Yang, “Fast intra mode decision
algorithm for versatile video coding,” IEEE Transactions on Multimedia,
vol. 24, pp. 400–414, 2022.

[22] T. Li, M. Xu, R. Tang, Y. Chen, and Q. Xing, “Deepqtmt: A deep
learning approach for fast qtmt-based cu partition of intra-mode vvc,”
IEEE Transactions on Image Processing, vol. 30, pp. 5377–5390, 2021.

[23] A. Tissier, W. Hamidouche, J. Vanne, F. Galpin, and D. Menard, “CNN
oriented complexity reduction of VVC intra encoder,” in 2020 IEEE
International Conference on Image Processing (ICIP). IEEE, pp. 3139–
3143.

[24] M. Wang, J. Li, L. Zhang, K. Zhang, H. Liu, S. Wang, S. Kwong,
and S. Ma, “Extended coding unit partitioning for future video coding,”
IEEE Transactions on Image Processing, vol. 29, pp. 2931–2946.

[25] Q. Zhang, Y. Wang, L. Huang, and B. Jiang, “Fast CU partition and
intra mode decision method for h.266/VVC,” IEEE Access, vol. 8, pp.
117 539–117 550.

[26] T. Fu, H. Zhang, F. Mu, and H. Chen, “Two-stage fast multiple transform
selection algorithm for VVC intra coding,” in 2019 IEEE International
Conference on Multimedia and Expo (ICME). IEEE, pp. 61–66.

[27] Biao Min and R. Cheung, “A fast CU size decision algorithm for the
HEVC intra encoder,” IEEE Transactions on Circuits and Systems for
Video Technology, vol. 25, no. 5, pp. 892–896.

[28] Z. Wang, S. Wang, J. Zhang, S. Wang, and S. Ma, “Effective quadtree
plus binary tree block partition decision for future video coding,” in
2017 Data Compression Conference (DCC), pp. 23–32.

[29] Z. Jin, P. An, L. Shen, and C. Yang, “CNN oriented fast QTBT partition
algorithm for JVET intra coding,” in 2017 IEEE Visual Communications
and Image Processing (VCIP), pp. 1–4.

[30] H. Yang, L. Shen, X. Dong, Q. Ding, P. An, and G. Jiang, “Low-
complexity ctu partition structure decision and fast intra mode decision
for versatile video coding,” IEEE Transactions on Circuits and Systems
for Video Technology, vol. 30, no. 6, pp. 1668–1682, 2020.

[31] F. Chen, Y. Ren, Z. Peng, G. Jiang, and X. Cui, “A fast CU size decision
algorithm for VVC intra prediction based on support vector machine,”
Multimedia Tools and Applications.

[32] J. Zhao, Y. Wang, and Q. Zhang, “Adaptive CU split decision based
on deep learning and multifeature fusion for h.266/VVC,” Scientific
Programming, vol. 2020, pp. 1–11.

[33] M. Saldanha, G. Sanchez, C. Marcon, and L. Agostini, “Configurable
fast block partitioning for vvc intra coding using light gradient boosting
machine,” IEEE Transactions on Circuits and Systems for Video Tech-
nology, pp. 1–1, 2021.

[34] M. Lei, F. Luo, X. Zhang, S. Wang, and S. Ma, “Look-ahead prediction
based coding unit size pruning for VVC intra coding,” in 2019 IEEE
International Conference on Image Processing (ICIP), pp. 4120–4124.

[35] B. Bross, P. Keydel, H. Schwarz, D. Marpe, T. Wiegand, L. Zhao,
X. Zhao, X. Li, S. Liu, Y. Chang, H. Jiang, P. Lin, C. Kuo, C. Lin,
and C. Lin, “Multiple reference line intra prediction,” JVET-L0283.

[36] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” arXiv:1512.03385 [cs]. [Online]. Available:
http://arxiv.org/abs/1512.03385

[37] M. Tan and Q. V. Le, “EfficientNet rethinking model scaling for
convolutional neural networks,” arXiv:1905.11946 [cs, stat]. [Online].
Available: http://arxiv.org/abs/1905.11946

[38] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” arXiv:1409.1556 [cs]. [Online].
Available: http://arxiv.org/abs/1409.1556

[39] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and
T. Liu, “LightGBM: A highly efficient gradient boosting decision tree,”
Advances in Neural Information Processing Systems 30, p. 9.

[40] E. Agustsson and R. Timofte, “NTIRE 2017 challenge on single image
super-resolution: Dataset and study,” in 2017 IEEE Conference on
Computer Vision and Pattern Recognition Workshops (CVPRW). IEEE,
pp. 1122–1131.

[41] E. Makov, Dataset image 4k. [Online]. Available: https://www.kaggle.
com/evgeniumakov/images4k

[42] I. Jtc and I.-T. Sg, “Call for evidence on learning-based image coding
technologies (JPEG AI),” p. 15.

[43] S. Hasinoff, D. Sharlet, R. Geiss, A. Adams, J. Barron, F. Kainz, J. Chen,
and M. Levoy, “Burst photography for high dynamic range and low-light
imaging on mobile cameras,” ACM Transactions on Graphics, vol. 35,
no. 6, pp. 1–12.

[44] R. e. a. Timofte, “NTIRE 2017 challenge on single image super-
resolution: Methods and results,” p. 12.

[45] F. Chollet et al., Keras. [Online]. Available: https://keras.io
[46] F. Abadi et al., “TensorFlow: Large-scale machine learning on hetero-

geneous distributed systems,” p. 19.
[47] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”

arXiv:1412.6980 [cs]. [Online]. Available: http://arxiv.org/abs/1412.
6980

[48] F. Bossen, J. Boyce, K. Suehring, X. Li, and V. Seregin, “JVET common
test conditions and software reference configurations for SDR video,”
JVET document, JVET-M1010.

[49] G. Bjontegaard, “Calculation of average PSNR differences between RD-
curves,” VCEG-M33.

[50] T. Hermann, “Frugally deep.” [Online]. Available: https://github.com/
Dobiasd/frugally-deep

https://www.cisco.com/c/en/us/solutions/collateral/service-provider/ visual-networking-index-vni/ white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/ visual-networking-index-vni/ white-paper-c11-741490.html
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1905.11946
http://arxiv.org/abs/1409.1556
https://www.kaggle.com/evgeniumakov/images4k
https://www.kaggle.com/evgeniumakov/images4k
https://keras.io
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://github.com/Dobiasd/frugally-deep
https://github.com/Dobiasd/frugally-deep

	I Introduction
	II Background and Related work
	II-A Frame partitioning in vvc
	II-B Existing techniques for encoder complexity reduction
	II-B1 hevc complexity reduction techniques
	II-B2 jem complexity reduction techniques
	II-B3 vvc complexity reduction techniques

	III Proposed two-stage vvc partition prediction solution
	III-A Overall presentation
	III-B Spatial features extraction cnn model
	III-C Multi-class classifiers based on dt models

	IV Proposed dataset for training
	IV-A Dataset for the learning process
	IV-B Dataset processing

	V Training process and experimental setup
	V-A cnn model
	V-B dt lgbm model
	V-C Evaluation procedure and implementation details

	VI Experimental results
	VI-A cnn performance
	VI-B dt lgbm performance
	VI-C Complexity reduction performance under the vtm
	VI-D Ablation study

	VII Complexity analysis
	VII-A Complexity overhead
	VII-B CNN inference optimisation

	VIII Conclusion
	References

