Quentin L Meunier
email: quentin.meunier@lip6.fr

Etienne Pons
email: etienne.pons@lip6.fr

Karine Heydemann
email: karine.heydemann@lip6.fr

LeakageVerif: Efficient and Scalable Formal Verification of Leakage in Symbolic Expressions

Side-channel attacks are a powerful class of attacks targeting cryptographic devices. Masking is a popular protection technique to thwart such attacks as it can be theoretically proven secure. However, correctly implementing masking schemes is a non-trivial task and error-prone. If several techniques have been proposed to formally verify masked implementations, they all come with limitations regarding expressiveness, scalability or accuracy. In this work, we propose a symbolic approach, based on a variant of the classical substitution method, for formally verifying arithmetic and boolean masked programs. This approach is more accurate and scalable than existing approaches thanks to a careful design and implementation of key heuristics, algorithms and data structures involved in the verification process. We present all the details of this approach and the open-source tool called LeakageVerif which implements it as a python library, and which offers constructions for symbolic expressions and functions for their verification. We compare LeakageVerif to three existing state-of-the-art tools on a set of 46 masked programs, and we show that it has very good scalability and accuracy results while providing all the necessary constructs for describing algorithmic to assembly masking schemes.

Finally, we also provide the set of 46 benchmarks, named MaskedVerifBenchs and written for comparing the different verification tools, in the hope that they will be useful to the community for future comparisons.

INTRODUCTION

S IDE-CHANNEL ATTACKS (SCA) exploit the relationship between physical quantities such as time, power consumption or electromagnetic emissions and secret data manipulated by cryptographic implementations to retrieve these secret data. Since the pioneer Differential Power Analysis attack (DPA) [START_REF] Kocher | Differential power analysis[END_REF], several other SCA based on power consumption or electromagnetic emissions have been shown to be very effective to recover the secret key [START_REF] Mangard | Power analysis attacks: Revealing the secrets of smart cards[END_REF]. As with the advent of the Internet-of-thing, more and more devices use cryptographic implementations and are accessible, these attacks have become a serious threat and protecting such devices against SCA has become a major concern.

Masking is a popular protection technique to thwart SCA as it can be theoretically proven secure. Its principle is to break the dependency between measurable physical quantities and manipulated secret data by making intermediate computations statistically independent from the secrets. This is achieved by splitting each secret data into n + 1 shares, n being the masking order, such that only the recombination of all the shares allows to deduce information on the secret. A simple way to split a secret on n + 1 shares is to use n random and uniform variables, called masks, and to obtain the last share by combining the n first shares with the secret. This combination depends on the masking type: boolean masking uses exclusive-or (xor, ⊕)), arithmetic masking uses addition. An algorithm for which each intermediate result is statistically independent from its secrets is said to be leakage-free at order 1. However, in order to achieve this leakage-free property, each procedure of the non-masked algorithm must be adapted to take the sharing into account. This is not a trivial task as nonlinear operations w.r.t the masking scheme require special care to avoid unmasking the secrets and because leaking expressions can be hard to find by hand. Moreover, from a (proven-secure) masked algorithm to the final masked implementation, several flaws can be introduced: a correctly masked algorithm can be incorrectly implemented in software or hardware, or a correctly masked source code can lead to a leaking assembly code due to the compilation and its optimisations that can reorder computations. As a consequence, it has emerged a critical need for automatic verification methods to check the leakage-free property of software or hardware implementations in the different abstraction levels (algorithmic, C or HDL program, assembly program).

Different methods for automatically verifying the security of a masked hardware or software implementation have been proposed. They are all based on the analysis of the expressions manipulated by the program or circuit at a given abstraction level. Such methods aim to determine if the probability distribution of an expression depends on the secrets of the algorithm. If the first proposed methods relied on enumeration over all possible values, explicitly or implicitly using SMT formulations [START_REF] Eldib | Qms: Evaluating the side-channel resistance of masked software from source code[END_REF], [START_REF] Eldib | Quantitative masking strength: quantifying the power sidechannel resistance of software code[END_REF], the more recent symbolic techniques avoid enumeration as it is not a scalable approach. Symbolic verification methods can be split into two categories: methods by inference [START_REF] Inès | Symbolic approach for side-channel resistance analysis of masked assembly codes[END_REF], [START_REF] Inès | Side-channel robustness analysis of masked assembly codes using a symbolic approach[END_REF], [START_REF] Gao | Quantitative verification of masked arithmetic programs against side-channel attacks[END_REF], [START_REF] Gao | Verifying and quantifying side-channel resistance of masked software implementations[END_REF], [START_REF] Zhang | Sc infer: refinement-based verification of software countermeasures against side-channel attacks[END_REF] and methods by substitution [START_REF] Barthe | maskverif: Automated verification of higher-order masking in presence of physical defaults[END_REF], [START_REF] Barthe | Verified proofs of higher-order masking[END_REF]. Approaches using an inference method make use of a set of rules to infer the distribution type an expression from the current operation and the distribution type of its children, going from the leaves to the root of the expression. A distribution type can usually be one of: secret dependent, secret independent, uniform, or unknown when the verification algorithm cannot conclude. Approaches using substitution aims to transform the expression by 1) finding a sub-expression masked by a random variable r which is not present in the sub-expression; 2) replacing the sub-expression by the random variable r. By iterating this find-replace strategy, if the expression is correctly masked, there should eventually no longer be any occurrence of any secret variable at the end of the substitutions: the expression is then considered leakage free. With both types of symbolic methods, the verification can fail to conclude for some expressions which are then considered as "possibly leaking". Resorting to an enumerative technique to determine the distribution type may sometimes help to conclude but this work around is limited to small expressions or variable sizes, due to the inherent non-scalability of enumeration. As a consequence, verification methods must be as precise as possible to be able to conclude for as many leakage-free expressions as possible.

Last but not least, the tools implementing such approaches must be scalable and efficient as real masked implementations require to analyze a large number of expressions that may contain several secret data and random variables.

While different leakage verification tools exist, in particular QMVerif [START_REF] Gao | Verifying and quantifying side-channel resistance of masked software implementations[END_REF], SELA [START_REF] Meunier | Sela: a symbolic expression leakage analyzer[END_REF] and maskVerif [START_REF] Barthe | maskverif: Automated verification of higher-order masking in presence of physical defaults[END_REF], as we show in this paper, no existing tool fulfills at the same time versatility, scalability and accuracy. The work presented in this article aims at filling this gap, by making the following contributions:

• We propose an efficient and scalable approach for verifying the first-order leakage-free property of a complex expression. We highlight the key aspects which make it possible to reach such a scalability compared to other existing tools; • We provide an open-source implementation of this approach in a tool called LeakageVerif 1 ; • We provide a thorough comparison of LeakageVerif with three state-of-the-art tools for verifying expressions, on a set of 46 representative masked programs, and we show that LeakageVerif performs better than the other tools in terms of expressiveness, scalability and accuracy; • Finally, we also provide the first open-source collection of masked benchmarks for verification, called MaskedVerifBench, in the hope that they will be useful for the community. For each benchmark, we provide a description and a version for the tools LeakageVerif, maskVerif and QMVerif whenever possible. The rest of the paper is organized as follows: section 2 presents some background and related works regarding masking and existing verification tools; section 3 presents our approach for verifying symbolic expression; section 4 presents the benchmarks we used and a detailed comparison between existing tools; finally, section 5 concludes and discusses future work.

BACKGROUND AND RELATED WORKS

Security Notions

Different security properties have been proposed regarding masking schemes [START_REF] Barthe | maskverif: Automated verification of higher-order masking in presence of physical defaults[END_REF], [START_REF] Eldib | Qms: Evaluating the side-channel resistance of masked software from source code[END_REF], [START_REF] Ishai | Private circuits: Securing hardware against probing attacks[END_REF]. Among those, the most 1. The source code of LeakageVerif is available at https://github.com/quentin-meunier/LeakageVerif employed property is threshold probing security. A program or device is threshold probing secure at a given order d if an attacker able to probe d internal values during the execution cannot learn any information on the secret. In the rest of the article, we focus on this security property, even if some stronger properties exist, such as Non-Interference (NI) or Strong Non-Interference (SNI) [START_REF] Barthe | maskverif: Automated verification of higher-order masking in presence of physical defaults[END_REF].

This article precisely focuses on first order probing security, as it is a criteria that all masked programs must verify, and as it is a basic block for higher-order verification methods [START_REF] Barthe | Verified proofs of higher-order masking[END_REF]. Having an efficient first order verification is therefore critical.

Verification must be made according to a leakage model, which is an abstraction of real leakages. Two commonly used leakage models are: 1) the value-based leakage model, in which the leakages are the computation results, and 2) the transition-based leakage model, for which the leaked values are either any combination, or the exclusive-or, between two values consecutively hold in a shared resource (e.g. a variable, a assembly register, a bus or any hardware element). Analysing a program with expressions based on transitions requires to have an underlying implementation giving variables storing expressions, the written assembly registers, or other hardware elements, depending on the abstraction level. Even if low-level descriptions enable more accurate results w.r.t. the real leakages, this knowledge is not always available. Most importantly, once an implementation is known, it is easy to build expressions modeling transitions to match this implementation and transition-based leakage model. Moreover, a tool able to verify leakages in the value model can easily make the verification in the transition model. For this reason, we only consider leakages in the value model in this article.

Masking Schemes

If transforming a program in a masked equivalent is usually not an automatic process, there exists some proven constructions for small boolean functions, most especially in hardware, which allow to design masked circuit fragments (called gadgets). The advantage of such constructions is that they are guaranteed to be well masked, but their composition is not, and often requires registers between gadgets.

Notable masking schemes include the ISW one, presented in [START_REF] Ishai | Private circuits: Securing hardware against probing attacks[END_REF], which consists in decomposing a circuit in AND, NOT and XOR gates, while providing an d-order threshold probing secured implementation for each of these gates. However, this scheme does not consider glitches, which are transient values in hardware due to different propagation delays between wires and gates, and which can affect a hardware implementation. The Threshold-Implementation (TI) scheme is proposed in [START_REF] Nikova | Threshold implementations against side-channel attacks and glitches[END_REF] for boolean functions. The claim made by the authors is that generating random or pseudo-random value is costly, and therefore should be avoided. The scheme does not use such internal random values, but instead requires more shares and gates for achieving the same level of security. In 2015, Reparaz et al. [START_REF] Reparaz | Consolidating masking schemes[END_REF] try to unify the previous constructions, and proposes a General Masking Scheme (GMS) model based on four layers for masking boolean functions. The gain compared to TI is a reduction in complexity for first order resistance (at the price of using more randomness), and a gain in security for higher orders. Finally, Gross et al. [START_REF] Groß | Domainoriented masking: Compact masked hardware implementations with arbitrary protection order[END_REF] present Domain-Oriented Masking (DOM), which uses a similar structure to GMS, but achieves an identical level of security with a reduced sharing order, d-order threshold probing security with d shares for the AND function. This is done by inserting registers inside the computation in order to stop glitch propagation.

As opposed to these general schemes, some masked programs have to be written by hand, what is especially true for software implementations. For such programs, there is no guaranty that every intermediate expression is leakagefree, and an automatic verification is advised. Moreover, even with a leakage-free description at the algorithmic level, an implementation of this algorithm can exhibit leakages due to the lower-level construct, e.g. the implementation of the abstract Galois field multiplication. This is all the more true at assembly level, what shows the need to be able to prove masking programs at different abstraction levels.

Masking Verification

Verifying that the distribution of a masked expression is independent from the secret values can be done with an exhaustive approach, by enumerating all possible secret values, and for each combination of secret values, by computing the distribution of the expression for every possible mask value. If the expression is well masked, all obtained distributions must be identical.

The problem of such an approach is that the time required grows exponentially with the number of bits in all variables. Symbolic methods, on the other hand, reason on variable types and operators to deduce information on the expression. For example, given a secret variable k and a mask m on n bits, we can deduce that the expression k ⊕ m is leakage-free for every value of n. In most cases, however, the size of each variable or constant must be provided to perform the verification.

The first substitution algorithm for verifying the absence of leakage in an expression was described in [START_REF] Barthe | Verified proofs of higher-order masking[END_REF]. The property verified is threshold probing security for any order d. It states that the joint distribution of any set of d expressions is independent from the secrets values contained in the expressions. This algorithm was first implemented in the EasyCrypt tool [START_REF] Barthe | Easycrypt: A tutorial[END_REF], but not made accessible. This algorithm was then implemented for the verification of hardware circuit in a tool called maskVerif [START_REF] Barthe | maskverif: Automated verification of higher-order masking in presence of physical defaults[END_REF]. The latter takes as input an annotated verilog file containing the circuit to verify. The strength of maskVerif is to verify efficiently higher-order masked gadgets, and for three security properties: threshold probing, NI and SNI.

A substitution method was also used in the tool SELA [START_REF] Meunier | Sela: a symbolic expression leakage analyzer[END_REF], which is a python library with dedicated constructs for creating and verifying symbolic expressions. The goal of SELA is to provide an easy to use framework for writing and analysing symbolic expressions at different abstraction levels. The authors show the interest of the approach by verifying algorithmic codes as well as assembly codes or circuits. In that sense, it is somewhat similar to the goal of LeakageVerif. However, SELA suffers from important scalability issues which prevents it from being used in many real applications. This can be seen for example on its verification of the AES, which is limited to two rounds.

Another approach, presented in [START_REF] Inès | Symbolic approach for side-channel resistance analysis of masked assembly codes[END_REF], [START_REF] Inès | Side-channel robustness analysis of masked assembly codes using a symbolic approach[END_REF] introduced symbolic analysis based on inference. Inference permits reusing the results of sub-expressions for determining the result of the current expression, while the substitution approaches must start from scratch for each new expression, even if it is a combination of already analysed expressions. The advantage of this property seems clear since algorithms and circuits can be decomposed as a succession of operations re-utilizing the results of previous operations. On the other hand, the inference rules in [START_REF] Inès | Symbolic approach for side-channel resistance analysis of masked assembly codes[END_REF] could not conclude in some cases contrary to the substitution approach. This inference technique was used as a basis in several works: it was first implemented in a somewhat similar way in a tool called SCInfer [START_REF] Zhang | Sc infer: refinement-based verification of software countermeasures against side-channel attacks[END_REF], then improved with more precise rules in the QMSInfer tool [START_REF] Gao | Verifying and quantifying side-channel resistance of masked software implementations[END_REF]. Support for arithmetic operators was added in the QMVerif tool in [START_REF] Gao | Quantitative verification of masked arithmetic programs against side-channel attacks[END_REF], along with some improvements. Finally, support for function calls was added in [START_REF] Gao | Formal verification of masking countermeasures for arithmetic programs[END_REF] and the tool was made accessible.

Limitations of Existing Tools

The maskVerif, QMVerif and SELA tools are accessible along with their source code. We analysed them to the extent of our understanding and tried to use them as much as possible. It came out that each of them has limitations when used as a basis for verifying general masked expressions, such as expressions resulting from C codes or assembly codes. maskVerif. maskVerif is tool written in OCaml designed for the verification of circuits, but proposes a software scenario for the verification of algorithms, in which glitches can be considered, and in which the sequential aspect of the program is simulated using a register-like behaviour: each expression computed by the program is written into a register. However, it is still not very well adapted for some benchmarks. In particular, it lacks support for arithmetic operations like the addition or array accesses. It also lacks support for arbitrary size variables and expressions, since the only possible sizes for variables are 1, 8 and 32 bits, and there is no bit concatenation/extraction operations, what makes this tool hardly suited to the analysis of assembly code. Moreover, as it is designed for verifying circuits, it is not possible to verify the distribution of a word composed of several bits, what forced us to use tricks for some programs, namely to combine the different bits of a word in a way they don't simplify. Finally, still linked to the hardware orientation of the tool, there is no way of expressing a basic control flow besides function calls.

We also encountered an error, reported to the authors, for which the tool generated incorrect expressions when using function calls, forcing us to manually inline functions instead. QMVerif. As a tool for verifying algorithms, QMVerif does not have some of the problems of maskVerif. It is a tool written in C++, which is able to verify expressions on words and supports arithmetic operations. However, variables are all on 8 bits, and there is no way for having a variable or an expression on a different size. If some algorithms behave the same way independently from variable size (in case only bitwise operations are used), this is often not the case. Moreover, some implementations can also mix different sizes together, e.g. the AES which can manipulate both bytes and words in some implementations for performance reason. Besides, there is no support for basic control flow like loops. Additionally, it uses as input an ad-hoc format in which expression must be written using a single operator per line.

Besides, although the authors of [START_REF] Gao | Formal verification of masking countermeasures for arithmetic programs[END_REF] claim their tool to be open-source, the version of the tool we have access to does not have the characteristics presented in the article: it has no support for functions and assumptions, and no support for additional rules, called transformation oracles.

Additional limitations include the fact that the parser does not report some errors and that some operators which are supposed to be supported, such as shifts, are also never returned by the parser. Finally, there are some limitations due to hard coded values, in particular regarding the number of masks during enumeration. SELA. SELA does not have many of the previously mentioned problems. The fact that it is provided as a python library allows it to benefit from python operators and its control flow constructions. Its syntax based on z3py [START_REF]Z3py-python interface for the z3 theorem prover[END_REF] allows it to manage expressions of arbitrary size. Finally, an interesting aspect of SELA comes from the fact that by changing the definition of symbolic variables with constant values, it is possible to check the results, and thus the functionality of the program implemented. This is a very useful feature, which is not possible with maskVerif and QMVerif.

The major limitation of SELA comes from the fact that when two expressions are combined with an operator, they are entirely copied to create a new expression. This results in an exponential growth of the expression size in memory when some sub-expressions are used several times, e.g. in the mix-columns part of the AES. As a consequence, it has a limited scalability in the number of operations.

LEAKAGEVERIF

This section presents our new substitution approach for checking secret independence in symbolic expression, implemented in a tool called LeakageVerif. Its goal is to provide a user-friendly, scalable, accurate, versatile and opensource verification process, while overcoming the limitations of other existing approaches and tools. We claim that it is currently the best tool for verifying the absence of leakage in expressions in the first order threshold probing leakage model.

Overview

Inspired by SELA, LeakageVerif comes as a python library, and offers constructions for variables, constants and expressions by overloading standard python operators. Variables are symbolic and must have a type among Secret, Public or Mask. Variables and constants must have a defined size in bits. Threshold probing security can be verified using the function checkTpsVal for value based leakage, and checkTpsTrans for transition-based leakage. Evaluation using exhaustive enumeration is also possible, but will not be considered in the rest of the article as it is not a scalable approach.

Figure 1 shows a code fragment of a LeakageVerif program, verifying the threshold probing security of the expression

(m0 ⊕ k0) & (m0 ⊕ m1 ⊕ k1).
LeakageVerif implements all the basic boolean operations (not, and, or, xor), arithmetic operations (addition, subtraction, multiplication, multiplication in finite field), and shift operations (logical shift left, arithmetic and logical shift right) on variables of any size. It also supports array indexation, and operators for performing bit manipulations: concatenation of expressions, extraction of a bitfield in an expression, signed and unsigned extensions of expressions. These operations allow to support the vast majority of masked programs, in particular as we did not encounter any other operations in all the benchmarks we found.

Design and Implementation Challenges

The original substitution algorithm for proving threshold probing security is described by Barthe et al. in [START_REF] Barthe | Verified proofs of higher-order masking[END_REF]. Each mask variable can be selected at most once as a substitution basis in order for the algorithm to be correct. A variant of this algorithm, given in Algorithm 1, has been recently published in a technical report [START_REF] Barthe | maskverif: automated analysis of software and hardware higher-order masked implementations[END_REF]. This variant notably removes the condition that a mask m selected for a substitution should not appear anywhere else in the entire expression. The mask m must only not appear anywhere else in the masked subexpression e + m that will be replaced by m (in Step 2). This variant enables to perform a substitution with a mask which has more than a single occurrence in an expression. As shown in [START_REF] Barthe | maskverif: automated analysis of software and hardware higher-order masked implementations[END_REF], this allows to conclude successfully in cases the previous algorithm failed.

However, this opens a new challenge. During the substitution using a mask m, all the occurrences of m (but the one in the e + m) must be replaced with the expression m + e. First, this can make the expression grow very quickly. Second, as illustrated in Figure 2, choosing the masks in an incorrect order can lead to miss the ability to conclude. The heuristic to select a mask and which of its occurrences to replace is therefore critical for avoiding a dramatic increase in the expression size and for verification accuracy. The given description does not address this aspect while it is a key point in the algorithm.

Besides, independently from the mask selection heuristic, making a good choice requires first to have the knowl-Algorithm 1 Substitution algorithm for verifying threshold probing security, from [START_REF] Barthe | maskverif: automated analysis of software and hardware higher-order masked implementations[END_REF].

procedure THRESHOLDPROBINGSECURITY(e)

Inputs: tuple of expressions V = (v1, ..., vn), flag simplified = 0, set of masks M = ∅

Step 1: if a secret k is involved in the computation of at least one expression in V then go to Step 2. Otherwise return True.

Step 2: while there exists a mask m / ∈ M involved in the computation of an expression vi of V, then find a sub-expression e in vi such that m → e + m is bijective and substitute m by e + m in all expressions. Extend M with {m}. If at least such a transformation occurred, go to Step 1. Otherwise go to Step 3.

Step 3: if simplified = 0, then return False. Otherwise, mathematically simplify the expressions in V. Then, set simplified to one and go back to Step 1. edge of all masks and masks occurrences. Yet, this should not mean to go through the entire expression before each substitution, as this would prevent scalability.

Finally, regarding simplification (Step 3), [START_REF] Meunier | Sela: a symbolic expression leakage analyzer[END_REF] has shown that in order to increase scalability, simplifications should be made after each substitution and not only once after the first failure. However, simplification is challenging: it should not be source of expression size increase nor limits accuracy of the verification.

Red node selected

Green node selected Green node selected Figure 2. This example illustrates the importance of the order in which masks are selected when performing the substitutions. m0, m1 are masks, k is a secret. If the mask m0 with 3 occurrences is chosen for the first substitution (occurrence below the red ⊕ node), a secret occurrence will remain even after the second substitution. On the other hand, if m1 with a single occurrence is chosen first (green ⊕ node), it allows to conclude directly after this substitution since there is no more secret occurrence.

This leads us to define some challenges that an efficient and scalable verification method should address.

• Selection heuristic. The mask selection heuristic must be specified, for reproducibility concern. For scalability reason, it must avoid as much as possible an increase in expression size without sacrificing accuracy. • Simplification. Having a fast and effective simplification procedure is critical in order to reach both accuracy and scalability, as it helps limiting the size of the expression, and suppresses ineffective variable occurrences. • Information caching. To prevent avoidable traversals of sub-expressions, which is a required condition for scalability, as much information as possible should be cached, especially regarding variables used in the sub-expressions (e.g. nature and number of occurrences). • Efficient algorithms. All algorithms involved in the verification process should avoid as much as possible expression or graph traversal, and create or make use of cached information. • Memory representation. The graph data structure of an expression impacts the solution to the previous points in addition to the required memory footprint. Figure 3 shows the two possible memory representations of a simple expression. As a real example, let us consider the expressions in the mix-columns part of the AES: they contain several common sub-expressions. Using the left representation will result in a graph having a number of nodes equal to the number of operations in the AES, while using the right representation will result in the number of nodes growing exponentially with the rounds. It seems clear that only the memory representation allowing several parents is scalable with the number of operations. Note that SELA uses the right representation, leading to an incorrect scalability claim by the authors.

The graph representing an expression should thus be able to contain several edges to the same sub-expression, in order to avoid the replication of sub-graphs. We can note that using such a representation removes the possibility to modify the graph, as modifying a sub-expression when coming from one parent would modify it incorrectly for all the other parents.

m k + 'C' m = symbol('m', 'M', 8) l = symbol('k', 'S', 8) e0 = k ^ m e1 = e0 + e0 e2 = Concat(e1, e1) m k + 'C' m k m k + m k Figure 3
. Two different memory representations for an expression using several occurrences of a sub-expression. The representation on the left uses node alias and allows a node to have several predecessors. The representation on the right is a tree and duplicates internal nodes.

In the following, we present the core of LeakageVerif and how LeakageVerif addresses these challenges, via adapted representations and design choices.

Verification Algorithm

In this section, we first give some terminology before presenting the main verification algorithm.

Terminology

In the following we call expression graph the n-ary graph G = (V, E, S, M, r) representing an expression to verify. r is the root node of the graph, V the set of nodes, E ⊂ V × V the set of edges, S ⊂ V is the set of secret variables and M ⊂ V the set of mask variables. Each node n in V is either an operator node, either a variable node or a constant node (and is a leaf in both last cases). All nodes but the root can have several parent nodes, simply called parents in the following.

Each node appears only once in an expression graph. We call number of occurrences of a node the number of times this node is encountered when exploring all the paths starting from the root. For a variable node this corresponds to the number of times the variable appears in the corresponding expression.

An operator node n is a masking operator node if the corresponding operation is a masking operation, i.e. ⊕ or +. A mask occurrence of a mask m is said to be masking if there exists a masking operator node, when going up in the graph, whose value is bijective w.r.t. the value of m. Such a masking operator node is called a masking node. Also, all bijective nodes above a masking node are masking nodes too -this includes unary bijective operators such as . For a given mask, we call base masking node the first masking node encountered on a path going up in the graph. Figure 4 illustrates these different terms.

The verification algorithm searches for masking nodes. When a substitution occurs, the selected masking node is called the node to replace. It is replaced with the node of m, while all the other occurrences of m are replaced with the sub-expression graph starting at the masking node.

Main verification algorithm

The main algorithm used for verification, adapted from [START_REF] Meunier | Sela: a symbolic expression leakage analyzer[END_REF] is given in Algorithm 2. Substitutions are made until there is no more secret occurrence in the expression, until a mask is masking the whole expression, in which cases the value True is returned, or until no more replacement can be made, in which case the value False is returned. A simplification is made at the beginning and after each replacement. When the algorithm returns True, it guarantees that the expression is secret independent. This implies that secret dependent expressions are always detected by the return value False.

The return value False is also returned when the algorithm fails to conclude for a secret independent expression (false positive). Therefore, the return value False only indicates a possible leakage. Figure 5 illustrates the principle of the main procedure.

While entirely transparent to the user, the verification can either be made at the word level, or at the bit-level. This depends on the 1) operations present in an expression (e.g. expressions containing only bitwise operators are never verified at word-level) 2) on the previous verification results of this expression's sub-expressions (e.g. when a word level verification has failed on an expression e, it will not be tried on expressions containing e as a sub-expression), and on the result given by the first call to ThresholdProbingSecurity (e.g. when word-level verification fails, as shown by Ben El Ouahma et al. [START_REF] Inès | Symbolic approach for side-channel resistance analysis of masked assembly codes[END_REF], bit-level verification can sometimes conclude). At bit-level, all variables are decomposed in as many 1-bit variables as the number of bits they contain, keeping the same nature, and all expressions are decomposed as the concatenation of 1-bit expressions. For word expressions as for decomposed expressions, the same function ThresholdProbingSecurity is called on the expression root.

Information Caching via Node Attributes

LeakageVerif was designed to keep the maximum information needed for the verification algorithm in each node. In particular, for some notions defined in the previous section and additional ones needed for the algorithms involved in the verification we cache them using a set node attributes. These attributes are inferred from node to node. They are computed once for each node of an expression graph using some inference rules during node creation. In this section we present these node attributes and inference rules.

Let us first define a set of simple predicates used by the inference rules:

• maskingOp(n) → B: states that n is a masking operation (i.e.

⊕ or +). • preservingOp(n) → B: states that the operator node n preserves the masking property of its single child. It is true for unary bijective operations and A (bijective array access). • parent(p, n) → B: states that node p is a parent of the node n.

• children(n) → P(V): returns the set of children of the node n. • V(n) → P(V): returns the set of nodes of the expression sub-graph rooted at n. We now define the following node attributes that we compute using the inference rules presented in Figure 6. Each attribute is given as a function but is actually attached to the expression graph rooted at node n, which is passed as the first parameter of the function.

Algorithm 2 Algorithm for verifying threshold probing security.

Require: nodeIn is the root of the expression to analyse Ensure: False is returned if the distribution of the expression nodeIn is dependent from a secret it contain. Otherwise, True is probably returned. masksTaken.add(mask)

13:

n ← GETREPLACEDGRAPH(n, mask, nodeToReplace)

14:
n ← simplify(n)

• preservedMask(n, m) → B: states that the value of the node n is bijective with the value of the node m, while there is no masking operator in the graph between m and n. All these attributes are implemented in LeakageVerif mostly using python dictionaries. If the data structures required for implementing these attributes do have a memory impact, this impact remains globally reasonable on the total memory footprint. More importantly, these data structures remain scalable with the number of nodes in the expression. Moreover, they allow to have directly access to all the masking and non-masking occurrences of any mask from the root node of the expression. These precomputed attributes are thus an important implementation key point for scalability.

Selection Heuristic and Substitution Algorithm

Selecting a Mask Occurrence

The algorithm of the SELECTMASK procedure that chooses the substitution to make is given in Algorithm 3. The goal of this procedure is to choose a node in the expression graph (selectedMaskingNode) which is masked with a mask variable (selectedMask), in order to replace this node with the mask variable itself. As mentioned in section 3.2, each mask variable can be selected only once. Therefore, when all masks have already been selected, the selection process fails. It also fails when there is no masking mask occurrence in the expression. This is a 3-step process: 1) Select the mask variable to use for the substitution. We choose the mask variable m with at least a masking occurrence which has the minimum number of parents in the graph. Note that it is not necessarily the minimum number of occurrences in the expression. This choice is made because for every parent of m other than the one corresponding to the node to replace, m must be replaced with the whole expression. Thus, choosing a mask variable with a high number parents will result in the expression growing quickly, and having potentially c ∈ V(n) parent(n, c) maskingMOcc(c, m, bmn, mn) maskingMOcc(n, m, bmn, mn) := u∈children(n) maskingMOcc(u, m, bmn, mn)

preservingOp(n) ∧ parent(n, m) preservedMask(n, m) (R1a) preservingOp(n) c ∈ V(n) parent(n, c) preservedMask(c, m) preservedMask(n, m) (R1b) maskingOp(n) parent(n, m) noOtherOcc(n, m, m) maskedBy(n, m, n), maskingMOcc(n, m, n, n) := 1 (R2a) preservingOp(n) c ∈ V(n) parent(n,
(R3) parent(n, m) ¬maskingOp(n) otherMaskOcc(n, m, n) := 1 (R4a) parent(n, m) maskingOp(n) ¬noOtherOcc(n, m, m) otherMaskOcc(n, m, n) := 1 (R4b) ¬parent(n, m) otherMaskOcc(n, m, p) := c∈children(n) otherMaskOcc(c, m, p) (R4c) parent(n, c) ∀cc ∈ children(n), cc = c, ∀p ∈ V(cc), otherMaskOcc(cc, m, p) = 0 ∧ ∀mn ∈ V(cc), ∀bmn ∈ V(cc), maskingMOcc(cc, m, bmn, mn) = 0 noOtherOcc(n, m, c) (R5) s ∈ S secretVarOcc(s, s) := 1 (R6a) secretVarOcc(n, s) := c∈children(n) secretVarOcc(c, s) (R6b)
Figure 6. Inference rules for node's attributes. By convention, n, c and p are operator nodes, m is a mask node, s is a secret node, while cc can be of any node nature.

more and more variable occurrences. This strategy is illustrated in the introductory example in Figure 2. 2) Once the mask variable is selected, one has to choose the base masking node to replace among all such nodes, which are the masking parents of this mask. We select the base masking node with the highest number of occurrences in the expression, as this choice will have the highest impact on the size of the resulting expression graph after the replacement. Figure 7 illustrate this step on a simple example. 3) Finally, once a base masking node has been selected, if its parent and ancestors are masking or preserving operators, it can be beneficial to replace a node higher up in the expression in order to replace the biggest possible sub-graph. However, this can only safely be made, i.e. without making the expression more complex, if the number of occurrences of the new node to replace is equal to the one of the base masking node. m is a mask, k0, k1 are secrets, while p is a public variable. In both situations, there is only one possible base masking node at the end of step 2 (the ⊕ node).

In situation (a), the node to replace is higher than the base masking node to cover the occurrence of k1. It is possible since ∼ and ⊕ are bijective operators. In situation (b), the base node to replace at the end of step 2, the green ⊕ node, is the final node to replace because the ∼ node above it has less occurrences than this node. The strategy allows to conclude in both cases.

Substitution by Creating a New Graph

The substitution consists in replacing one or several nodes in an expression graph. Since existing nodes cannot be modified, all the nodes above a replaced node must be rebuilt, up to the root. This is not the case for inference methods, for which the expression graph is never modified and never has to be traversed. Algorithm 4 shows the graph traversal performing the required replacements after a substitution has been decided. In this algorithm, the variable newNodes is a map which associates a newly created node to the corresponding node in the old graph. There are several cases when going through Algorithm 3 Algorithm for choosing a mask occurrence for a substitution Require: n is the root node; masksTaken is the set of masks for which a substitution has already occurred Ensure: Chooses the mask m with at least a masking node which minimizes the number of nodes parents of m; for this m, chooses the base masking node to replace (selectedBMN) with the highest number of occurrences in the expression; for this selectedBMN, chooses the node to replace with the maximum distance for the same number of occurrences 1: procedure SELECTMASK(n, masksTaken) Step 1: selecting the mask which minimizes the number of nodes parents of m 5:

for m such that maskingMOcc(n, m, ., .) > 0 do Step 2: choosing the base masking node to replace with the highest number of occurrences in the expression selectedBMN ← bmn 21:

Step 3: Choosing the masking node to replace with the maximum distance for the same number of occurrences for mn such that maskingMOcc(n, selectedMask, selectedBMN, mn) > 0 do

25:
mn is a masking node with base masking node selectedBMN if maskingMOcc(n, selectedMask, selectedBMN, mn) = maxCount and dist > maxDist then 28:

maxDist ← dist 29:
nodeToReplace ← mn 30:

return selectedMask, nodeToReplace the current node's children: if a corresponding node has already been created in the new graph, we use this new node as a new children (l. 7); if the child is the node to replace, it is replaced with the selected mask node (l. 9); if it is the selected mask node, it is replaced with the node to replace (l. 11). Finally, if the selected mask does not appear in the child, the original child is used as the new child (l. 16); in the other case, a recursive call is made to construct the corresponding graph (l. 13). Eventually, the new node is created with the same operator as the previous one, and with the new list of children (l. 17).

Note that except when a substitution occurs, inducing the creation of a new graph, the graph expression is never traversed.

Simplification and Equivalence Comparison

A simplification is made at the beginning and after each replacement in the main verification algorithm. As previously explained, it is challenging and important for both scalability and accuracy. We present in this section the simplification procedure in LeakageVerif and highlight its key points, especially regarding equivalence comparison. Simplification. LeakageVerif implements a lot of simplifications, and an important part of the complexity of the tool lies in them. They include rules like constant propagation, boolean simplifications, factorisation, n-ary operators, or redundancy elimination. A rule of thumb that all simplification rules must respect is that the number of operators after the rule application must be less than before. This guarantees that the size of an expression decreases after a simplification rule is applied, what comes with two benefits: this bounds the number of times a simplification rule can be taken, guaranteeing the convergence; and this helps avoiding that two equivalent expressions do not simplify into the same expression.

The simplification procedure is made in a single pass on the graph, from the leaves up to the root, in such a way that all the opportunities for applying a simplification rule are taken during this pass. This guarantees idempotence, i.e. calling the simplification procedure on an already simplified expression will let it unchanged. It is an important property, as it allows to have a cache for already simplified expressions. Each time the simplification function is called on a node, a link towards the simplified equivalent node is kept in the original node for future calls to this function.

The substitution and simplification rules do not change whether the expression is a bit decomposed expression or not. In addition to a link towards a simplified equivalent expression, each node thus also has a cache for a simplified equivalent node using single-bit variables, and a cache for the extraction of each of its bits.

Finally, the simplification process is designed to be efficient: if the simplification of an expression is a recursive process, going from the leaves up to the root, the simplification of a node whose children have already been simplified only accesses the node and its direct children, Algorithm 4 Creation of the new graph for a selected mask and the corresponding node to replace Require: node the root of the expression; selectedMask a mask variable; nodeToReplace a masking node in the graph, masked with selectedMask Ensure: All occurrences of nodeToReplace in node have been replaced with selectedMask, and all occurrences of selectedMask in node have been replaced with nodeToReplace 1: procedure GETREPLACEDGRAPH(node, selectedMask, nodeToReplace) return GETREPLACEDGRAPHREC(node, selectedMask, nodeToReplace, {}) and does not need to go all the way down in the expression.

Equivalence Comparison. The simplification process relies on equivalence comparison in many aspects (e.g. when two equivalent expressions are xor'ed, they must be replaced by 0). Therefore, having an efficient comparison is required for having an efficient simplification.

In LeakageVerif, a hash value is computed for each node upon creation. It is applied on the operation of the node itself, and on the hash values of its children. It is safe as the expression represented by a node is guaranteed to remain identical over time. In order to ensure the uniqueness of the hash of a given expression, the children of a commutating operator have to be order in a unique manner: this is achieved via the hash values of the children. The hash function used is SHA-256, which makes the risk of a collision negligible. This hash value allows to compare two expression graphs by simply comparing their hashes in O(1) time.

EXPERIMENTAL EVALUATION

Criteria

We compare LeakageVerif to three state-of-the-art available tools designed for verifying masked implementations: SELA, maskVerif and QMVerif. We define hereafter three criteria in order to compare these tools:

• Expressiveness. This criterion seeks at defining the scope of uses each tool can cover. In order to make this comparison, we implemented 46 benchmarks and we looked at which benchmarks could be implemented on each tool. • Performances and scalability. This criterion seeks at determining the impact of each tool via the analyses it can complete on its supported benchmarks, depending on the size of the program to verify. In order to make this comparison, we ran all the benchmarks on each possible tool and checked whether it completed within 24 hours. Crash or memory errors are also reported. • Accuracy. All considered tools are sound, in the sense that they cannot miss leakages in expressions, but they are all incomplete without relying on the expensive and non scalable method of exhaustive enumeration. Thus, this criterion aims at comparing the accuracy of the different implementations of verification algorithms only, that is without exhaustive enumeration.

Benchmarks

There is no simple way to fairly compare state-of-the-art tools. First, there is no standard set of masked implementations. Second, each tool has its own input description language, level of abstraction and input variable natures; in particular, maskVerif directly uses shares to describe the inputs, while the other tools use secret and mask variables. Third, each masked implementation is also designed regarding a specific leakage model and security notion. Therefore, we decided to build a set of representative benchmarks with a version for each of the considered tool. To this end, we searched the literature to find various examples of masked algorithm descriptions, and then wrote or translated them for each tool, when possible. The resulting set of benchmarks constitutes MaskedVerifBench, which we provide as an open-source collection of masked benchmarks designed for masking verification.

For each selected benchmark, we describe what we used as a starting point for writing the benchmark. We also precise how we derive a version for each tool. We sometimes resorted to so-called generator, a program that we made in order to generate the code of a benchmark specifically for one tool. However, as SELA and LeakageVerif have close input formats, only one generator was used for both.

The following 46 benchmarks were used: Table 1 Masked programs used for benchmarking tools, with their number of expressions to verify (#Verifications) and the tools supporting them. The number of expressions to verify is the one for LeakageVerif and can vary slightly from one tool to another. Column #Leakages gives the real number of leaking expressions, based on the results of our experiments and other experiments in the literature.

Masking Order

Refresh Secmult Power254 1 st 2 nd [28] [28] [5] [28] [8] Sbox1 Sbox2 Sbox3 Sbox4 Sbox5 Sbox6 Sbox7 Sbox8
Table 2 Specification of the different versions of the SBox used, based on an idea in [START_REF] Gao | Formal verification of masking countermeasures for arithmetic programs[END_REF]. Columns Masking Order give the masking order (note that only order 1 verification is made in experiments); column Refresh indicates that a refreshing mask procedure is used; columns Secmult give the version of the secured multiplication used; columns Power254

give the version for the exponentiation to the value 254.

• ISW AND: this is the basic ISW scheme applied for the logical AND with two shares [START_REF] Ishai | Private circuits: Securing hardware against probing attacks[END_REF]. • P1 to P17: these are 17 boolean C++ programs from the publicly available cryptographic software implementa-tions [START_REF] Eldib | Smt-based verification of software countermeasures against side-channel attacks[END_REF]. Among these programs, some are leaky while some others are not. Generators translating the C++ code for each tool were used, as programs P12-P17 are very long and cannot be written manually. • SecmultSM: this is the masked Galois field multiplication algorithm from [START_REF] Rivain | Provably secure higherorder masking of aes[END_REF], in which the Galois field multiplication is a basic operator. As SELA and maskVerif do not support this operation, this benchmark was run only on QMVerif and LeakageVerif. • SecmultCM: this is the same algorithm as SecmultSM, but in which the Galois field multiplication is concrete, i.e. implemented using basic operations, as in a C implementation. Consequently, the number of operations is higher.

The codes for the different tools was written directly by hand, unrolling loops when necessary. • A2B01 and B2A01: these are arithmetic to boolean and boolean to arithmetic masking conversion programs, as presented in [START_REF] Goubin | A sound method for switching between boolean and arithmetic masking[END_REF]. Generators were written for QMVerif, SELA and LeakageVerif based on the pseudo-code given in the article. As arithmetic operations are used, maskVerif does not support this benchmark.

• A2B14 and B2A14: these are arithmetic to boolean and boolean to arithmetic masking conversion programs, as designed in [START_REF] Coron | Secure conversion between boolean and arithmetic masking of any order[END_REF]. Generators were written from the algorithmic description for QMVerif, SELA and LeakageVerif. • B2A17: this is a boolean to arithmetic masking conversion program, described in [START_REF] Coron | High-order conversion from boolean to arithmetic masking[END_REF]. Generators were written from the algorithmic description for QMVerif, SELA and LeakageVerif.

• TI-Add, TI-Add-Opt, TI-Add-8 and TI-Add-Opt-8: the first two benchmarks are assembly programs performing the masked addition of two 32-bit masked values, given in [START_REF] Jungk | Efficient side-channel protections of arx ciphers[END_REF]. The versions ending with '8' are 8-bit adaptations of the 32-bit programs: we made those because QMVerif only supports 8-bit variables, and cannot implement the 32-bit versions. The programs were translated manually from assembly to LeakageVerif programs, then a generator was used to translate them for other tools. All tools can theoretically support these benchmarks, except QMVerif for the 32-bit versions. • Sbox1 to Sbox8: these are different implementations of a masked SBox, based on an idea in [START_REF] Gao | Formal verification of masking countermeasures for arithmetic programs[END_REF]. Table 2 gives the details for each version. All versions were written entirely using generators, starting from the algorithms and description given in the referenced articles. Due the presence of symbolic multiplications, these could not be implemented in maskVerif and SELA. • AES-Herbst: this is the AES with the masking scheme described in [START_REF] Herbst | An aes smart card implementation resistant to power analysis attacks[END_REF], comprising the key schedule and the ten rounds. We wrote a generator for QMVerif in order to unroll loops. Besides, we had to overcome the following problem. In this benchmark, the SBox is masked and replaced with an array SBoxP such that SBoxP m] , which leaks since x is masked by m. We used a bug found in QMVerif to overcome this problem, which is that the Sbox operation is implemented as the identity (see appendix A). This allows to do the masking with m' before the demasking. Finally, the presence of array accesses prevents an implementation on maskVerif. • AES-SM: this is a masked implementation adapted from [START_REF] Yao | Fault-assisted side-channel analysis of masked implementations[END_REF]. It implements the same masking scheme as the one in AES-Herbst, but with a symbolic Galois field multiplication by constants 2 and 3 in the mix-columns step, and does not mask the key schedule. A generator was used for QMVerif as well as the same SBox trick as in AES-Herbst, while it is not implementable for SELA and maskVerif.

• AES-FSE13: this is an implementation of the AES following the scheme in [START_REF] Coron | Higher-order side channel security and mask refreshing[END_REF]. The code was given to us as a QMVerif file by the authors of this tool. We used a generator for creating the LeakageVerif and SELA files. It seemed to us that some lines in the benchmarks were redundant and possibly incorrect (namely x000 = x000 ˆx000 and x001 = x001 ˆx001 which we think should be x000 = x000 ˆk000 and x001 = x001 ˆk001), but we chose to not modify the original benchmark file. • k 3 to k 254 : following an idea in [START_REF] Gao | Formal verification of masking countermeasures for arithmetic programs[END_REF], these programs are buggy implementations of the exponentiation used in the AES. They were obtained via a generator for QMVerif and LeakageVerif.

All benchmarks were run on a server with an Intel CPU Xeon E5-2640v4, with 128GB of memory, under the Scientific Linux 7 operating system. The version of QMVerif used was downloaded on April 2021 and was compiled with the -O2 option. We tried to always use the best combination of options, and we found that except for cases where it made the program crash, the -sim option alone (which does some simplifications) turned out to be the best configuration 2 , often preventing QMVerif from running out of memory. Finally, we tried to adapt the data bit size to 1 in the source code for P1-P17, but reverted it back to 8 bits as it resulted either in timeouts or in crashes depending on the options used.

Expressiveness

We believe that the presented list of algorithms and source code files is a representative set of masked implementations, and covers a quite comprehensive set of what a verification algorithm should be able to do. We summarize in Table 1 the different benchmarks, and which tool is theoretically able to pass them.

We can see in Table 1 that LeakageVerif is the only tool which can theoretically support all the benchmarks. We want to add that there is no benchmark that was not included because we could not run it on LeakageVerif, and we did not select the benchmarks a priori because it could or could not be implemented on some tools. This shows that LeakageVerif is adapted to support a wide variety of masked programs, as well high-level algorithmic descriptions as low-level ones. maskVerif fails to support benchmarks with arithmetic operations, while QMVerif absence of support for variables with a size different from 8 bits prevents it from supporting the TI-Add original codes. Also, while QMVerif has internal shift operators, but they can never be returned by the parser. Thus, we modified the parser to add it, allowing the tool to support SecmultCM, TI-Add-8, TI-Add-Opt-8, and AES-Herbst. Finally, SELA has the addition but no symbolic Galois field multiplication, what prevents it from supporting SecmultSM, Sbox programs, k programs, and some versions of the AES.

Performances and scalability

For each benchmark, in column #Leakages, we give the number of leakages as reported by previous work [START_REF] Gao | Formal verification of masking countermeasures for arithmetic programs[END_REF] or the authors of the benchmark. For benchmarks A2B01 and B2A14, we have not been able to prove the absence of leakage : all the tools passing the benchmarks reported possible leakages (cf. section 4.5), but manually analysing the first expressions reported, we found out that they were false positives. However, we have not done this analysis for all the possibly leaking expressions. As maskVerif cannot pass these programs and QMVerif enumeration could not finish any of these two benchmarks, it is still possible that real leakages exist. The article presenting the TI-Add benchmarks does not explicitly state neither the absence of leakage in the Table 3 Execution times for every benchmark for all tools up to the first detected leakage. The second column gives the number of instructions analysed up to the first detected leakage. A blank cell indicates that the tool could not run the benchmark. Times in bold indicate that a leakage was found.

Timeout indicates that the verification did not finish in 24 hours. OoM indicates that the verification ran out of memory. * : the -sim option of QMVerif was deactivated because it provoked an error during a z3 simplification.

code nor the considered leakage model. Our experiments reported possible leakages (cf. section 4.5), and a manual analysis on the first possible leaking expressions revealed that they were indeed leaking. As we did not perform the manual analysis for all instructions, we only know that the number of leakages is comprised between 1 and the values reported by LeakageVerif. We now evaluate the execution time of each benchmarks on the available tools. One problem we had to face, in order to compare the execution, is that maskVerif stops at the first leakage encountered, while QMVerif verifies the whole program, and it is a user decision for SELA and LeakageVerif. In order to compare the three tools, we decided to modify QMVerif to make it stop after the first leakage encountered, and used this option as well for SELA and LeakageVerif. Table 3 thus presents the execution times up to the first leakage detected. For a fair comparison, we verified manually that for all cases where a possible leakage is detected in a benchmark, it is the same leakage for all tools.

Looking at these results, we can see that, maskVerif per-forms very well on small programs, but tends to have significantly longer execution times for longer programs, namely P13 to P17. It is relevant to note that for these programs, the time taken to read the input file is non-negligible: around

tools.

In order to have a more in-depth comparison, we let QMVerif, SELA and LeakageVerif complete their analysis on the programs for which a leakage was detected. Indeed, it is often more interesting to get all the leaking expressions in a program in a single verification than having to correct the leaking parts one by one and rerun a verification after each correction. It is also an interesting use-case as it stresses more substitution methods, since a leaking expression will often select and make replacements with all masks before failing to conclude. If not handled correctly, the expression size can grow a lot and limit the tool scalability. Table 4 presents the verification time of the whole program, for programs with at least one leakage, along with the number of leaking expressions detected for each tool.

We can notice that when the analysis completes, the three tools detect the same number of leakages. We can also notice that for all the k i programs, QMVerif takes around one hundred minutes, while LeakageVerif takes less than 0.1s. For programs P1 to P11, QMVerif does three quick verifications, four verifications between 1 and 3 minutes, while two verifications run out of memory. SELA and LeakageVerif on the other hand, complete all the analysis in less than 0.1s. For longer programs P13 to P17, QMVerif does two Out of Memory and is significantly slower than SELA and LeakageVerif for the three other benchmarks. We can also notice that SELA is faster than LeakageVerif: this is due to the fact that the expression graphs of these programs are not folded (in the sense that an intermediate computation result is never used twice), combined to the fact that there are a big number of variables. Therefore, maintaining metainformation in the nodes of the expression is very costly for LeakageVerif when substitutions occur by the end of the program, while it does not bring interest in this particular case. However, we consider this overhead as acceptable as it does not compromise scalability. On the other hand, SELA runs out of memory on all TI-Add benchmarks, while LeakageVerif is the only tool able to complete them.

Finally, SELA's lack of scalability can also be seen on A2B01, where it takes more than 10 minutes to complete, whereas LeakageVerif takes less than 2 seconds. In order to reach maximum performance, maskVerif and LeakageVerif could probably benefit from being written in a lower level language instead of a high-level one, and maybe gain up to an order of magnitude in time. Yet, the most important aspect is scalability with the growth of the expression, for which this cost does not make much difference in the end. Added to that, the development in a lower-level language would be much longer and subject to a lot more bugs.

Regarding memory exhaustion, if QMVerif and SELA memory consumption quickly grows and several benchmarks exhaust the 128GB limit, memory consumption remain quite low for LeakageVerif since the memory used is below 1GB, except for P12-P17 where it is around 8GB.

Regarding maskVerif, we do not know if the time it takes for P13 to P17 to reach the first leakage is due to enumeration because their substitution algorithm is less precise than the one implemented in LeakageVerif, or for another reason.

Finally, for QMVerif, we noticed that the fast verifications -the one during less than a minute -were the ones for which the enumeration was not called. This raises the question of the accuracy of the inference alone, compared to the substitution approach implemented in other tools.

Accuracy

As mentioned above, both verification methods by inference and by substitution are sound, but the tools implementing them can claim to be complete only by resorting to a costly exhaustive enumerative approach when they cannot conclude with their inference or substitution rules only. In Table 5 Number of false positives found by QMVerif with enumeration disabled and LeakageVerif. For QMVerif, the corresponding execution times are given, while for LeakageVerif, the number of false positives with bit analysis disabled is given between parentheses. * : the -sim option of QMVerif was deactivated because it provoked an error during a z3 simplification.

order to compare the accuracy of the inference rules in QMVerif with the substitution approach in LeakageVerif, we deactivated the enumeration in QMVerif, counting instead a potentially false positive when the inference failed to conclude. We did not do the same for maskVerif due to our lack of understanding OCaml code, and thus our inability to do the same modification.

Table 5 presents the number of false positives for QMVerif without enumeration and LeakageVerif, i.e. the number of expressions for which they cannot conclude threshold probing security, while the expression does not leak (SELA is not included since it has the same number of leakages as LeakageVerif for the benchmarks it can complete). We can observe that for the two benchmarks A2B01 and B2A14 for which LeakageVerif has at least a false positive, QMVerif does not manage to end its analysis. QMVerif also has false positives for 9 other benchmarks. Going into the details, when deactivating enumeration in QMVerif: six benchmarks previously verified without false positives now have some, but take less time (P4, P5, P7, P11, B2A01, B2A17); three benchmarks for which the verification could not finish can now be verified, but with false positives (TI-Add-8, TI-Add-Opt-8, SecmultCM); four programs have identical results and a slower verification time (P13-P15, P17); five benchmarks which could not be verified still cannot (the three AES, A2B01, B2A14). For TI-Add-8 and TI-Add-Opt-8, QMVerif actually found 64 possible leakages. However, as LeakageVerif reported only 36 and 38 possible leakages, QMVerif has at least 28 and 26 false positives respectively for these benchmarks. Having slower execution times with enumeration deactivated can seem counter-intuitive, but we think it is actually possible: if the enumeration finishes and concludes the absence of leakage, we think that this allows for faster subsequent verifications, which may otherwise require calling the formal solver.

Regarding QMVerif execution times without enumeration, they are still significantly higher than those of LeakageVerif for several benchmark (SecmultCM, P13-P15, P17), while never being significantly lower.

The rightmost column in Table 5 gives, between parentheses, the number of false positives when the bit analysis is deactivated in LeakageVerif. We can observe the benefits of this bit analysis as it allows to reduce the number of false positives for the four TI-Add benchmarks, for three out of the five conversion benchmarks, and for AES-Herbst. This illustrates the interest of this transformation.

In conclusion, we can state that QMVerif supports less benchmarks and operators than LeakageVerif and often results in timeouts or memory exhaustion. Deactivating enumeration in QMVerif allows to speed up the verification time for some of the benchmarks and complete the verification for others failing with enumeration, but always at the cost of having more false positives; it can also make some verifications slower. Overall, for the completed benchmarks and except for the program P12, LeakageVerif always provides identical or better results than QMVerif while going at the same speed or faster.

CONCLUSION AND FUTURE WORK

We presented a efficient and scalable approach, based on a substitution method, for verifying the absence of first order leakage in symbolic expressions, using a substitution approach. This approach was implemented in a tool, LeakageVerif, which we compared to three state-ofthe-art other tools on 46 benchmarks, and showed that LeakageVerif performs better than these tools in terms of expressiveness regarding supported programs, scalability regarding execution time and memory used, and accuracy of its results when not relying on enumeration. The tool as well as the benchmarks written for all evaluated tools will be released in the hope that they will be useful to the community and for reproducibility.

Future work includes the support in LeakageVerif of hardware circuits with glitches and registers, as well as supporting stronger security notions and higher verification orders.

8 -Figure 1 .

 81 Figure 1. Example of LeakageVerif program verifying threshold probing security for the expression (m0 ⊕ k0) & (m0 ⊕ m1 ⊕ k1)

Figure 4 .

 4 Figure 4. Expression graph example. In this example, the mask m has three occurrences and two parents. The left ⊕ node has two occurrences, while the right ⊕ node has one occurrence. The & node with three children results from the simplification process, which merges parent and children nodes of the same associative and commutative operator.

Figure 5 .

 5 Figure 5. m is a mask, k is a secret, p is a public variable. The mask m has a single occurrence in the graph. The ⊕ node above m masks the expression m ⊕ k, and is replaced with m. The graph contains no more secret after the substitution.

 c) maskedBy(c, m, bmn) maskedBy(n, m, bmn), maskingMOcc(n, m, bmn, n) := 1 (R2b)maskingOp(n) c ∈ V(n) parent(n, c) preservedMask(c, m) noOtherOcc(n, m, c) maskedBy(n, m, n), maskingMOcc(n, m, n, n) := 1 (R2c) maskingOp(n) c ∈ V(n) parent(n, c) maskedBy(c, m, bmn) noOtherOcc(n, m, c) maskedBy(n, m, bmn), maskingMOcc(n, m, bmn, n) := 1 (R2d)

Figure 7 .Figure 8 .

 78 Figure 7. Illustration of step 2: Choosing the base masking node to replace. m is the only mask variable, k0, k1 are secrets, while p is a public variable. There are two occurrences of possible nodes to replace in the graph. We select the green one, with three occurrences in the expression.

 nbParents ← Card({bmn|maskingMOcc(n, m, bmn, .) > 0}) + Card({p|otherMaskOcc(n, m, p)

26 :

 26 dist ← distance(selectedBMN, mn) distance(a, b) is the number of nodes between a and b 27:

 [x ⊕ m] = SBox[x] ⊕ m', where m and m' are two masks. The verification can replace atomically the expression SBoxP[x] with SBox[x ⊕ m] ⊕ m'. However, as QMVerif verifies all the results of binary operations, it necessarily verifies the expression x ⊕ m before verifying SBox[x ⊕

 1: procedure THRESHOLDPROBINGSECURITY(nodeIn)

	2:	n ← simplify(nodeIn)	
	3:	masksTaken ← set()	
	4:	while True do	
	5:	if secretVarOcc(n, .) = 0 then	
	6:	return True	No more secret
	7:	if maskedBy(n, ., .) then	
	8:	return True	A mask is masking the current node
	9:	mask, nodeToReplace ← SELECTMASK(n, masksTaken)	mask is the mask node masking the node to replace
	10:	if mask = None then	
	11:	return False	
	12:		

 For example, in the expression m, m is a preserved mask in the ' ' node. Its default value is false. Informally, preserved masks are masks which have not yet masked an expression but can make the next masking operator node encountered a masking node. Rule R1a sets this attribute for unary bijective operator node whose child is a mask while rule R1b sets it for unary bijective operator node which is a parent of a node which preserves the masking property of a mask. • maskingMOcc(n, m, bmn, mn) → N: returns the number of masking occurrences, in the expression graph whose root is n, of the mask m via the base masking node bmn and the masking node mn. Its value is set to 1 by rules R2a, R2b and R2c under the same (exclusive) conditions as explained for the maskedBy attribute. For other cases, it is set by the rule R3 as the sum of the masking occurrences of m via the base masking node bmn and the masking node mn in each child of n.• otherMaskOcc(n, m, p) → N: returns the number of non masking occurrences, in the expression graph whose root is n, of the mask node m for which its parent is p. Its default value is 0. It is set to 1 by rules R4a for any parent of in the sub-graph rooted at c. Its value is false for leaves and is otherwise computed by rule R5 that checks that there is no occurrence of the mask m in all the children of n but c. • secretVarOcc(n, s) → N: returns the number of occurrences of the secret variable s in the expression graph whose root node is n. Its default value is 0. It is changed by the rule R6a if n is a secret node or by the rule R6b for nodes that are not a leaf.

• maskedBy(n, m, bmn) → B: states that the mask m is masking the expression graph whose root is n via the base masking node bmn. Its default value is false. Rules R2a, R2b, R2c and R2d set this attributes in the respectively following case: a) n is a masking operator and has m as a child and m has no occurrence in any other child of n; b) n is an unary bijective operator and its child is masked by m; c) n is a masking operator and has one child preserving the mask m while m has no occurrence in any other child of n; d) n is a masking operator and has one child masked by m via bnm while m has no occurrence in any other child of n. a mask node that is not a masking operator node, and by rule R4b for masking operator nodes being a parent of m when occurrences of m exist in other children. It is computed for other nodes using rule R4c.

• noOtherMaskOcc(n, m, c) → B: states that there is no occurrence of m in the expression graph rooted at n other that the ones

 2. We mention benchmarks for which we deactivated it

	Benchmark	#instructions	maskVerif QMVerif SELA LeakageVerif
		analysed				
	ISW AND	8	< 0.1s	0.2s	< 0.1s	0.2s
	SecmultSM	10		0.4s		< 0.1s
	SecmultCM	355	< 0.1s	OoM	2.7s	0.7s
	A2B01	8		Timeout	< 0.1s	< 0.1s
	B2A01	8		17s	< 0.1s	< 0.1s
	A2B14	183		1.7s	5.6s	0.9s
	B2A14	364		OoM	OoM	10s
	B2A17	12		1m 30s	1.6s	0.2s
	TI-Add	11	< 0.1s		OoM	0.3s
	TI-Add-Opt	7	< 0.1s		0.1s	0.1s
	TI-Add-8	11	< 0.1s	OoM	< 0.1s	< 0.1s
	TI-Add-Opt-8	7	< 0.1s	Timeout	< 0.1s	< 0.1s
	Sbox1	51		0.2s		< 0.1s
	Sbox2	43		0.2s		< 0.1s
	Sbox3	65		0.7s		0.1s
	Sbox4	69		0.8s		0.1s
	Sbox5	115		0.3s		0.2s
	Sbox6	103		0.2s		0.2s
	Sbox7	167		1.2s		0.2s
	Sbox8	173		1.2s		0.2s
	k 3	4		4m 8s		< 0.1s
	k 12	4		4m 1s		< 0.1s
	k 15	4		4m 3s		< 0.1s
	k 240	4		4m 16s		< 0.1s
	k 252	4		4m 14s		< 0.1s
	k 254 AES-Herbst	4 2666		4m 6s assert fails *	OoM	< 0.1s 20s
	AES-SM	1425		OoM		0.5s
	AES-FSE13	17602		OoM	OoM	18s
	P1	1	< 0.1s	< 0.1s	< 0.1s	0.1s
	P2	9	< 0.1s	< 0.1s	< 0.1s	< 0.1s
	P3	7	< 0.1s	0.2s	< 0.1s	< 0.1s
	P4	7	< 0.1s	0.5s	< 0.1s	< 0.1s
	P5	9	< 0.1s	0.5s	< 0.1s	< 0.1s
	P6	8	< 0.1s	55s	< 0.1s	< 0.1s
	P7	11	< 0.1s	0.5s	< 0.1s	< 0.1s
	P8	13	< 0.1s	53s	< 0.1s	< 0.1s
	P9	13	< 0.1s	56s	< 0.1s	< 0.1s
	P10	25	< 0.1s	29m 12s	< 0.1s	< 0.1s
	P11	24	< 0.1s	26m 35s	< 0.1s	< 0.1s
	P12	196801	OoM	5.8s	3m 8s	17m 19s
	P13	1672	4m 20s	5.0s	6.3s	5.8s
	P14	1711	4m 24s	1m 7s	6.5s	5.8s
	P15	1717	4m 40s	25m 5s	6.0s	6.2s
	P16	1712	4m 17s	4.9s	6.4s	6.2s
	P17	1712	5m 30s	5.1s	6.3s	6.5s

 5 seconds for LeakageVerif for example, which detects a leakage immediately after. QMVerif runs out of memory on 5 benchmarks, has two timeouts, and one assert failure. Besides, it is significantly slower than LeakageVerif on 15 benchmarks (B2A01, B2A17, k 3 to k 254 , P6, P8 to P11, P14 and P15). It is significantly faster than LeakageVerif only on P12: we tried to investigate the reason of this good performance compared to the other tools (QMVerif and SELA run out of memory while LeakageVerif passes almost all of its time on one instruction near the end), but so far we could not isolate the rule allowing for this quick conclusion. Finally, SELA runs out of memory in 4 benchmarks due to its lack of scalability.

	Benchmark	Leaks	QMVerif Execution time	Leaks	SELA Execution time	Leaks	LeakageVerif Execution time
	A2B01		Timeout	35	10m 4s	35	1.9s
	B2A14		OoM		OoM	1	10s
	TI-Add				OoM	70	5m 7s
	TI-Add-Opt				OoM	66	1m 56s
	TI-Add-8		OoM		OoM	36	2.2s
	TI-Add-Opt-8		Timeout		OoM	38	1.4s
	k 3	2	99m 29s			2	< 0.1s
	k 12	2	104m 2s			2	< 0.1s
	k 15	2	106m 10s			2	< 0.1s
	k 240	2	108m 55s			2	< 0.1s
	k 252	2	106m 2s			2	< 0.1s
	k 254	2	109m 59s			2	< 0.1s
	P1	16	< 0.1s	16	< 0.1s	16	< 0.1s
	P2	8	0.3s	8	< 0.1s	8	< 0.1s
	P3	1	< 0.1s	1	< 0.1s	1	< 0.1s
	P6	3	2m 10s	3	< 0.1s	3	< 0.1s
	P7	2	1m 8s	2	< 0.1s	2	< 0.1s
	P8	3	3m 28s	3	< 0.1s	3	< 0.1s
	P9	2	2m 2s	2	< 0.1s	2	< 0.1s
	P10		OoM	2	< 0.1s	2	< 0.1s
	P11		OoM	1	< 0.1s	1	< 0.1s
	P13	4800	84m 12s	4800	3m 8s	4800	13m 57s
	P14	3200	4116m 20s	3200	3m 9s	3200	13m 54s
	P15		OoM	3200	3m 34s	3200	8m 0s
	P16		Seg. Fault	4800	3m 11s	4800	13m 58s
	P17	17600	29m 30s	17600	3m 15s	17600	13m 31s

It does not manage to complete the analysis of the first eleven instructions of TI-Add, and cannot pass more than 2 rounds of the AES-Herbst. Overall, we can conclude that LeakageVerif has a clear global advantage over the other

Table 4

 4 Execution times for the entire analysis of programs with leakages for QMVerif, SELA and LeakageVerif. OoM indicates that the verification ran out of memory.

Benchmark

QMVerif LeakageVerif