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Abstract: In this paper, a novel structure of a semi-elliptical folded dipole for ultra-wideband (UWB)
receiving applications is discussed. This proposed antenna has a directive radiation pattern resulting
in a high gain over the bandwidth. The design uses a planar technology including a microstrip line to
slot line transition and optimized curves to obtain a measured impedance bandwidth of 2.3–26 GHz
with the condition of S11 < −6 dB (level accepted for receiving antenna) and meets S11 < −10 dB
in several bands. Additionally, the simulated gain ranges from 5 dBi to 9.5 dBi across the entire
bandwidth with an efficiency of at least 75%. This antenna model offers a reconfiguration capability.
The symmetrical feeding used in this antenna creates the directive behavior. Characteristics of this
semi-elliptical folded dipole antenna make it suitable for modern wireless communications, such as
5 G around 3.5 GHz, and easy to integrate in antenna arrays (MIMO systems). The four ports of the
antenna also make it a candidate for radiation pattern reconfigurability applications reducing in this
way the number of elements in network antennas.

Keywords: UWB; folded dipole; directive antenna

1. Introduction

Following the Federal Communications Commission’s (FCC) allocation of the fre-
quency band 3.1 GHz to 10.6 GHz for commercial communication applications in 2002 [1],
ultra-wideband (UWB) systems have emerged as a significant area of interest in the elec-
tronics industry. There are plenty of applications in diverse domains, such as telecom-
munications, medical, space and military fields [2,3]. Various types of antennas, such as
horns, log-periodic antennas, conical antennas, planar monopoles and dipoles, have been
extensively studied to achieve wide bandwidths [4–8]. These antennas offer optimized
transitions from feeding to free space.

Printed antennas are widely chosen in ultra-wideband applications due to their numer-
ous advantages, including small size, low cost, high radiation efficiency and simple design
and production. To meet the specific requirements of different applications, it is common to
employ different modifications of geometry. Typically, square, cylindrical, elliptical, or even
fractal shapes are good examples to extend the impedance bandwidth of monopole and
dipoles antennas [9–13]. Another technique for modifying antenna impedance involves
folding the structure over a ground plane, allowing for optimization of the bent structure to
yield improved outcomes. This folding technique can also control the orientation of surface
currents [14] and enable control over radiation direction. Recent studies on planar folded
dipoles have achieved bandwidths ranging from one to several octaves [15–17]. In those
examples, only microstrip feed lines have been used. This solution is the simplest way to
feed an antenna with an asymmetrical wave. However, these examples of folded antennas
do not offer any reconfiguration possibilities.
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In this study, an elliptical folded dipole antenna design for Ultra-Wide Band (UWB)
applications is discussed. The optimized folded monopole shape is used as the basis for the
antenna design, and previous studies [18–21] have examined the folding of thick monopoles
and dipoles over a ground plane to enlarge the impedance bandwidth. Parameters such as
the thickness of the fed and the folded wires were according to [18–21]. Stabilization of the
radiation pattern of the antenna is achieved by adding a second strand with vertical sym-
metry. This idea is in opposition to the common folded dipole which includes a horizontal
symmetry. It converts the monopole structure into a dipole one. The proposed antenna has
four ports which offers reconfigurability. We chose to connect two of them to the ground.
Depending on the choice of the feed, symmetrical or asymmetrical, the radiation behavior
is modified. Feeding the antenna with a symmetric (0◦/180◦) wave using a microstrip line
to slot line transition [22–24] results in a directive radiation pattern. In this paper, different
configurations are presented but only the directive version has been fully realized and
measured. Applications related to wireless communications such as 5 G (3.5 GHz bands)
or antenna arrays requiring directive radiating elements are considered (indoor/outdoor
communications). The proposed antenna exhibits an impedance bandwidth of 2.3 GHz
to 26 GHz+ when S11 < −6 dB, with a maximum gain of 9.5 dBi at 6.6 GHz. For more
common communications applications, this antenna achieves the S11 < −10 dB condition
in the bands 3.3–8 GHz, 9.8–12.6 GHz and 13.1–26 GHz. However, at high frequencies
(>12 GHz), the directional behavior of this folded dipole antenna is not fully verified. A
significant cross-polarization and lateral radiation are observed.

2. Folded Structures and Feeding
2.1. Large Folded Monopole

A large folded monopole of λ/4 in length is comparable with a conventional monopole
in many points. In particular, the radiation pattern has a toroidal shape at the resonance
frequency fr (Figure 1a). The monopole can be bent to affect this radiation. In Figure 1b,
bending the antenna over a ground plane results in a main beam with a significant steering
at f = 2 fr, while the pattern is still toroidal at lower frequencies. At f = 5 fr, the null on the
axis of the structure is now replaced by a maximum of radiation. This is a technique to
obtain a directive antenna in a precise direction at a specific frequency.
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Figure 1. Thick monopole and folded monopole and their radiation pattern (a) at f = fr and folded
monopole at f = 2 fr (b) and f = 5 fr (c).

2.2. Large Folded Dipole and Symmetrical Feeding

The classic toroidal radiation pattern of the monopole and dipole can be restored
throughout the frequency range fr < f < 5 fr by making the structure symmetrical. The
conventional folded dipole is designed along a horizontal plane of symmetry, as shown in
Figure 2a, but in this paper, we propose to implement this symmetry along a vertical axis
and keep the horizontal ground plane (Figure 2b).
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Figure 2. Representation of the classical folded dipole (a) and the folded dipole with vertical symme-
try (b).

Consequently, when both arms of the antenna are excited with an asymmetrical wave
(unbalanced wave), no radiation is observed along the axis of symmetry of the dipole
(Figure 3a). We retrieve the typical dipole pattern. However, to obtain a directive behavior,
a 180◦ phase shift is applied to the two arms. As a result, a maximum radiation is now
observed along the axis of symmetry in the same frequency range fr < f < 5 fr. By analyzing
the electrical currents, we observe that in the case of an asymmetrical feeding, the currents
I2 on the two arms of the antenna are opposite. This causes a null of radiation in the axis
of the antenna (Figure 3a). However, with a symmetrical feeding (Figure 3b), these two
currents add up, which explains the maximum of energy in the axis of the dipole. This
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maximum is located in the vertical axis because the value of the phase shift is 180◦. It
is possible that other values such as 90◦ (or −90◦) could redirect this maximum on the
right horizontal axis (or left horizontal axis). In other words, using a 90◦/−90◦ coupling
circuit, diodes circuits, or even a switch, this antenna design can be seen as a reconfigurable
antenna and can still have a directive radiation pattern as mentioned in Figure 4a and b.
Otherwise, this behavior is only valid on a narrow band which depends mainly on the
antenna height.
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This paper only reports on the directive version with a 180◦ phase difference power
supply, since it offers a stable directional behavior over a larger frequency range than the
monopole versions. However, work on the reconfigurability aspect of this folded antenna
(switch, pin diode, coupling circuit) is in progress, also the beam direction can change with
the feed phase difference which could be the subject of a future communication.

3. Design and Simulation
3.1. Semi-Elliptical Monopole to Dipole Design

Earlier in the text, we discussed monopoles and dipoles in three dimensions (thick
monopoles and dipoles). However, in this paper, we focus only on optimizing planar
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structures due to their simplified production process and their satisfying performance in
terms of matching and radiation. The shape of a semi-elliptical folded monopole antenna
that conforms to the principles outlined in the preceding paragraphs, matched to 150 Ω, is
shown in Figure 5a. This bending is made of one semi-ellipse and a semi-ellipse hollow.
These shapes were chosen because they are known to offer wide bandwidths. The ellipse
that defines the outer line has a 0.6 elliptical ratio. The planar structure stands over a
ground plane and ends in a short circuit. Various elliptical curves and thicknesses of the
monopole were investigated, and the optimal values are outlined in Table 1. The height
b2 and the width of the outer ellipse are the dimensions that will mainly define the low
frequency of the impedance bandwidth. The inner elliptical trough (hollow), defined by
the dimensions a1 and b1, stabilizes the low frequency behavior by changing the current
distribution. The currents located on the right edge of the design (Figure 5a) increase with
the size of the hollow. To form a dipole, we simply add the symmetrical shape about a
vertical plane, as illustrated in Figure 5b. Two of the four ports are grounded, while the
two others are connected to the feeding circuit. The gap (g) between the two strands is
optimized and produces a 50 Ω matched access. The type of feeding, whether asymmetrical
or symmetrical, determines whether it is a null or maximum radiation.
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Table 1. Optimized dimensions of the proposed antenna.

Parameters Value (mm)

a1 16
a2 20
b1 20
b2 80
g 0.3
r1 2
l1 18.4
l2 8.85
l3 53

w1 4.1
w2 4.2
r 5.42
θ 180◦
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The final design of the folded dipole, obtained by the approach explained in Section 2,
is similar to a Vivaldi antenna. The common tapered shape of these two antennas allows a
very wide band matching.

In other words, as explained in Section 2, the phase shift means that the antenna’s
maximum radiation is off-point. The radiation of several simulated configurations is shown
in Figure 6 in the Oxz plane. The case of an in-phase feeding on both wires (0–0◦), implies
radiation identical to that of a dipole. This behavior is broadband. If we choose a phase
shift between 0◦ and 180◦, then we obtain beam steering. In the presented results, at the
lowest frequency where the antenna is well matched (1.6 GHz), the steering is around 90◦.
As the phase shift increases, radiation at 0◦ appears until it is in the majority when the feed
is symmetrical (0–180◦). As mentioned earlier, only the directional behavior of the model
fed by a 0–180◦ (or 0–0◦) wave is valid over a wide band.
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3.2. Microstrip Line to Slot Line Transition

To obtain a maximum radiation in the z-axis, a solution is to feed the two strands of
the dipole with a symmetrical wave. In other words, a 180◦ phase shift feeding circuit
must be attached at the bottom of the structure. A proposed method is to feed the antenna
using a 50 Ω microstrip line that terminates on an open circuit stub. This line excites
the slot between the two arms of the dipole, as depicted in Figure 7b. The difference of
potential at these two points of the line results in the creation of a voltage between the
two strands, which means that the current is in opposition. However, the transition is a
crucial factor in limiting the impedance bandwidth of this type of structure and therefore
requires optimization.
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A parametric study on various design parameters of the transition is performed to
maximize the frequency range of the antenna. In Figure 8, different l1 lengths are under
study. This length impacts the stub position on the slot which changes the impedance
matching. Several options are available, depending on the frequency range required.
Figure 9 shows the reflection coefficient of a few stub angles (θ). The wider the angle is, the
more the S11 is improved, except for the 8–10 GHz frequency range. By combining those
results with other minor parametric simulations, we determine the optimized parameters.
For example, in this semi-elliptical folded dipole, the combination l1 = 18.4 mm and θ = 180◦

gave us the best results so far on the whole 2.3–26 GHz frequency range. A1 and b1 are the
dimensions (height and width) of the inner semi-ellipse when a2 and b2 are the ones of the
outer semi-ellipse.
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4. Simulation and Measurement

The performance of the semi-elliptical folded dipole antenna, shown in Figure 7,
is optimized and simulated using CST Studio Suite. All the parameter values are de-
tailed in Table 1. The substrate used on this antenna design is Rodger R4003C (εr = 3.38,
h = 1.52 mm). Figure 10 depicts the prototype of the semi-elliptical folded dipole. The
reflection coefficient of the structure is illustrated in Figure 11a. The semi-elliptical dipole
has an impedance bandwidth of 2.3 GHz to 25 GHz under the condition of S11 < −6 dB,
making it suitable for reception purposes. However, for more restrictive applications,
the presented model meets the S11 < −10 dB condition over several bands, including
3.3–8 GHz, 9.8–12.6 GHz and 13.1–26 GHz.
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The simulation results for the radiation and total efficiencies of the dipole antenna are
presented in Figure 11b. The total efficiency is greater than 75% across the entire bandwidth
starting at 2.3 GHz. The proposed structure has directional radiation, resulting in a high
maximum gain of 9.5 dBi at 6.6 GHz (Figure 11c), located in the z-axis (broadside). However,
above 12 GHz, the maximum radiation is no longer in this direction, and the steering of the
main beam and high cross-polarization are observed but not shown in this paper. In this
way, broadband radiation behavior is achieved up to 12 GHz. However, for applications
that do not require directional radiation (IOT, UWB impulse systems), where the gain
remains high, the semi-elliptical folded dipole antenna may be perfectly suitable above
12 GHz. Simulated radiation patterns showing the directional behavior in the 2–10 GHz
band are mentioned in Figure 12.
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The prototype of the elliptical folded dipole antenna is presented in Figure 13 and has
been measured with an MVG—StarLab anechoic chamber. The simulation and measure-
ment results show good agreement. The measured and simulated reflection coefficients are
compared in Figure 11a. The measured impedance bandwidth is observed to be 2.3–26 GHz
with a condition of S11 < −6 dB. The antenna satisfies the S11 < −10 dB requirement over
several bands, including 3.3–8 GHz, 9.8–12.6 GHz and 13.2–26 GHz, similar to the simula-
tion results. The measurement environment (connector, mechanical support, substrate . . . )
used during measurements can explain the differences with simulation results at higher
frequencies. Perhaps a connector model could also be considered during the simulation
process to improve the reliability of results.
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Due to the limitations of the anechoic chamber and software treatments, the efficiency
is not as precise as the simulation and has consequences on the measured gain. The peak
values vary from 2.9 to 8.2 dBi in the 2.3–12 GHz band. Above 12 GHz, the main beam is
no longer in the broadside (z-axis) and causes a diminution of the gain in this direction
such as in simulation. The measured radiation patterns show a close resemblance to the
simulated ones, with the exception of higher cross-polarization values.

The radiation patterns demonstrate a directive behavior along the dipole axis (at
theta = 0◦) up to a certain frequency, as observed in the curves. However, above 12 GHz,
this radiation becomes more unstable and challenging to characterize. Maybe using an
even better connector could solve a part of the difference between simulations and measure
above 12 GHz.

Table 2 shows that the proposed antenna provides good impedance bandwidth im-
provement over other folded dipole antennas [16,17,21]. Compared to other directive
solutions such as tapered slots or Vivaldi antennas, the proposed design has the advantage
of being reconfigurable thanks to a proper phase-shifting feeding circuit (coupling circuits,
diode, switch . . . ).

Table 2. Performances of the mentioned antennas and the semi-elliptical folded dipole antenna.

Reference Type Bandwidth (GHz) Gain (dBi) Reconfigurability

[9] Square monopole 2.38–5.2 1.5–4.5 No

[16] Folded dipole 30.3–53.7 4.6–6.7 No

[17] Modified folded dipole 26.3–29.75 5.51 No
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Table 2. Cont.

Reference Type Bandwidth (GHz) Gain (dBi) Reconfigurability

[21] Thick Folded dipole 1.2–4.07 8.2–11.5 No

[22] Dipole 26.5–38.2 4.5–5.8 No

[23] Tapered slot antenna 6.2–12.3 3–6 No

[24] Vivaldi antenna 2.9–14.2 5.5–9 No

This work
S11 < −6 dB Folded dipole 2.3–26

2.9–8.2 Yes
S11 < −10 dB 3.3–8, 9.8–12.6 and 13.2–26

5. Discussion and Conclusions

In this study, a semi-elliptical folded dipole antenna with ultra-wideband (UWB)
characteristics was investigated. Thanks to an optimized dipole shape and a transition
between the microstrip line and slot line, we obtain an impedance bandwidth over 167%
(2.3–26 GHz) under the condition of S11 < −6 dB. This bandwidth is really wide compared
to recent folded dipoles mentioned in this work. The proposed structure offers possibilities
of reconfigurability through different feeding phase configurations. The study focused
on the circuits that can allow such feeding, so some have not been discussed in this
paper. Only the microstrip line to slot line transition, which produces a 180◦ phase shift
feeding, has been studied here. A publication concerning only the reconfigurable aspect
of the structure is envisaged. The dipole structure with a symmetrical feeding creates a
directive radiation pattern. Both simulation and measurement results indicated that feeding
the antenna symmetrically led to maximum gain in the broadside direction. However,
cross-polarization increased at higher frequencies. The planar technology used with a
common substrate makes this design a really compact and easy to integrate antenna for
UWB solutions.
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