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LeakageVerif: Efficient and Scalable Formal
Verification of Leakage in Symbolic Expressions

Quentin L. Meunier, Etienne Pons, Karine Heydemann,

Abstract—Side-channel attacks are a powerful class of attacks targeting cryptographic devices. Masking is a popular protection
technique to thwart such attacks as it can be theoretically proven secure. However, correctly implementing masking schemes is a
non-trivial task and error-prone. If several techniques have been proposed to formally verify masked implementations, they all come
with limitations regarding expressiveness, scalability or accuracy. In this work, we propose a symbolic approach, based on a variant of
the classical substitution method, for formally verifying arithmetic and boolean masked programs. This approach is more accurate and
scalable than existing approaches thanks to a careful design and implementation of key heuristics, algorithms and data structures
involved in the verification process. We present all the details of this approach and the open-source tool called LeakageVerif which
implements it as a python library, and which offers constructions for symbolic expressions and functions for their verification. We
compare LeakageVerif to three existing state-of-the-art tools on a set of 46 masked programs, and we show that it has very good
scalability and accuracy results while providing all the necessary constructs for describing algorithmic to assembly masking schemes.
Finally, we also provide the set of 46 benchmarks, named MaskedVerifBenchs and written for comparing the different verification
tools, in the hope that they will be useful to the community for future comparisons.

F

1 INTRODUCTION

S IDE-CHANNEL ATTACKS (SCA) exploit the relationship
between physical quantities such as time, power con-

sumption or electromagnetic emissions and secret data
manipulated by cryptographic implementations to retrieve
these secret data. Since the pioneer Differential Power
Analysis attack (DPA) [22], several other SCA based on
power consumption or electromagnetic emissions have been
shown to be very effective to recover the secret key [23]. As
with the advent of the Internet-of-thing, more and more de-
vices use cryptographic implementations and are accessible,
these attacks have become a serious threat and protecting
such devices against SCA has become a major concern.

Masking is a popular protection technique to thwart
SCA as it can be theoretically proven secure. Its principle
is to break the dependency between measurable physical
quantities and manipulated secret data by making inter-
mediate computations statistically independent from the
secrets. This is achieved by splitting each secret data into
n + 1 shares, n being the masking order, such that only the
recombination of all the shares allows to deduce information
on the secret. A simple way to split a secret on n + 1
shares is to use n random and uniform variables, called
masks, and to obtain the last share by combining the n
first shares with the secret. This combination depends on the
masking type: boolean masking uses exclusive-or (xor, ⊕)),
arithmetic masking uses addition. An algorithm for which
each intermediate result is statistically independent from its
secrets is said to be leakage-free at order 1. However, in
order to achieve this leakage-free property, each procedure
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of the non-masked algorithm must be adapted to take the
sharing into account. This is not a trivial task as non-
linear operations w.r.t the masking scheme require special
care to avoid unmasking the secrets and because leaking
expressions can be hard to find by hand. Moreover, from
a (proven-secure) masked algorithm to the final masked
implementation, several flaws can be introduced: a correctly
masked algorithm can be incorrectly implemented in soft-
ware or hardware, or a correctly masked source code can
lead to a leaking assembly code due to the compilation
and its optimisations that can reorder computations. As a
consequence, it has emerged a critical need for automatic
verification methods to check the leakage-free property of
software or hardware implementations in the different ab-
straction levels (algorithmic, C or HDL program, assembly
program).

Different methods for automatically verifying the se-
curity of a masked hardware or software implementation
have been proposed. They are all based on the analysis of
the expressions manipulated by the program or circuit at
a given abstraction level. Such methods aim to determine
if the probability distribution of an expression depends on
the secrets of the algorithm. If the first proposed methods
relied on enumeration over all possible values, explicitly
or implicitly using SMT formulations [12], [13], the more
recent symbolic techniques avoid enumeration as it is not
a scalable approach. Symbolic verification methods can be
split into two categories: methods by inference [9], [10], [15],
[16], [30] and methods by substitution [1], [2]. Approaches
using an inference method make use of a set of rules to
infer the distribution type an expression from the current
operation and the distribution type of its children, going
from the leaves to the root of the expression. A distribution
type can usually be one of: secret dependent, secret inde-
pendent, uniform, or unknown when the verification algo-
rithm cannot conclude. Approaches using substitution aims
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to transform the expression by 1) finding a sub-expression
masked by a random variable r which is not present in
the sub-expression; 2) replacing the sub-expression by the
random variable r. By iterating this find-replace strategy, if
the expression is correctly masked, there should eventually
no longer be any occurrence of any secret variable at the
end of the substitutions: the expression is then considered
leakage free. With both types of symbolic methods, the
verification can fail to conclude for some expressions which
are then considered as “possibly leaking”. Resorting to an
enumerative technique to determine the distribution type
may sometimes help to conclude but this work around is
limited to small expressions or variable sizes, due to the
inherent non-scalability of enumeration. As a consequence,
verification methods must be as precise as possible to be
able to conclude for as many leakage-free expressions as
possible.

Last but not least, the tools implementing such ap-
proaches must be scalable and efficient as real masked
implementations require to analyze a large number of ex-
pressions that may contain several secret data and random
variables.

While different leakage verification tools exist, in par-
ticular QMVerif [16], SELA [24] and maskVerif [1], as we
show in this paper, no existing tool fulfills at the same time
versatility, scalability and accuracy. The work presented in
this article aims at filling this gap, by making the following
contributions:
• We propose an efficient and scalable approach for veri-

fying the first-order leakage-free property of a complex
expression. We highlight the key aspects which make it
possible to reach such a scalability compared to other
existing tools;
• We provide an open-source implementation of this ap-

proach in a tool called LeakageVerif 1;
• We provide a thorough comparison of LeakageVerif with

three state-of-the-art tools for verifying expressions, on a
set of 46 representative masked programs, and we show
that LeakageVerif performs better than the other tools in
terms of expressiveness, scalability and accuracy;
• Finally, we also provide the first open-source col-

lection of masked benchmarks for verification, called
MaskedVerifBench, in the hope that they will be useful
for the community. For each benchmark, we provide a
description and a version for the tools LeakageVerif,
maskVerif and QMVerif whenever possible.
The rest of the paper is organized as follows: section 2

presents some background and related works regarding
masking and existing verification tools; section 3 presents
our approach for verifying symbolic expression; section 4
presents the benchmarks we used and a detailed compari-
son between existing tools; finally, section 5 concludes and
discusses future work.

2 BACKGROUND AND RELATED WORKS

2.1 Security Notions
Different security properties have been proposed regarding
masking schemes [1], [12], [20]. Among those, the most

1. The source code of LeakageVerif is available at
https://github.com/quentin-meunier/LeakageVerif

employed property is threshold probing security. A program
or device is threshold probing secure at a given order d if an
attacker able to probe d internal values during the execution
cannot learn any information on the secret. In the rest of
the article, we focus on this security property, even if some
stronger properties exist, such as Non-Interference (NI) or
Strong Non-Interference (SNI) [1].

This article precisely focuses on first order probing se-
curity, as it is a criteria that all masked programs must
verify, and as it is a basic block for higher-order verification
methods [2]. Having an efficient first order verification is
therefore critical.

Verification must be made according to a leakage model,
which is an abstraction of real leakages. Two commonly
used leakage models are: 1) the value-based leakage model,
in which the leakages are the computation results, and 2) the
transition-based leakage model, for which the leaked values
are either any combination, or the exclusive-or, between
two values consecutively hold in a shared resource (e.g.
a variable, a assembly register, a bus or any hardware
element). Analysing a program with expressions based on
transitions requires to have an underlying implementation
giving variables storing expressions, the written assembly
registers, or other hardware elements, depending on the
abstraction level. Even if low-level descriptions enable more
accurate results w.r.t. the real leakages, this knowledge is not
always available. Most importantly, once an implementation
is known, it is easy to build expressions modeling tran-
sitions to match this implementation and transition-based
leakage model. Moreover, a tool able to verify leakages in
the value model can easily make the verification in the
transition model. For this reason, we only consider leakages
in the value model in this article.

2.2 Masking Schemes

If transforming a program in a masked equivalent is usually
not an automatic process, there exists some proven con-
structions for small boolean functions, most especially in
hardware, which allow to design masked circuit fragments
(called gadgets). The advantage of such constructions is that
they are guaranteed to be well masked, but their composi-
tion is not, and often requires registers between gadgets.

Notable masking schemes include the ISW one, pre-
sented in [20], which consists in decomposing a circuit in
AND, NOT and XOR gates, while providing an d-order
threshold probing secured implementation for each of these
gates. However, this scheme does not consider glitches,
which are transient values in hardware due to different
propagation delays between wires and gates, and which
can affect a hardware implementation. The Threshold-
Implementation (TI) scheme is proposed in [25] for boolean
functions. The claim made by the authors is that generating
random or pseudo-random value is costly, and therefore
should be avoided. The scheme does not use such internal
random values, but instead requires more shares and gates
for achieving the same level of security. In 2015, Reparaz et
al. [26] try to unify the previous constructions, and proposes
a General Masking Scheme (GMS) model based on four
layers for masking boolean functions. The gain compared
to TI is a reduction in complexity for first order resistance
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(at the price of using more randomness), and a gain in
security for higher orders. Finally, Gross et al. [18] present
Domain-Oriented Masking (DOM), which uses a similar
structure to GMS, but achieves an identical level of security
with a reduced sharing order, d-order threshold probing
security with d shares for the AND function. This is done
by inserting registers inside the computation in order to stop
glitch propagation.

As opposed to these general schemes, some masked
programs have to be written by hand, what is especially true
for software implementations. For such programs, there is
no guaranty that every intermediate expression is leakage-
free, and an automatic verification is advised. Moreover,
even with a leakage-free description at the algorithmic level,
an implementation of this algorithm can exhibit leakages
due to the lower-level construct, e.g. the implementation of
the abstract Galois field multiplication. This is all the more
true at assembly level, what shows the need to be able to
prove masking programs at different abstraction levels.

2.3 Masking Verification

Verifying that the distribution of a masked expression is
independent from the secret values can be done with an
exhaustive approach, by enumerating all possible secret
values, and for each combination of secret values, by com-
puting the distribution of the expression for every possible
mask value. If the expression is well masked, all obtained
distributions must be identical.

The problem of such an approach is that the time re-
quired grows exponentially with the number of bits in all
variables. Symbolic methods, on the other hand, reason on
variable types and operators to deduce information on the
expression. For example, given a secret variable k and a
mask m on n bits, we can deduce that the expression k ⊕ m
is leakage-free for every value of n. In most cases, however,
the size of each variable or constant must be provided to
perform the verification.

The first substitution algorithm for verifying the absence
of leakage in an expression was described in [2]. The prop-
erty verified is threshold probing security for any order d. It
states that the joint distribution of any set of d expressions
is independent from the secrets values contained in the
expressions. This algorithm was first implemented in the
EasyCrypt tool [4], but not made accessible. This algorithm
was then implemented for the verification of hardware
circuit in a tool called maskVerif [1]. The latter takes as input
an annotated verilog file containing the circuit to verify. The
strength of maskVerif is to verify efficiently higher-order
masked gadgets, and for three security properties: threshold
probing, NI and SNI.

A substitution method was also used in the tool
SELA [24], which is a python library with dedicated con-
structs for creating and verifying symbolic expressions. The
goal of SELA is to provide an easy to use framework for
writing and analysing symbolic expressions at different
abstraction levels. The authors show the interest of the
approach by verifying algorithmic codes as well as assembly
codes or circuits. In that sense, it is somewhat similar to the
goal of LeakageVerif. However, SELA suffers from important
scalability issues which prevents it from being used in

many real applications. This can be seen for example on
its verification of the AES, which is limited to two rounds.

Another approach, presented in [9], [10] introduced sym-
bolic analysis based on inference. Inference permits reusing
the results of sub-expressions for determining the result of
the current expression, while the substitution approaches
must start from scratch for each new expression, even if
it is a combination of already analysed expressions. The
advantage of this property seems clear since algorithms and
circuits can be decomposed as a succession of operations
re-utilizing the results of previous operations. On the other
hand, the inference rules in [9] could not conclude in some
cases contrary to the substitution approach. This inference
technique was used as a basis in several works: it was first
implemented in a somewhat similar way in a tool called
SCInfer [30], then improved with more precise rules in
the QMSInfer tool [16]. Support for arithmetic operators
was added in the QMVerif tool in [15], along with some
improvements. Finally, support for function calls was added
in [14] and the tool was made accessible.

2.4 Limitations of Existing Tools

The maskVerif, QMVerif and SELA tools are accessible along
with their source code. We analysed them to the extent
of our understanding and tried to use them as much as
possible. It came out that each of them has limitations when
used as a basis for verifying general masked expressions,
such as expressions resulting from C codes or assembly
codes.
maskVerif. maskVerif is tool written in OCaml designed
for the verification of circuits, but proposes a software sce-
nario for the verification of algorithms, in which glitches
can be considered, and in which the sequential aspect of
the program is simulated using a register-like behaviour:
each expression computed by the program is written into a
register. However, it is still not very well adapted for some
benchmarks. In particular, it lacks support for arithmetic
operations like the addition or array accesses. It also lacks
support for arbitrary size variables and expressions, since
the only possible sizes for variables are 1, 8 and 32 bits, and
there is no bit concatenation/extraction operations, what
makes this tool hardly suited to the analysis of assembly
code. Moreover, as it is designed for verifying circuits, it is
not possible to verify the distribution of a word composed of
several bits, what forced us to use tricks for some programs,
namely to combine the different bits of a word in a way
they don’t simplify. Finally, still linked to the hardware
orientation of the tool, there is no way of expressing a basic
control flow besides function calls.

We also encountered an error, reported to the authors,
for which the tool generated incorrect expressions when
using function calls, forcing us to manually inline functions
instead.
QMVerif. As a tool for verifying algorithms, QMVerif does
not have some of the problems of maskVerif. It is a tool
written in C++, which is able to verify expressions on words
and supports arithmetic operations. However, variables are
all on 8 bits, and there is no way for having a variable or an
expression on a different size. If some algorithms behave
the same way independently from variable size (in case
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only bitwise operations are used), this is often not the case.
Moreover, some implementations can also mix different
sizes together, e.g. the AES which can manipulate both
bytes and words in some implementations for performance
reason. Besides, there is no support for basic control flow
like loops. Additionally, it uses as input an ad-hoc format
in which expression must be written using a single operator
per line.

Besides, although the authors of [14] claim their tool to
be open-source, the version of the tool we have access to
does not have the characteristics presented in the article:
it has no support for functions and assumptions, and no
support for additional rules, called transformation oracles.

Additional limitations include the fact that the parser
does not report some errors and that some operators which
are supposed to be supported, such as shifts, are also never
returned by the parser. Finally, there are some limitations
due to hard coded values, in particular regarding the
number of masks during enumeration.

SELA. SELA does not have many of the previously men-
tioned problems. The fact that it is provided as a python
library allows it to benefit from python operators and its
control flow constructions. Its syntax based on z3py [27]
allows it to manage expressions of arbitrary size. Finally,
an interesting aspect of SELA comes from the fact that by
changing the definition of symbolic variables with constant
values, it is possible to check the results, and thus the
functionality of the program implemented. This is a very
useful feature, which is not possible with maskVerif and
QMVerif.

The major limitation of SELA comes from the fact that
when two expressions are combined with an operator, they
are entirely copied to create a new expression. This results
in an exponential growth of the expression size in memory
when some sub-expressions are used several times, e.g. in
the mix-columns part of the AES. As a consequence, it has a
limited scalability in the number of operations.

3 LEAKAGEVERIF

This section presents our new substitution approach for
checking secret independence in symbolic expression, im-
plemented in a tool called LeakageVerif. Its goal is to pro-
vide a user-friendly, scalable, accurate, versatile and open-
source verification process, while overcoming the limita-
tions of other existing approaches and tools. We claim that it
is currently the best tool for verifying the absence of leakage
in expressions in the first order threshold probing leakage
model.

3.1 Overview

Inspired by SELA, LeakageVerif comes as a python library,
and offers constructions for variables, constants and ex-
pressions by overloading standard python operators. Vari-
ables are symbolic and must have a type among Secret,
Public or Mask. Variables and constants must have a defined
size in bits. Threshold probing security can be verified
using the function checkTpsVal for value based leakage,
and checkTpsTrans for transition-based leakage. Evaluation

# 8− b i t v a r i a b l e named ’m0 ’ o f t y p e Mask
m0 = symbol ( ’m0 ’ , ’M’ , 8 )
# 8− b i t v a r i a b l e named ’m1 ’ o f t y p e Mask
m1 = symbol ( ’m1 ’ , ’M’ , 8 )
# 8− b i t v a r i a b l e named ’ k0 ’ o f t y p e S e c r e t
k0 = symbol ( ’ k0 ’ , ’ S ’ , 8 )
# 8− b i t v a r i a b l e named ’ k1 ’ o f t y p e S e c r e t
k1 = symbol ( ’ k1 ’ , ’ S ’ , 8 )
# e x p r e s s i o n c o m p u t a t i o n
exp = (m0 ^ k0 ) & (m0 ^ m1 ^ k1 )
# c h e c k f o r l e a k a g e in t h e e x p r e s s i o n v a l u e
r es = checkTpsVal ( exp )

Figure 1. Example of LeakageVerif program verifying threshold prob-
ing security for the expression (m0 ⊕ k0) & (m0 ⊕ m1 ⊕ k1)

using exhaustive enumeration is also possible, but will not
be considered in the rest of the article as it is not a scalable
approach.

Figure 1 shows a code fragment of a LeakageVerif
program, verifying the threshold probing security of the
expression (m0 ⊕ k0) & (m0 ⊕ m1 ⊕ k1).

LeakageVerif implements all the basic boolean opera-
tions (not, and, or, xor), arithmetic operations (addition,
subtraction, multiplication, multiplication in finite field),
and shift operations (logical shift left, arithmetic and logical
shift right) on variables of any size. It also supports array
indexation, and operators for performing bit manipulations:
concatenation of expressions, extraction of a bitfield in an
expression, signed and unsigned extensions of expressions.
These operations allow to support the vast majority of
masked programs, in particular as we did not encounter
any other operations in all the benchmarks we found.

3.2 Design and Implementation Challenges
The original substitution algorithm for proving threshold
probing security is described by Barthe et al. in [2]. Each
mask variable can be selected at most once as a substitution
basis in order for the algorithm to be correct. A variant of
this algorithm, given in Algorithm 1, has been recently pub-
lished in a technical report [3]. This variant notably removes
the condition that a mask m selected for a substitution should
not appear anywhere else in the entire expression. The mask
m must only not appear anywhere else in the masked sub-
expression e + m that will be replaced by m (in Step 2). This
variant enables to perform a substitution with a mask which
has more than a single occurrence in an expression. As
shown in [3], this allows to conclude successfully in cases
the previous algorithm failed.

However, this opens a new challenge. During the sub-
stitution using a mask m, all the occurrences of m (but the
one in the e + m) must be replaced with the expression m
+ e. First, this can make the expression grow very quickly.
Second, as illustrated in Figure 2, choosing the masks in an
incorrect order can lead to miss the ability to conclude. The
heuristic to select a mask and which of its occurrences to
replace is therefore critical for avoiding a dramatic increase
in the expression size and for verification accuracy. The
given description does not address this aspect while it is
a key point in the algorithm.

Besides, independently from the mask selection heuris-
tic, making a good choice requires first to have the knowl-
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Algorithm 1 Substitution algorithm for verifying threshold probing security, from [3].
procedure THRESHOLDPROBINGSECURITY(e)

Inputs: tuple of expressions V = (v1, ..., vn), flag simplified = 0, set of masks M = ∅
Step 1: if a secret k is involved in the computation of at least one expression in V then go to Step 2. Otherwise return True.
Step 2: while there exists a mask m /∈M involved in the computation of an expression vi of V, then find a sub-expression
e in vi such that m→ e + m is bijective and substitute m by e + m in all expressions. Extend M with {m}.
If at least such a transformation occurred, go to Step 1. Otherwise go to Step 3.
Step 3: if simplified 6= 0, then return False. Otherwise, mathematically simplify the expressions in V. Then, set simplified to
one and go back to Step 1.

edge of all masks and masks occurrences. Yet, this should
not mean to go through the entire expression before each
substitution, as this would prevent scalability.

Finally, regarding simplification (Step 3), [24] has shown
that in order to increase scalability, simplifications should be
made after each substitution and not only once after the first
failure. However, simplification is challenging: it should not
be source of expression size increase nor limits accuracy of
the verification.

&

m0

m0

k

m1

&

m0

&

m0

m0

k

m1

&

m1

&

m0

m0 k

m1

&

m0 kRed node
selected

Green node
selected

Green node
selected

Figure 2. This example illustrates the importance of the order in which
masks are selected when performing the substitutions. m0, m1 are
masks, k is a secret. If the mask m0 with 3 occurrences is chosen
for the first substitution (occurrence below the red ⊕ node), a secret
occurrence will remain even after the second substitution. On the other
hand, if m1 with a single occurrence is chosen first (green ⊕ node), it
allows to conclude directly after this substitution since there is no more
secret occurrence.

This leads us to define some challenges that an efficient
and scalable verification method should address.
• Selection heuristic. The mask selection heuristic must

be specified, for reproducibility concern. For scalability
reason, it must avoid as much as possible an increase in
expression size without sacrificing accuracy.
• Simplification. Having a fast and effective simplification

procedure is critical in order to reach both accuracy and
scalability, as it helps limiting the size of the expression,
and suppresses ineffective variable occurrences.
• Information caching. To prevent avoidable traversals of

sub-expressions, which is a required condition for scala-
bility, as much information as possible should be cached,
especially regarding variables used in the sub-expressions
(e.g. nature and number of occurrences).
• Efficient algorithms. All algorithms involved in the veri-

fication process should avoid as much as possible expres-
sion or graph traversal, and create or make use of cached
information.
• Memory representation. The graph data structure of an

expression impacts the solution to the previous points
in addition to the required memory footprint. Figure 3
shows the two possible memory representations of a
simple expression. As a real example, let us consider the

expressions in the mix-columns part of the AES: they
contain several common sub-expressions. Using the left
representation will result in a graph having a number of
nodes equal to the number of operations in the AES, while
using the right representation will result in the number of
nodes growing exponentially with the rounds.
It seems clear that only the memory representation al-
lowing several parents is scalable with the number of
operations. Note that SELA uses the right representation,
leading to an incorrect scalability claim by the authors.
The graph representing an expression should thus be able
to contain several edges to the same sub-expression, in
order to avoid the replication of sub-graphs. We can note
that using such a representation removes the possibility
to modify the graph, as modifying a sub-expression when
coming from one parent would modify it incorrectly for
all the other parents.

m k

+

'C'

m = symbol('m', 'M', 8)
l = symbol('k', 'S', 8)
e0 = k ^ m
e1 = e0 + e0
e2 = Concat(e1, e1)

m k

+

'C'

m k m k

+

m k

Figure 3. Two different memory representations for an expression using
several occurrences of a sub-expression. The representation on the left
uses node alias and allows a node to have several predecessors. The
representation on the right is a tree and duplicates internal nodes.

In the following, we present the core of LeakageVerif
and how LeakageVerif addresses these challenges, via
adapted representations and design choices.

3.3 Verification Algorithm
In this section, we first give some terminology before pre-
senting the main verification algorithm.

3.3.1 Terminology
In the following we call expression graph the n-ary graph
G = (V,E,S,M, r) representing an expression to verify. r is
the root node of the graph, V the set of nodes, E ⊂ V × V
the set of edges, S ⊂ V is the set of secret variables and
M ⊂ V the set of mask variables. Each node n in V is
either an operator node, either a variable node or a constant
node (and is a leaf in both last cases). All nodes but the root
can have several parent nodes, simply called parents in the
following.
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Each node appears only once in an expression graph. We
call number of occurrences of a node the number of times this
node is encountered when exploring all the paths starting
from the root. For a variable node this corresponds to the
number of times the variable appears in the corresponding
expression.

An operator node n is a masking operator node if the
corresponding operation is a masking operation, i.e. ⊕ or
+. A mask occurrence of a mask m is said to be masking if
there exists a masking operator node, when going up in the
graph, whose value is bijective w.r.t. the value of m. Such
a masking operator node is called a masking node. Also, all
bijective nodes above a masking node are masking nodes
too – this includes unary bijective operators such as ~. For
a given mask, we call base masking node the first masking
node encountered on a path going up in the graph. Figure 4
illustrates these different terms.

The verification algorithm searches for masking nodes.
When a substitution occurs, the selected masking node is
called the node to replace. It is replaced with the node of m,
while all the other occurrences of m are replaced with the
sub-expression graph starting at the masking node.

k0

~

&

+

p

m

+

p k1

Mask node

Secret node

Public node

Masking node

Base
Masking

Node

Base
Masking
Node

~

Masked sub-expression

Figure 4. Expression graph example. In this example, the mask m has
three occurrences and two parents. The left ⊕ node has two occur-
rences, while the right ⊕ node has one occurrence. The & node with
three children results from the simplification process, which merges
parent and children nodes of the same associative and commutative
operator.

3.3.2 Main verification algorithm

The main algorithm used for verification, adapted from [24]
is given in Algorithm 2. Substitutions are made until there
is no more secret occurrence in the expression, until a mask
is masking the whole expression, in which cases the value
True is returned, or until no more replacement can be made,
in which case the value False is returned. A simplification
is made at the beginning and after each replacement. When
the algorithm returns True, it guarantees that the expression
is secret independent. This implies that secret dependent
expressions are always detected by the return value False.
The return value False is also returned when the algorithm
fails to conclude for a secret independent expression (false
positive). Therefore, the return value False only indicates
a possible leakage. Figure 5 illustrates the principle of the
main procedure.

While entirely transparent to the user, the verification
can either be made at the word level, or at the bit-level.

m k

+

&

p

p +

&

p

p

m

No more secret:
Leakage free

Figure 5. m is a mask, k is a secret, p is a public variable. The mask m
has a single occurrence in the graph. The ⊕ node above m masks the
expression m ⊕ k, and is replaced with m. The graph contains no more
secret after the substitution.

This depends on the 1) operations present in an expression
(e.g. expressions containing only bitwise operators are never
verified at word-level) 2) on the previous verification results
of this expression’s sub-expressions (e.g. when a word level
verification has failed on an expression e, it will not be tried
on expressions containing e as a sub-expression), and on the
result given by the first call to ThresholdProbingSecurity
(e.g. when word-level verification fails, as shown by Ben
El Ouahma et al. [9], bit-level verification can sometimes
conclude). At bit-level, all variables are decomposed in as
many 1-bit variables as the number of bits they contain,
keeping the same nature, and all expressions are decom-
posed as the concatenation of 1-bit expressions. For word
expressions as for decomposed expressions, the same func-
tion ThresholdProbingSecurity is called on the expression
root.

3.4 Information Caching via Node Attributes

LeakageVerif was designed to keep the maximum informa-
tion needed for the verification algorithm in each node. In
particular, for some notions defined in the previous section
and additional ones needed for the algorithms involved in
the verification we cache them using a set node attributes.
These attributes are inferred from node to node. They are
computed once for each node of an expression graph using
some inference rules during node creation. In this section
we present these node attributes and inference rules.

Let us first define a set of simple predicates used by the
inference rules:
• maskingOp(n)→ B: states that n is a masking operation (i.e.
⊕ or +).
• preservingOp(n) → B: states that the operator node n

preserves the masking property of its single child. It is
true for unary bijective operations ~ and A (bijective array
access).
• parent(p, n)→ B: states that node p is a parent of the node

n.
• children(n) → P(V ): returns the set of children of the

node n.
• V(n) → P(V ): returns the set of nodes of the expression

sub-graph rooted at n.
We now define the following node attributes that we

compute using the inference rules presented in Figure 6.
Each attribute is given as a function but is actually attached
to the expression graph rooted at node n, which is passed as
the first parameter of the function.
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Algorithm 2 Algorithm for verifying threshold probing security.
Require: nodeIn is the root of the expression to analyse
Ensure: False is returned if the distribution of the expression nodeIn is dependent from a secret it contain. Otherwise, True is

probably returned.
1: procedure THRESHOLDPROBINGSECURITY(nodeIn)
2: n← simplify(nodeIn)
3: masksTaken← set()
4: while True do
5: if secretVarOcc(n, .) = 0 then
6: return True . No more secret
7: if maskedBy(n, ., .) then
8: return True . A mask is masking the current node
9: mask, nodeToReplace← SELECTMASK(n, masksTaken) . mask is the mask node masking the node to replace

10: if mask = None then
11: return False
12: masksTaken.add(mask)
13: n← GETREPLACEDGRAPH(n, mask, nodeToReplace)
14: n← simplify(n)

• preservedMask(n, m)→ B: states that the value of the node
n is bijective with the value of the node m, while there
is no masking operator in the graph between m and n.
For example, in the expression ~m, m is a preserved mask
in the ’~’ node. Its default value is false. Informally,
preserved masks are masks which have not yet masked an
expression but can make the next masking operator node
encountered a masking node. Rule R1a sets this attribute
for unary bijective operator node whose child is a mask
while rule R1b sets it for unary bijective operator node
which is a parent of a node which preserves the masking
property of a mask.
• maskedBy(n, m, bmn)→ B: states that the mask m is masking

the expression graph whose root is n via the base masking
node bmn. Its default value is false. Rules R2a, R2b, R2c and
R2d set this attributes in the respectively following case:
a) n is a masking operator and has m as a child and m has
no occurrence in any other child of n; b) n is an unary
bijective operator and its child is masked by m; c) n is a
masking operator and has one child preserving the mask
m while m has no occurrence in any other child of n; d) n
is a masking operator and has one child masked by m via
bnm while m has no occurrence in any other child of n.
• maskingMOcc(n, m, bmn, mn) → N: returns the number of

masking occurrences, in the expression graph whose root
is n, of the mask m via the base masking node bmn and the
masking node mn. Its value is set to 1 by rules R2a, R2b and
R2c under the same (exclusive) conditions as explained
for the maskedBy attribute. For other cases, it is set by the
rule R3 as the sum of the masking occurrences of m via the
base masking node bmn and the masking node mn in each
child of n.
• otherMaskOcc(n, m, p) → N: returns the number of non

masking occurrences, in the expression graph whose root
is n, of the mask node m for which its parent is p. Its default
value is 0. It is set to 1 by rules R4a for any parent of
a mask node that is not a masking operator node, and
by rule R4b for masking operator nodes being a parent
of m when occurrences of m exist in other children. It is
computed for other nodes using rule R4c.
• noOtherMaskOcc(n, m, c)→ B: states that there is no occur-

rence of m in the expression graph rooted at n other that

the ones in the sub-graph rooted at c. Its value is false for
leaves and is otherwise computed by rule R5 that checks
that there is no occurrence of the mask m in all the children
of n but c.
• secretVarOcc(n, s) → N: returns the number of occur-

rences of the secret variable s in the expression graph
whose root node is n. Its default value is 0. It is changed
by the rule R6a if n is a secret node or by the rule R6b for
nodes that are not a leaf.
All these attributes are implemented in LeakageVerif

mostly using python dictionaries. If the data structures re-
quired for implementing these attributes do have a memory
impact, this impact remains globally reasonable on the total
memory footprint. More importantly, these data structures
remain scalable with the number of nodes in the expression.
Moreover, they allow to have directly access to all the mask-
ing and non-masking occurrences of any mask from the root
node of the expression. These precomputed attributes are
thus an important implementation key point for scalability.

3.5 Selection Heuristic and Substitution Algorithm
3.5.1 Selecting a Mask Occurrence
The algorithm of the SELECTMASK procedure that chooses
the substitution to make is given in Algorithm 3. The goal
of this procedure is to choose a node in the expression
graph (selectedMaskingNode) which is masked with a mask
variable (selectedMask), in order to replace this node with
the mask variable itself. As mentioned in section 3.2, each
mask variable can be selected only once. Therefore, when
all masks have already been selected, the selection process
fails. It also fails when there is no masking mask occurrence
in the expression. This is a 3-step process:
1) Select the mask variable to use for the substitution. We

choose the mask variable m with at least a masking
occurrence which has the minimum number of parents
in the graph. Note that it is not necessarily the minimum
number of occurrences in the expression. This choice
is made because for every parent of m other than the
one corresponding to the node to replace, m must be
replaced with the whole expression. Thus, choosing a
mask variable with a high number parents will result in
the expression growing quickly, and having potentially
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preservingOp(n) ∧ parent(n, m)

preservedMask(n, m)
(R1a)

preservingOp(n) c ∈ V(n) parent(n, c) preservedMask(c, m)

preservedMask(n, m)
(R1b)

maskingOp(n) parent(n, m) noOtherOcc(n, m, m)

maskedBy(n, m, n), maskingMOcc(n, m, n, n) := 1
(R2a)

preservingOp(n) c ∈ V(n) parent(n, c) maskedBy(c, m, bmn)

maskedBy(n, m, bmn), maskingMOcc(n, m, bmn, n) := 1
(R2b)

maskingOp(n) c ∈ V(n) parent(n, c) preservedMask(c, m) noOtherOcc(n, m, c)

maskedBy(n, m, n), maskingMOcc(n, m, n, n) := 1
(R2c)

maskingOp(n) c ∈ V(n) parent(n, c) maskedBy(c, m, bmn) noOtherOcc(n, m, c)

maskedBy(n, m, bmn), maskingMOcc(n, m, bmn, n) := 1
(R2d)

c ∈ V(n) parent(n, c) maskingMOcc(c, m, bmn, mn)

maskingMOcc(n, m, bmn, mn) :=
∑

u∈children(n) maskingMOcc(u, m, bmn, mn)
(R3)

parent(n, m) ¬maskingOp(n)

otherMaskOcc(n, m, n) := 1
(R4a)

parent(n, m) maskingOp(n) ¬noOtherOcc(n, m, m)

otherMaskOcc(n, m, n) := 1
(R4b)

¬parent(n, m)

otherMaskOcc(n, m, p) :=
∑

c∈children(n) otherMaskOcc(c, m, p)
(R4c)

parent(n, c) ∀cc ∈ children(n), cc 6= c, ∀p ∈ V(cc), otherMaskOcc(cc, m, p) = 0 ∧ ∀mn ∈ V(cc),∀bmn ∈ V(cc), maskingMOcc(cc, m, bmn, mn) = 0

noOtherOcc(n, m, c)
(R5)

s ∈ S
secretVarOcc(s, s) := 1

(R6a)
secretVarOcc(n, s) :=

∑
c∈children(n) secretVarOcc(c, s)

(R6b)

Figure 6. Inference rules for node’s attributes. By convention, n, c and p are operator nodes, m is a mask node, s is a secret node, while cc can be
of any node nature.

more and more variable occurrences. This strategy is
illustrated in the introductory example in Figure 2.

2) Once the mask variable is selected, one has to choose
the base masking node to replace among all such nodes,
which are the masking parents of this mask. We select
the base masking node with the highest number of
occurrences in the expression, as this choice will have
the highest impact on the size of the resulting expression
graph after the replacement. Figure 7 illustrate this step
on a simple example.

3) Finally, once a base masking node has been selected,
if its parent and ancestors are masking or preserving
operators, it can be beneficial to replace a node higher up
in the expression in order to replace the biggest possible
sub-graph. However, this can only safely be made, i.e.
without making the expression more complex, if the
number of occurrences of the new node to replace is
equal to the one of the base masking node. Figure 8
illustrates this step.

mk0

+

&

p
k1

+

&

p
k1

m k0

Figure 7. Illustration of step 2: Choosing the base masking node to
replace. m is the only mask variable, k0, k1 are secrets, while p is a
public variable. There are two occurrences of possible nodes to replace
in the graph. We select the green one, with three occurrences in the
expression.

m k0
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Situation (a) Situation (b)

m
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p

m

~
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Figure 8. Illustration of step 3: Selecting the node to replace. m is a mask,
k0, k1 are secrets, while p is a public variable. In both situations, there is
only one possible base masking node at the end of step 2 (the ⊕ node).
In situation (a), the node to replace is higher than the base masking
node to cover the occurrence of k1. It is possible since ∼ and ⊕ are
bijective operators. In situation (b), the base node to replace at the end
of step 2, the green ⊕ node, is the final node to replace because the ∼
node above it has less occurrences than this node. The strategy allows
to conclude in both cases.

3.5.2 Substitution by Creating a New Graph

The substitution consists in replacing one or several nodes
in an expression graph. Since existing nodes cannot be
modified, all the nodes above a replaced node must be
rebuilt, up to the root. This is not the case for inference
methods, for which the expression graph is never modified
and never has to be traversed.

Algorithm 4 shows the graph traversal performing the
required replacements after a substitution has been decided.
In this algorithm, the variable newNodes is a map which as-
sociates a newly created node to the corresponding node in
the old graph. There are several cases when going through
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Algorithm 3 Algorithm for choosing a mask occurrence for a substitution
Require: n is the root node; masksTaken is the set of masks for which a substitution has already occurred
Ensure: Chooses the mask m with at least a masking node which minimizes the number of nodes parents of m; for this m,

chooses the base masking node to replace (selectedBMN) with the highest number of occurrences in the expression; for this
selectedBMN, chooses the node to replace with the maximum distance for the same number of occurrences

1: procedure SELECTMASK(n, masksTaken)
2: minNbParents←MAXVAL
3: selectedMask← None
4: . Step 1: selecting the mask which minimizes the number of nodes parents of m
5: for m such that maskingMOcc(n, m, ., .) > 0 do
6: if m ∈ masksTaken then
7: continue
8: nbParents← Card({bmn|maskingMOcc(n, m, bmn, .) > 0}) + Card({p|otherMaskOcc(n, m, p) > 0})
9: if nbParents < minNbParents then

10: minNbParents← nbParents
11: selectedMask← m
12: if selectedMask is None then
13: return None, None
14: . Step 2: choosing the base masking node to replace with the highest number of occurrences in the expression
15: maxCount← 0
16: selectedBMN← None . Selected base masking node to replace
17: for bmn such that maskingMOcc(n, selectedMask, bmn, .) > 0 do . bmn is a base masking node
18: if maskingMOcc(n, selectedMask, bmn, bmn) > maxCount then
19: maxCount← maskingMOcc(n, selectedMask, bmn, bmn)
20: selectedBMN← bmn
21: . Step 3: Choosing the masking node to replace with the maximum distance for the same number of occurrences
22: maxDist← -1
23: nodeToReplace← selectedBMN
24: for mn such that maskingMOcc(n, selectedMask, selectedBMN, mn) > 0 do
25: . mn is a masking node with base masking node selectedBMN
26: dist← distance(selectedBMN, mn) . distance(a, b) is the number of nodes between a and b
27: if maskingMOcc(n, selectedMask, selectedBMN, mn) = maxCount and dist > maxDist then
28: maxDist← dist
29: nodeToReplace← mn
30: return selectedMask, nodeToReplace

the current node’s children: if a corresponding node has
already been created in the new graph, we use this new
node as a new children (l. 7); if the child is the node to
replace, it is replaced with the selected mask node (l. 9); if
it is the selected mask node, it is replaced with the node to
replace (l. 11). Finally, if the selected mask does not appear
in the child, the original child is used as the new child (l.
16); in the other case, a recursive call is made to construct
the corresponding graph (l. 13). Eventually, the new node
is created with the same operator as the previous one, and
with the new list of children (l. 17).

Note that except when a substitution occurs, inducing
the creation of a new graph, the graph expression is never
traversed.

3.6 Simplification and Equivalence Comparison
A simplification is made at the beginning and after each
replacement in the main verification algorithm. As previ-
ously explained, it is challenging and important for both
scalability and accuracy. We present in this section the
simplification procedure in LeakageVerif and highlight its
key points, especially regarding equivalence comparison.
Simplification. LeakageVerif implements a lot of simplifi-
cations, and an important part of the complexity of the tool
lies in them. They include rules like constant propagation,
boolean simplifications, factorisation, n-ary operators, or
redundancy elimination. A rule of thumb that all simplifi-
cation rules must respect is that the number of operators

after the rule application must be less than before. This
guarantees that the size of an expression decreases after a
simplification rule is applied, what comes with two benefits:
this bounds the number of times a simplification rule can
be taken, guaranteeing the convergence; and this helps
avoiding that two equivalent expressions do not simplify
into the same expression.

The simplification procedure is made in a single pass on
the graph, from the leaves up to the root, in such a way
that all the opportunities for applying a simplification rule
are taken during this pass. This guarantees idempotence, i.e.
calling the simplification procedure on an already simplified
expression will let it unchanged. It is an important property,
as it allows to have a cache for already simplified expres-
sions. Each time the simplification function is called on a
node, a link towards the simplified equivalent node is kept
in the original node for future calls to this function.

The substitution and simplification rules do not change
whether the expression is a bit decomposed expression or
not. In addition to a link towards a simplified equivalent
expression, each node thus also has a cache for a simplified
equivalent node using single-bit variables, and a cache for
the extraction of each of its bits.

Finally, the simplification process is designed to
be efficient: if the simplification of an expression is a
recursive process, going from the leaves up to the root, the
simplification of a node whose children have already been
simplified only accesses the node and its direct children,
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Algorithm 4 Creation of the new graph for a selected mask and the corresponding node to replace
Require: node the root of the expression; selectedMask a mask variable; nodeToReplace a masking node in the graph, masked

with selectedMask
Ensure: All occurrences of nodeToReplace in node have been replaced with selectedMask, and all occurrences of selectedMask

in node have been replaced with nodeToReplace
1: procedure GETREPLACEDGRAPH(node, selectedMask, nodeToReplace)
2: procedure GETREPLACEDGRAPHREC(node, selectedMask, nodeToReplace, newNodes)
3: if node is not an operator then
4: return node
5: children← []
6: for child in node.children do
7: if child ∈ newNodes then
8: children.append(newNodes[child])
9: else if child is selectedMask then

10: children.append(nodeToReplace)
11: else if child is nodeToReplace then
12: children.append(selectedMask)
13: else if selectedMask appears in child then
14: newChild← GETREPLACEDGRAPHREC(child, selectedMask, nodeToReplace, newNodes)
15: children.append(newChild)
16: else
17: children.append(child)
18: n← Node(node.operator, children)
19: newNodes[node]← n
20: return n
21: return GETREPLACEDGRAPHREC(node, selectedMask, nodeToReplace, {})

and does not need to go all the way down in the expression.

Equivalence Comparison. The simplification process relies
on equivalence comparison in many aspects (e.g. when two
equivalent expressions are xor’ed, they must be replaced by
0). Therefore, having an efficient comparison is required for
having an efficient simplification.

In LeakageVerif, a hash value is computed for each
node upon creation. It is applied on the operation of the
node itself, and on the hash values of its children. It is safe
as the expression represented by a node is guaranteed to
remain identical over time. In order to ensure the unique-
ness of the hash of a given expression, the children of a
commutating operator have to be order in a unique manner:
this is achieved via the hash values of the children. The
hash function used is SHA-256, which makes the risk of a
collision negligible. This hash value allows to compare two
expression graphs by simply comparing their hashes in O(1)
time.

4 EXPERIMENTAL EVALUATION

4.1 Criteria
We compare LeakageVerif to three state-of-the-art available
tools designed for verifying masked implementations: SELA,
maskVerif and QMVerif. We define hereafter three criteria in
order to compare these tools:
• Expressiveness. This criterion seeks at defining the scope

of uses each tool can cover. In order to make this compar-
ison, we implemented 46 benchmarks and we looked at
which benchmarks could be implemented on each tool.
• Performances and scalability. This criterion seeks at

determining the impact of each tool via the analyses it
can complete on its supported benchmarks, depending
on the size of the program to verify. In order to make this
comparison, we ran all the benchmarks on each possible

tool and checked whether it completed within 24 hours.
Crash or memory errors are also reported.
• Accuracy. All considered tools are sound, in the sense

that they cannot miss leakages in expressions, but they are
all incomplete without relying on the expensive and non
scalable method of exhaustive enumeration. Thus, this
criterion aims at comparing the accuracy of the different
implementations of verification algorithms only, that is
without exhaustive enumeration.

4.2 Benchmarks

There is no simple way to fairly compare state-of-the-art
tools. First, there is no standard set of masked implemen-
tations. Second, each tool has its own input description
language, level of abstraction and input variable natures;
in particular, maskVerif directly uses shares to describe the
inputs, while the other tools use secret and mask variables.
Third, each masked implementation is also designed regard-
ing a specific leakage model and security notion.

Therefore, we decided to build a set of representative
benchmarks with a version for each of the considered tool.
To this end, we searched the literature to find various exam-
ples of masked algorithm descriptions, and then wrote or
translated them for each tool, when possible. The resulting
set of benchmarks constitutes MaskedVerifBench, which we
provide as an open-source collection of masked benchmarks
designed for masking verification.

For each selected benchmark, we describe what we used
as a starting point for writing the benchmark. We also
precise how we derive a version for each tool. We sometimes
resorted to so-called generator, a program that we made in
order to generate the code of a benchmark specifically for
one tool. However, as SELA and LeakageVerif have close
input formats, only one generator was used for both.

The following 46 benchmarks were used:
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Benchmark #Verifications #Leakages maskVerif QMVerif SELA LeakageVerif
ISW AND 8 0 3 3 3 3
SecmultCM 355 0 3 3 3 3
SecmultSM 10 0 3 3
A2B01 47 0? 3 3 3
B2A01 8 0 3 3 3
A2B14 182 0 3 3 3
B2A14 364 0? 3 3 3
B2A17 12 0 3 3 3
TI-Add 94 ? 3 3 3
TI-Add-Opt 78 ? 3 3 3
TI-Add-8 58 ? 3 3 3 3
TI-Add-Opt-8 50 ? 3 3 3 3
Sbox1 51 0 3 3
Sbox2 43 0 3 3
Sbox3 65 0 3 3
Sbox4 69 0 3 3
Sbox5 115 0 3 3
Sbox6 103 0 3 3
Sbox7 167 0 3 3
Sbox8 173 0 3 3

k3 11 2 3 3

k12 13 2 3 3

k15 23 2 3 3

k240 25 2 3 3

k252 33 2 3 3

k254 41 2 3 3
AES-Herbst 2666 0 3 3 3
AES-SM 1424 0 3 3
AES-FSE13 17602 0 3 3 3
P1 33 16 3 3 3 3
P2 25 8 3 3 3 3
P3 7 1 3 3 3 3
P4 7 0 3 3 3 3
P5 9 0 3 3 3 3
P6 10 3 3 3 3 3
P7 12 2 3 3 3 3
P8 19 3 3 3 3 3
P9 19 2 3 3 3 3
P10 29 2 3 3 3 3
P11 29 1 3 3 3 3
P12 196801 0 3 3 3 3
P13 196801 4800 3 3 3 3
P14 196801 3200 3 3 3 3
P15 198401 3200 3 3 3 3
P16 196801 4800 3 3 3 3
P17 204801 17600 3 3 3 3

Table 1
Masked programs used for benchmarking tools, with their number of expressions to verify (#Verifications) and the tools supporting them. The

number of expressions to verify is the one for LeakageVerif and can vary slightly from one tool to another. Column #Leakages gives the real
number of leaking expressions, based on the results of our experiments and other experiments in the literature.

Masking Order Refresh Secmult Power254
1st 2nd [28] [28] [5] [28] [8]

Sbox1 3 3 3 3
Sbox2 3 3 3 3
Sbox3 3 3 3
Sbox4 3 3 3
Sbox5 3 3 3 3
Sbox6 3 3 3 3
Sbox7 3 3 3
Sbox8 3 3 3

Table 2
Specification of the different versions of the SBox used, based on an

idea in [14]. Columns Masking Order give the masking order (note that
only order 1 verification is made in experiments); column Refresh

indicates that a refreshing mask procedure is used; columns Secmult
give the version of the secured multiplication used; columns Power254

give the version for the exponentiation to the value 254.

• ISW AND: this is the basic ISW scheme applied for the
logical AND with two shares [20].
• P1 to P17: these are 17 boolean C++ programs from the

publicly available cryptographic software implementa-

tions [11]. Among these programs, some are leaky while
some others are not. Generators translating the C++ code
for each tool were used, as programs P12-P17 are very
long and cannot be written manually.
• SecmultSM: this is the masked Galois field multiplication

algorithm from [28], in which the Galois field multipli-
cation is a basic operator. As SELA and maskVerif do not
support this operation, this benchmark was run only on
QMVerif and LeakageVerif.
• SecmultCM: this is the same algorithm as SecmultSM, but

in which the Galois field multiplication is concrete, i.e.
implemented using basic operations, as in a C implemen-
tation. Consequently, the number of operations is higher.
The codes for the different tools was written directly by
hand, unrolling loops when necessary.
• A2B01 and B2A01: these are arithmetic to boolean and

boolean to arithmetic masking conversion programs, as
presented in [17]. Generators were written for QMVerif,
SELA and LeakageVerif based on the pseudo-code given in
the article. As arithmetic operations are used, maskVerif
does not support this benchmark.
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• A2B14 and B2A14: these are arithmetic to boolean and
boolean to arithmetic masking conversion programs, as
designed in [7]. Generators were written from the algo-
rithmic description for QMVerif, SELA and LeakageVerif.
• B2A17: this is a boolean to arithmetic masking conver-

sion program, described in [6]. Generators were written
from the algorithmic description for QMVerif, SELA and
LeakageVerif.
• TI-Add, TI-Add-Opt, TI-Add-8 and TI-Add-Opt-8: the first

two benchmarks are assembly programs performing the
masked addition of two 32-bit masked values, given
in [21]. The versions ending with ’8’ are 8-bit adaptations
of the 32-bit programs: we made those because QMVerif
only supports 8-bit variables, and cannot implement the
32-bit versions. The programs were translated manually
from assembly to LeakageVerif programs, then a genera-
tor was used to translate them for other tools. All tools can
theoretically support these benchmarks, except QMVerif
for the 32-bit versions.
• Sbox1 to Sbox8: these are different implementations of a

masked SBox, based on an idea in [14]. Table 2 gives
the details for each version. All versions were written
entirely using generators, starting from the algorithms
and description given in the referenced articles. Due the
presence of symbolic multiplications, these could not be
implemented in maskVerif and SELA.
• AES-Herbst: this is the AES with the masking scheme

described in [19], comprising the key schedule and the
ten rounds. We wrote a generator for QMVerif in order
to unroll loops. Besides, we had to overcome the fol-
lowing problem. In this benchmark, the SBox is masked
and replaced with an array SBoxP such that SBoxP[x
⊕ m] = SBox[x] ⊕ m’, where m and m’ are two masks.
The verification can replace atomically the expression
SBoxP[x] with SBox[x ⊕ m] ⊕ m’. However, as QMVerif
verifies all the results of binary operations, it necessarily
verifies the expression x ⊕ m before verifying SBox[x ⊕
m] , which leaks since x is masked by m. We used a bug
found in QMVerif to overcome this problem, which is
that the Sbox operation is implemented as the identity
(see appendix A). This allows to do the masking with
m’ before the demasking. Finally, the presence of array
accesses prevents an implementation on maskVerif.
• AES-SM: this is a masked implementation adapted

from [29]. It implements the same masking scheme as
the one in AES-Herbst, but with a symbolic Galois field
multiplication by constants 2 and 3 in the mix-columns
step, and does not mask the key schedule. A generator
was used for QMVerif as well as the same SBox trick as
in AES-Herbst, while it is not implementable for SELA and
maskVerif.
• AES-FSE13: this is an implementation of the AES following

the scheme in [8]. The code was given to us as a QMVerif
file by the authors of this tool. We used a generator for
creating the LeakageVerif and SELA files. It seemed to
us that some lines in the benchmarks were redundant
and possibly incorrect (namely x000 = x000 ˆ x000 and
x001 = x001 ˆ x001 which we think should be x000 =
x000 ˆ k000 and x001 = x001 ˆ k001), but we chose to
not modify the original benchmark file.
• k3 to k254: following an idea in [14], these programs are

buggy implementations of the exponentiation used in the
AES. They were obtained via a generator for QMVerif and
LeakageVerif.
All benchmarks were run on a server with an Intel CPU

Xeon E5-2640v4, with 128GB of memory, under the Scientific
Linux 7 operating system. The version of QMVerif used was
downloaded on April 2021 and was compiled with the -O2
option. We tried to always use the best combination of
options, and we found that except for cases where it made
the program crash, the -sim option alone (which does some
simplifications) turned out to be the best configuration2,
often preventing QMVerif from running out of memory.
Finally, we tried to adapt the data bit size to 1 in the source
code for P1-P17, but reverted it back to 8 bits as it resulted
either in timeouts or in crashes depending on the options
used.

4.3 Expressiveness
We believe that the presented list of algorithms and source
code files is a representative set of masked implementations,
and covers a quite comprehensive set of what a verification
algorithm should be able to do. We summarize in Table 1 the
different benchmarks, and which tool is theoretically able to
pass them.

We can see in Table 1 that LeakageVerif is the only
tool which can theoretically support all the benchmarks.
We want to add that there is no benchmark that was not
included because we could not run it on LeakageVerif,
and we did not select the benchmarks a priori because it
could or could not be implemented on some tools. This
shows that LeakageVerif is adapted to support a wide
variety of masked programs, as well high-level algorithmic
descriptions as low-level ones. maskVerif fails to support
benchmarks with arithmetic operations, while QMVerif ab-
sence of support for variables with a size different from 8
bits prevents it from supporting the TI-Add original codes.
Also, while QMVerif has internal shift operators, but they
can never be returned by the parser. Thus, we modified the
parser to add it, allowing the tool to support SecmultCM,
TI-Add-8, TI-Add-Opt-8, and AES-Herbst. Finally, SELA has
the addition but no symbolic Galois field multiplication,
what prevents it from supporting SecmultSM, Sbox programs,
k programs, and some versions of the AES.

4.4 Performances and scalability
For each benchmark, in column #Leakages, we give the
number of leakages as reported by previous work [14] or
the authors of the benchmark. For benchmarks A2B01 and
B2A14, we have not been able to prove the absence of leak-
age : all the tools passing the benchmarks reported possible
leakages (cf. section 4.5), but manually analysing the first
expressions reported, we found out that they were false
positives. However, we have not done this analysis for all
the possibly leaking expressions. As maskVerif cannot pass
these programs and QMVerif enumeration could not finish
any of these two benchmarks, it is still possible that real
leakages exist. The article presenting the TI-Add benchmarks
does not explicitly state neither the absence of leakage in the

2. We mention benchmarks for which we deactivated it
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Benchmark #instructions maskVerif QMVerif SELA LeakageVerif
analysed

ISW AND 8 < 0.1s 0.2s < 0.1s 0.2s
SecmultSM 10 0.4s < 0.1s
SecmultCM 355 < 0.1s OoM 2.7s 0.7s
A2B01 8 Timeout < 0.1s < 0.1s
B2A01 8 17s < 0.1s < 0.1s
A2B14 183 1.7s 5.6s 0.9s
B2A14 364 OoM OoM 10s
B2A17 12 1m 30s 1.6s 0.2s
TI-Add 11 < 0.1s OoM 0.3s
TI-Add-Opt 7 < 0.1s 0.1s 0.1s
TI-Add-8 11 < 0.1s OoM < 0.1s < 0.1s
TI-Add-Opt-8 7 < 0.1s Timeout < 0.1s < 0.1s
Sbox1 51 0.2s < 0.1s
Sbox2 43 0.2s < 0.1s
Sbox3 65 0.7s 0.1s
Sbox4 69 0.8s 0.1s
Sbox5 115 0.3s 0.2s
Sbox6 103 0.2s 0.2s
Sbox7 167 1.2s 0.2s
Sbox8 173 1.2s 0.2s
k3 4 4m 8s < 0.1s
k12 4 4m 1s < 0.1s
k15 4 4m 3s < 0.1s
k240 4 4m 16s < 0.1s
k252 4 4m 14s < 0.1s
k254 4 4m 6s < 0.1s
AES-Herbst 2666 assert fails∗ OoM 20s
AES-SM 1425 OoM 0.5s
AES-FSE13 17602 OoM OoM 18s
P1 1 < 0.1s < 0.1s < 0.1s 0.1s
P2 9 < 0.1s < 0.1s < 0.1s < 0.1s
P3 7 < 0.1s 0.2s < 0.1s < 0.1s
P4 7 < 0.1s 0.5s < 0.1s < 0.1s
P5 9 < 0.1s 0.5s < 0.1s < 0.1s
P6 8 < 0.1s 55s < 0.1s < 0.1s
P7 11 < 0.1s 0.5s < 0.1s < 0.1s
P8 13 < 0.1s 53s < 0.1s < 0.1s
P9 13 < 0.1s 56s < 0.1s < 0.1s
P10 25 < 0.1s 29m 12s < 0.1s < 0.1s
P11 24 < 0.1s 26m 35s < 0.1s < 0.1s
P12 196801 OoM 5.8s 3m 8s 17m 19s
P13 1672 4m 20s 5.0s 6.3s 5.8s
P14 1711 4m 24s 1m 7s 6.5s 5.8s
P15 1717 4m 40s 25m 5s 6.0s 6.2s
P16 1712 4m 17s 4.9s 6.4s 6.2s
P17 1712 5m 30s 5.1s 6.3s 6.5s

Table 3
Execution times for every benchmark for all tools up to the first detected leakage. The second column gives the number of instructions analysed up

to the first detected leakage. A blank cell indicates that the tool could not run the benchmark. Times in bold indicate that a leakage was found.
Timeout indicates that the verification did not finish in 24 hours. OoM indicates that the verification ran out of memory. ∗: the -sim option of

QMVerif was deactivated because it provoked an error during a z3 simplification.

code nor the considered leakage model. Our experiments
reported possible leakages (cf. section 4.5), and a manual
analysis on the first possible leaking expressions revealed
that they were indeed leaking. As we did not perform the
manual analysis for all instructions, we only know that the
number of leakages is comprised between 1 and the values
reported by LeakageVerif.

We now evaluate the execution time of each benchmarks
on the available tools. One problem we had to face, in order
to compare the execution, is that maskVerif stops at the
first leakage encountered, while QMVerif verifies the whole
program, and it is a user decision for SELA and LeakageVerif.
In order to compare the three tools, we decided to modify
QMVerif to make it stop after the first leakage encountered,
and used this option as well for SELA and LeakageVerif.
Table 3 thus presents the execution times up to the first
leakage detected. For a fair comparison, we verified man-
ually that for all cases where a possible leakage is detected
in a benchmark, it is the same leakage for all tools.

Looking at these results, we can see that, maskVerif per-

forms very well on small programs, but tends to have signif-
icantly longer execution times for longer programs, namely
P13 to P17. It is relevant to note that for these programs, the
time taken to read the input file is non-negligible: around
5 seconds for LeakageVerif for example, which detects a
leakage immediately after. QMVerif runs out of memory
on 5 benchmarks, has two timeouts, and one assert failure.
Besides, it is significantly slower than LeakageVerif on 15
benchmarks (B2A01, B2A17, k3 to k254, P6, P8 to P11, P14 and
P15). It is significantly faster than LeakageVerif only on P12:
we tried to investigate the reason of this good performance
compared to the other tools (QMVerif and SELA run out of
memory while LeakageVerif passes almost all of its time on
one instruction near the end), but so far we could not isolate
the rule allowing for this quick conclusion. Finally, SELA runs
out of memory in 4 benchmarks due to its lack of scalability.
It does not manage to complete the analysis of the first
eleven instructions of TI-Add, and cannot pass more than
2 rounds of the AES-Herbst. Overall, we can conclude that
LeakageVerif has a clear global advantage over the other
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Benchmark QMVerif SELA LeakageVerif
Leaks Execution time Leaks Execution time Leaks Execution time

A2B01 Timeout 35 10m 4s 35 1.9s
B2A14 OoM OoM 1 10s
TI-Add OoM 70 5m 7s
TI-Add-Opt OoM 66 1m 56s
TI-Add-8 OoM OoM 36 2.2s
TI-Add-Opt-8 Timeout OoM 38 1.4s
k3 2 99m 29s 2 < 0.1s
k12 2 104m 2s 2 < 0.1s
k15 2 106m 10s 2 < 0.1s
k240 2 108m 55s 2 < 0.1s
k252 2 106m 2s 2 < 0.1s
k254 2 109m 59s 2 < 0.1s
P1 16 < 0.1s 16 < 0.1s 16 < 0.1s
P2 8 0.3s 8 < 0.1s 8 < 0.1s
P3 1 < 0.1s 1 < 0.1s 1 < 0.1s
P6 3 2m 10s 3 < 0.1s 3 < 0.1s
P7 2 1m 8s 2 < 0.1s 2 < 0.1s
P8 3 3m 28s 3 < 0.1s 3 < 0.1s
P9 2 2m 2s 2 < 0.1s 2 < 0.1s
P10 OoM 2 < 0.1s 2 < 0.1s
P11 OoM 1 < 0.1s 1 < 0.1s
P13 4800 84m 12s 4800 3m 8s 4800 13m 57s
P14 3200 4116m 20s 3200 3m 9s 3200 13m 54s
P15 OoM 3200 3m 34s 3200 8m 0s
P16 Seg. Fault 4800 3m 11s 4800 13m 58s
P17 17600 29m 30s 17600 3m 15s 17600 13m 31s

Table 4
Execution times for the entire analysis of programs with leakages for QMVerif, SELA and LeakageVerif. OoM indicates that the verification ran

out of memory.

tools.

In order to have a more in-depth comparison, we let
QMVerif, SELA and LeakageVerif complete their analysis on
the programs for which a leakage was detected. Indeed, it
is often more interesting to get all the leaking expressions
in a program in a single verification than having to correct
the leaking parts one by one and rerun a verification after
each correction. It is also an interesting use-case as it stresses
more substitution methods, since a leaking expression will
often select and make replacements with all masks before
failing to conclude. If not handled correctly, the expression
size can grow a lot and limit the tool scalability. Table 4
presents the verification time of the whole program, for
programs with at least one leakage, along with the number
of leaking expressions detected for each tool.

We can notice that when the analysis completes, the
three tools detect the same number of leakages. We can also
notice that for all the ki programs, QMVerif takes around
one hundred minutes, while LeakageVerif takes less than
0.1s. For programs P1 to P11, QMVerif does three quick veri-
fications, four verifications between 1 and 3 minutes, while
two verifications run out of memory. SELA and LeakageVerif
on the other hand, complete all the analysis in less than
0.1s. For longer programs P13 to P17, QMVerif does two
Out of Memory and is significantly slower than SELA and
LeakageVerif for the three other benchmarks. We can also
notice that SELA is faster than LeakageVerif: this is due to
the fact that the expression graphs of these programs are
not folded (in the sense that an intermediate computation
result is never used twice), combined to the fact that there
are a big number of variables. Therefore, maintaining meta-
information in the nodes of the expression is very costly for
LeakageVerif when substitutions occur by the end of the
program, while it does not bring interest in this particular
case. However, we consider this overhead as acceptable

as it does not compromise scalability. On the other hand,
SELA runs out of memory on all TI-Add benchmarks, while
LeakageVerif is the only tool able to complete them.

Finally, SELA’s lack of scalability can also be seen on
A2B01, where it takes more than 10 minutes to complete,
whereas LeakageVerif takes less than 2 seconds. In order to
reach maximum performance, maskVerif and LeakageVerif
could probably benefit from being written in a lower level
language instead of a high-level one, and maybe gain up
to an order of magnitude in time. Yet, the most important
aspect is scalability with the growth of the expression, for
which this cost does not make much difference in the end.
Added to that, the development in a lower-level language
would be much longer and subject to a lot more bugs.

Regarding memory exhaustion, if QMVerif and SELA
memory consumption quickly grows and several bench-
marks exhaust the 128GB limit, memory consumption re-
main quite low for LeakageVerif since the memory used is
below 1GB, except for P12-P17 where it is around 8GB.

Regarding maskVerif, we do not know if the time it takes
for P13 to P17 to reach the first leakage is due to enumeration
because their substitution algorithm is less precise than the
one implemented in LeakageVerif, or for another reason.

Finally, for QMVerif, we noticed that the fast verifications
– the one during less than a minute – were the ones for
which the enumeration was not called. This raises the ques-
tion of the accuracy of the inference alone, compared to the
substitution approach implemented in other tools.

4.5 Accuracy
As mentioned above, both verification methods by inference
and by substitution are sound, but the tools implementing
them can claim to be complete only by resorting to a
costly exhaustive enumerative approach when they cannot
conclude with their inference or substitution rules only. In
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Benchmark QMVerif LeakageVerif
ISW AND 0 < 0.1s 0 (0)
SecmultSM 0 < 0.1s 0 (0)
SecmultCM 1∗ 40s 0 (0)
A2B01 Error 35 (37)
B2A01 1 0.5s 0 (2)
A2B14 0 < 0.1s 0 (0)
B2A14 OoM 1 (1)
B2A17 1 1.1s 0 (2)
TI-Add 0? (≥ 10)
TI-Add-Opt 0? (≥ 2)
TI-Add-8 ≥ 28∗ < 0.1s 0? (≥ 8)
TI-Add-Opt-8 ≥ 26∗ < 0.1s 0? (≥ 4)
k3 0 0.6s 0 (0)
k12 0 0.2s 0 (0)
k15 0 0.3s 0 (0)
k240 0 0.2s 0 (0)
k252 0 0.4s 0 (0)
k254 0 0.4s 0 (0)
Sbox1 0 0.1s 0 (0)
Sbox2 0 0.1s 0 (0)
Sbox3 0 0.6s 0 (0)
Sbox4 0 0.6s 0 (0)
Sbox5 0 0.2s 0 (0)
Sbox6 0 0.2s 0 (0)
Sbox7 0 1.1s 0 (0)
Sbox8 0 1.1s 0 (0)
AES-Herbst Timeout∗ 0 (1280)
AES-SM Timeout 0 (0)
AES-FSE13 OoM 0 (0)
P1 0 < 0.1s 0 (0)
P2 0 0.4s 0 (0)
P3 0 0.1s 0 (0)
P4 3 0.2s 0 (0)
P5 2 0.2s 0 (0)
P6 0 0.5s 0 (0)
P7 2 0.4s 0 (0)
P8 0 0.6s 0 (0)
P9 0 0.5s 0 (0)
P10 0 0.7s 0 (0)
P11 2 0.7s 0 (0)
P12 0 5.8s 0 (0)
P13 0 86m13s 0 (0)
P14 0 33m33s 0 (0)
P15 0 57m08s 0 (0)
P16 0 Seg. Fault 0 (0)
P17 0 21m34s 0 (0)

Table 5
Number of false positives found by QMVerif with enumeration disabled
and LeakageVerif. For QMVerif, the corresponding execution times
are given, while for LeakageVerif, the number of false positives with
bit analysis disabled is given between parentheses. ∗: the -sim option
of QMVerif was deactivated because it provoked an error during a z3

simplification.

order to compare the accuracy of the inference rules in
QMVerif with the substitution approach in LeakageVerif, we
deactivated the enumeration in QMVerif, counting instead
a potentially false positive when the inference failed to
conclude. We did not do the same for maskVerif due to our
lack of understanding OCaml code, and thus our inability
to do the same modification.

Table 5 presents the number of false positives for QMVerif
without enumeration and LeakageVerif, i.e. the number
of expressions for which they cannot conclude threshold
probing security, while the expression does not leak (SELA
is not included since it has the same number of leakages
as LeakageVerif for the benchmarks it can complete). We
can observe that for the two benchmarks A2B01 and B2A14
for which LeakageVerif has at least a false positive, QMVerif
does not manage to end its analysis. QMVerif also has false
positives for 9 other benchmarks. Going into the details,
when deactivating enumeration in QMVerif: six benchmarks
previously verified without false positives now have some,

but take less time (P4, P5, P7, P11, B2A01, B2A17); three
benchmarks for which the verification could not finish
can now be verified, but with false positives (TI-Add-8,
TI-Add-Opt-8, SecmultCM); four programs have identical re-
sults and a slower verification time (P13-P15, P17); five
benchmarks which could not be verified still cannot (the
three AES, A2B01, B2A14). For TI-Add-8 and TI-Add-Opt-8,
QMVerif actually found 64 possible leakages. However, as
LeakageVerif reported only 36 and 38 possible leakages,
QMVerif has at least 28 and 26 false positives respectively
for these benchmarks. Having slower execution times with
enumeration deactivated can seem counter-intuitive, but we
think it is actually possible: if the enumeration finishes and
concludes the absence of leakage, we think that this allows
for faster subsequent verifications, which may otherwise
require calling the formal solver.

Regarding QMVerif execution times without enumer-
ation, they are still significantly higher than those of
LeakageVerif for several benchmark (SecmultCM, P13-P15,
P17), while never being significantly lower.

The rightmost column in Table 5 gives, between paren-
theses, the number of false positives when the bit analysis
is deactivated in LeakageVerif. We can observe the benefits
of this bit analysis as it allows to reduce the number of false
positives for the four TI-Add benchmarks, for three out of
the five conversion benchmarks, and for AES-Herbst. This
illustrates the interest of this transformation.

In conclusion, we can state that QMVerif supports less
benchmarks and operators than LeakageVerif and often
results in timeouts or memory exhaustion. Deactivating
enumeration in QMVerif allows to speed up the verification
time for some of the benchmarks and complete the verifica-
tion for others failing with enumeration, but always at the
cost of having more false positives; it can also make some
verifications slower. Overall, for the completed benchmarks
and except for the program P12, LeakageVerif always pro-
vides identical or better results than QMVerif while going at
the same speed or faster.

5 CONCLUSION AND FUTURE WORK

We presented a efficient and scalable approach, based
on a substitution method, for verifying the absence of
first order leakage in symbolic expressions, using a sub-
stitution approach. This approach was implemented in a
tool, LeakageVerif, which we compared to three state-of-
the-art other tools on 46 benchmarks, and showed that
LeakageVerif performs better than these tools in terms of
expressiveness regarding supported programs, scalability
regarding execution time and memory used, and accuracy
of its results when not relying on enumeration. The tool
as well as the benchmarks written for all evaluated tools
will be released in the hope that they will be useful to the
community and for reproducibility.

Future work includes the support in LeakageVerif of
hardware circuits with glitches and registers, as well as
supporting stronger security notions and higher verification
orders.
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