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We study the notion of an asymptotically automatic sequence, which generalises the notion of an automatic sequence. While k-automatic sequences are characterised by finiteness of k-kernels, the k-kernels of asymptotically k-automatic sequences are only required to be finite up to equality almost everywhere. We prove basic closure properties and a linear bound on asymptotic subword complexity, show that results concerning frequencies of symbols are no longer true for the asymptotic analogue, and discuss some classification problems.

Introduction

Automatic sequences are a widely-studied class of sequences, which can be defined in many equivalent ways, each shedding light from a different perspective. Perhaps the shortest definition uses the notion of the k-kernel. For a sequence a = (a n ) ∞ n=0 and a base k ≥ 2, the k-kernel of a is the set N k (a) := (a k i n+r ) ∞ n=0 i, r ∈ N 0 , r < k i . A sequence a is k-automatic if and only if its k-kernel is finite, #N k (a) < ∞.

We will say that two sequences a = (a n ) ∞ n=0 and b = (b n ) ∞ n=0 are asymptotically equal, denoted a ≃ b, if a n = b n for almost all n ∈ N 0 , i.e., 1

N # {0 ≤ n < N | a n ̸ = b n } → 0 as N → ∞.
In [START_REF] Konieczny | An asymptotic version of Cobham's theorem[END_REF], the author introduced the notion of an asymptotically k-automatic sequence, which is a sequence a over a finite alphabet whose k-kernel is finite up to asymptotic equality. In other words, we require that the set N k (a) := N k (a)/≃ should be finite, # N k (a) < ∞, or equivalently that there exists a finite number of sequences a (0) , a (1) , . . . , a (d-1) such that for each b ∈ N k (a) there exists 0 ≤ j < d such that b ≃ a (j) . Asymptotically k-automatic sequences include kautomatic sequences, their modifications on density zero set of positions, as well as sequences a = (a n ) ∞ n=0 of the form a n = F ({log k n}) , where F : [0, 1) → Ω is a Riemann-measurable map taking values in some finite set Ω. More examples are also constructed in [START_REF] Konieczny | An asymptotic version of Cobham's theorem[END_REF].

The purpose of this paper is to systematically investigate asymptotically automatic sequences, and to establish analogues of various well-known facts about automatic sequences -or to disprove them. There are several sources of motivation behind this endeavour. Firstly, we believe that the class of asymptotically automatic sequences is interesting in its own right and worthy of investigation.

Secondly, some of the new results obtained here immediately imply new density versions of results expressed in terms of automatic sequences. In particular, this is the case for classification results obtained in Section 6. Finally, we hope that the arguments presented here will better illuminate the theory of automatic sequences.

In Section 2 we discuss basic properties of asymptotically k-automatic sequences. In particular, we prove closure under Cartesian products and codings, and under passing to an arithmetic progression. We also discuss the connection with automata, obtained in [START_REF] Konieczny | An asymptotic version of Cobham's theorem[END_REF].

In Section 3 we discuss the dependence of the notion of a k-automatic sequence on the base k. We show that for multiplicatively dependent bases k and ℓ, asymptotically k-automatic sequences are the same as asymptotically ℓ-automatic sequences. For multiplicatively independent bases k and ℓ, a celebrated theorem of Cobham asserts that the only sequences that are automatic in both bases are the eventually periodic ones. In contrast, as shown in [START_REF] Konieczny | An asymptotic version of Cobham's theorem[END_REF], there exist sequences that are asymptotically automatic in two multiplicatively independent bases without being asymptomatically equal to a periodic sequence; we can only show a considerably weaker property of asymptotic invariance under a shift. We investigate the set of bases with respect to which a given sequence is asymptotically automatic and show that it has a particularly structured form.

In Section 4 we discuss frequencies of symbols and subwords in asymptotically automatic sequences. In the case of automatic sequences, frequencies are not guaranteed to exist, but logarithmic frequencies are. Additionally, if frequencies do exist then they are rational. In contrast, we construct examples which show that for asymptotically automatic sequences logarithmic frequencies also are not guaranteed to exist, and if frequencies exist they are not guaranteed to be rational.

In Section 5 we discuss subword complexity and its newly introduced asymptotic analogue. Automatic sequences are notable for having linear subword complexity. We argue that subword complexity is not the correct notion to consider in the asymptotic regime, and show that asymptotically automatic sequences have linear asymptotic subword complexity. We also prove several basic facts about asymptotic subword complexity. In particular, we classify sequences whose asymptotic subword complexity is especially low, which is analogous to the classification of periodic and Sturmian sequences in terms of subword complexity.

In Section 6 we discuss classification problems. Specifically, we fully classify bracket words that are asymptotically automatic, in particular showing that Sturmian words are never asymptotically automatic. We also partially classify multiplicative sequences that are asymptotically automatic.

In Section 7 we introduce the notion of an asymptotically k-regular sequence, and we prove a variant of Cobham's theorem.
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1.1. Notation. We let N = {1, 2, . . . } denote the set of natural numbers and let N 0 = N ∪ {0}. For N ∈ N 0 , we let [N ] = {0, 1, . . . , N -1} denote the length-N initial interval of N 0 .

For a set Ω we let Ω * denote the set of all finite words w = w 0 w 1 . . . w ℓ-1 (ℓ ∈ N 0 , w 0 , w 1 , . . . , w ℓ-1 ∈ Ω) over Ω, including the empty word ϵ. The length of a word w is denoted by |w|. We let Ω ∞ denote the set of all sequences w = w 0 w 1 w 2 . . . over Ω. Given a sequence w, we let w i denote its i-th entry (starting with 0) and for i ≤ j we let w [i,j) = w i w i+1 . . . w j-1 denote the corresponding subword.

For a word w ∈ Ω * and n ∈ N 0 , we let w n = ww . . . w denote the n-fold repetition of w, and w ∞ = ww • • • ∈ Ω ∞ denote the periodic sequence with period w. More generally, for t ∈ R + we let w t denote the prefix of w ∞ of length ⌊t |w|⌋. (We caution that, in general, (w t ) s ̸ = w ts .)

For an integer k ≥ 2, we let Σ k = {0, 1, . . . , k -1} denote the set of base-k digits. For an integer n ∈ N 0 , we let (n) k denote its base-k expansion (without leading zeros) and for u ∈ Σ * k (possibly with leading zeros) we let [u] k denote the integer encoded by [u]. For i ∈ N 0 we also let (n) i k denote the unique word u ∈ Σ i k such that n ≡ [u] k mod k i (this is the length-i suffix of (n) k or the result of padding (n) k with leading zeros, depending on the length of (n) k ).

We use standard asymptotic notation. For two quantities X, Y , we write

X = O(Y ) or X ≪ Y if |X| ≤ CY for a constant C. If C is additionally allowed to depend on a parameter A, we write X = O A (Y ) or X ≪ A Y . Assuming that X and Y depend on a parameter N , we write X = o N →∞ (Y ) if X/Y → 0 and X = ω N →∞ (Y ) if X/Y → +∞ as N → ∞; if N is clear from the context
and there is no risk of confusion, we simply write o(Y ) and ω(Y ) instead.

Basic properties

In this section, we review some basic properties of asymptotically automatic sequences. Most of them are direct analogues of similar properties of automatic sequences and can be established using essentially the same argument. 

b = ((a n , b n )) ∞ n=0 is an asymptotically k-automatic sequence. Proof. It is enough to notice that N k (a × b) ⊆ N k (a) × N k (b). □ Lemma 2.2. Let k ≥ 2,
let a be an asymptotically k-automatic sequence over a finite alphabet Ω and let ρ : Ω → Ω ′ be a map. Then the coding ρ

(a) = (ρ(a n )) ∞ n=0
is an asymptotically k-automatic sequence.

Proof. It is enough to notice that N k (ρ(a)) ⊆ {ρ(b) | b ∈ N k (a)}. □ Corollary 2.3. Let k ≥ 2 and let (S,
•) be a semigroup. Then asymptotically kautomatic sequences over S form a semigroup, with the operation defined pointwise, i.e. by a

• b = (a n • b n ) ∞ n=0 .
Proof. Apply Lemmas 2.1 and 2.2 with ρ : S × S → S given by ρ(x, y) = x • y. □

In particular, the family of complex-valued asymptotically k-automatic sequences is closed under addition and multiplication, i.e. it constitutes a ring. Similarly, the multiplicative inverse of an asymptotically k-automatic sequence, if it exists, is asymptotically k-automatic.

Lemma 2.4. Let k ≥ 2, let a be an asymptotically k-automatic sequence and let a ′ be a sequence with a ′ ≃ a. Then a ′ is asymptotically k-automatic.

Proof. It is enough to notice that N k (a) = N k (a ′ ). □
As a consequence of Lemma 2.4, it makes sense to speak of asymptotic kautomaticity of a sequence that is only defined almost everywhere. For instance, in the following result we consider the restriction a ′ = (a qn+r ) ∞ n=0 of an asymptotically k-automatic sequence a to an arithmetic progression (qn + r) ∞ n=0 . When r < 0, a few initial terms of a ′ are not well-defined. However, we can assign arbitrary values to those entries, and whether or not the resulting sequence is asymptotically k-automatic does not depend on the choices made.

Lemma 2.5. Let k ≥ 2, let a be a sequence over a finite alphabet, and let q ∈ N. For r ∈ Z, let a (r) := (a qn+r ) ∞ n=0 , where we let a n := a 0 for n < 0. (i ) If a is asymptotically k-automatic then so is a (r) for each r ∈ Z. (ii ) If for all r with 0 ≤ r < q the sequence a (r) is asymptotically k-automatic then a is also asymptotically k-automatic .

Proof.

(i ) It will suffice to consider the special cases where q = 1 and r = ±1, and where r = 0. The general case can be recovered by repeated applications of these two cases. In the case where r = 0, the proof follows from the same argument as Theorem 6.8.1 in [START_REF] Allouche | Automatic sequences[END_REF], except that we replace N k with N k . The key idea is that the set (b qn+s ) ∞ n=0 b ∈ N k (a), 0 ≤ s < q is finite up to equality almost everywhere and contains N k a (0) . In the case where q = 1 and r = ±1, similarly, the proof follows from the same argument as Theorem 6.8.3 in [START_REF] Allouche | Automatic sequences[END_REF]. The key idea is that the set

N k (a) ∪ b (r) b ∈ N k (a) ,
is finite up to equality almost everywhere and contains N k (a (r) ). (Here, b (r) is defined by b

(r) n := b qn+r = b n±1 if qn + r ≥ 0 and b (r) n := b 0 otherwise.) (ii ) Pick any b ∈ N k (a), say b n = a k i n+m with m, i ∈ N 0 , m < k i .
Then b is uniquely determined by the sequences b (s) for s with 0 ≤ s < q. Pick any 0 ≤ s < q and put r := k i s + m mod q and h :=

k i s + m /q . Then h < k i and b (s) n = a qk i n+k i s+m = a (r) k i n+h Thus, b (s) ∈ N k (a (r) ). Since N k (a (r)
) is finite and r is chosen from a finite set, we conclude that N k (a) is finite. □

For a sequence a taking values in an abelian monoid we may consider the sequence of partial sums Σa given by (Σa) n = n-1 m=0 a m (in particular, a 0 = 0). The following lemma is an analogue of Corollary 6.9.3 in [START_REF] Allouche | Automatic sequences[END_REF].

Lemma 2.6. Let a be an asymptotically k-automatic sequence over a finite abelian monoid (S, +). Then the sequence Σa is asymptotically k-automatic.

Proof. For any sequence b and 0 ≤ i < k, let b (i) be the sequence given by b (i) := b kn+i . For each 0 ≤ j ≤ k we have

(Σb) kn+j = n-1 m=0 k-1 i=0 b km+i + j-1 i=0 b kn+i = k-1 i=0 (Σb (i) ) n + j-1 i=0 b (i) n = j-1 i=0 (Σb (i) ) n+1 + k-1 i=j (Σb (i) ) n .
Let S ⊆ S ∞ be the sub-monoid of S ∞ generated by Σb and their shifts by 1 (i.e., ((Σb) n+1 ) ∞ n=0 ) for b ∈ N k (a), with the operation defined pointwise. Since S and N k (a) are finite, S/≃ is finite. Applying the identity obtained above, we see that

S is closed under the operation c → (c kn+i ) ∞ n=0 for each 0 ≤ i < k. It follows that N k (Σa) ⊆ S. Thus, N k (Σa) is finite. □
We close this section by citing a result from [START_REF] Konieczny | An asymptotic version of Cobham's theorem[END_REF] which elucidates the connection between automata and asymptotically automatic sequences. For a map ϕ : Σ * k → Ω, we define the k-kernel (or simply the kernel, since there is no risk of ambiguity)

N k (ϕ) = {ϕ v | v ∈ Σ * k } , ϕ v (u) := ϕ(uv) for u, v ∈ Σ * k . The map ϕ is automatic if and only if its kernel is finite, #N k (ϕ) < ∞.
Proposition 2.7 ( [START_REF] Konieczny | An asymptotic version of Cobham's theorem[END_REF]). Let a be an asymptotically k-automatic sequence. Then there exists d ∈ N and an automatic map ϕ : Σ * k → Σ d as well as sequences a (0) , a (1) , . . . , a (d-1) such that for each u ∈ Σ * k we have

a k |u| n+[u] k ∞ n=0 ≃ a (ϕ(n)) n ∞ n=0 .
In applications, we will always assume that the value of d is minimal, meaning that no pair of sequences a (0) , a (1) , . . . , a (d-1) is asymptotically equal. The following can be construed as an analogue of the pumping lemma for automatic sequences.

Lemma 2.8. Let a be an asymptotically k-automatic sequence. Then there exist p ∈ N such that for each word w ∈ Σ * k with |w| ≥ p there exist words u, v, v ′ ∈ Σ * k such that w = vuv ′ , |w| -p ≤ |u| < |w| and, letting w(t) := vu t v ′ , for all t ∈ N 0 we have

a k |w| n+[w] k ∞ n=0 ≃ a k |w(t)| n+[w(t)] k ∞ n=0 .
Proof. Apply Proposition 2.7 and then apply the pumping lemma [AS03a, Lem. 4.2.1] to ϕ. □

Bases

A classical theorem due to Cobham asserts that for an automatic sequence there is, essentially, only one base with respect to which it is automatic. To be more precise, it is not hard to show that each eventually periodic sequence is automatic in every base and that for any pair of multiplicatively dependent integers k, ℓ ≥ 2 (i.e., log k/ log ℓ ∈ Q), k-automatic sequences are the same as ℓ-automatic sequences. Cobham's theorem asserts that for each automatic but not eventually periodic sequence a there exists precisely one integer k ≥ 2 that is not a perfect power and such that a is k-automatic. In contrast, an example from [START_REF] Konieczny | An asymptotic version of Cobham's theorem[END_REF] shows that there exists a sequence a that is asymptotically 2-and 3-automatic, but not asymptotically periodic. (It also seems very plausible that this sequence is not k-automatic for k that have at least one prime factor p ≥ 5, but the proof of this statement remains elusive.) Thus, for a given sequence over a finite alphabet, it makes sense to inquire into the set of bases with respect to which it is asymptotically automatic.

We first note that, in analogy with automatic sequences, asymptotically automatic sequences in multiplicatively dependent bases are the same. The argument is virtually identical to the one for automatic sequences, but we include it here for the sake of completeness.

Lemma 3.1. Let a be a sequence over a finite alphabet Ω and let k, ℓ ≥ 2 be multiplicatively dependent integers. Then a is asymptotically k-automatic if and only if a is asymptotically ℓ-automatic.

Proof. It is enough to consider the case where ℓ = k m is an integer power of k with m ≥ 2. In this case we have N ℓ (a) ⊆ N k (a) and hence also N ℓ (a) ⊆ N k (a). Thus, if a is k-automatic then it is also ℓ-automatic. Conversely, suppose that a is ℓ-automatic, and consider a sequence b ∈ N k (a), say b n = a k i n+r where 0 ≤ r < k i . Put j = i mod m and s = r/ℓ ⌊i/m⌋ . Bearing in mind the identity

k i n + r = ℓ ⌊i/m⌋ (k j n + s) + r mod ℓ ⌊i/m⌋ , we see that b ∈ N ℓ (a ′ )
, where a ′ n = a k j n+s . By Lemma 2.5, a ′ is asymptotically ℓ-automatic, and hence N ℓ (a ′ ) is finite. Since b ∈ N k (a) was arbitrary and j and s are uniformly bounded with respect to b, it follows that N k (a) is finite.

□ Next, we show some closure properties of the set of bases with respect to which a given sequence is asymptotically automatic. Lemma 3.2. Let k, ℓ ≥ 2 be multiplicatively independent integers and let a be an asymptotically k-automatic sequence. Then a is asymptotically ℓ-automatic if and only if it is asymptotically kℓ-automatic.

Proof. Suppose first that a is asymptotically ℓ-automatic. To show that a is asymptotically kℓ-automatic it is enough to notice that

N kℓ (a) ⊆ b∈N ℓ (a) N k (b),
and each sequence b ∈ N ℓ (a) is asymptotically k-automatic by Lemma 2.5.

Suppose next that a is asymptotically kℓ-automatic. Let I ∈ N 0 be sufficiently large that for each integer R with 0 ≤ R < k I there exist infinitely many pairs

(i, r) ∈ N 2 0 with 0 ≤ r < k i such that (a k i n+r ) ∞ n=0 ≃ (a k I n+R ) ∞ n=0
. We will show that for each 0 ≤ R < k I the sequence (a k I n+R ) ∞ n=0 is asymptotically ℓ-automatic, which will finish the argument by Lemma 2.5. Each sequence in N ℓ (a k I n+R ) ∞ n=0 takes the form (a k I ℓ j n+t ) ∞ n=0 for some j, t ∈ N 0 with 0 ≤ t < k I ℓ j and t ≡ R mod k I . By the definition of I, we can find arbitrarily large i ∈ N 0 and 0 ≤ r < k i such that

(a k I ℓ j n+t ) ∞ n=0 = a k I (ℓ j n+⌊t/k I ⌋)+R ∞ n=0 ≃ a k i (ℓ j n+⌊t/k I ⌋)+r ∞ n=0 = (a k i ℓ j n+u ) ∞ n=0 ,
where u = k i t/k I + r < k i ℓ j . Since a is asymptotically kℓ-automatic, we can find J, T ∈ N 0 , with J bounded by a constant independent of j and 0 ≤ T < (kℓ) J such that

(a k i ℓ j n+u ) ∞ n=0 = a (kℓ) j (k i-j n+⌊u/(kℓ) j ⌋)+(u mod (kℓ) j ) ∞ n=0 ≃ a (kℓ) J (k i-j n+⌊u/(kℓ) j ⌋)+T ∞ n=0 = (a k i-j+J ℓ J n+v ) ∞ n=0
, where v = (kℓ) J u/(kℓ) j + T < k i-j+J ℓ J . Finally, using the fact that a is asymptotically k-automatic, we can find M, V ∈ N 0 with M bounded by a constant independent of j and 0

≤ V < k M such that (a k i-j+J ℓ J n+v ) ∞ n=0 = a k i-j+J (ℓ J n+⌊v/k i-j+J ⌋)+(v mod k i-j+J ) ∞ n=0 ≃ a k M (ℓ J n+⌊v/k i-j+J ⌋)+V ∞ n=0 = (a k M ℓ J n+S ) ∞ n=0 , where S = k M v/k i-j+J + V < k M ℓ J . Ultimately, the sequence (a k I ℓ j n+t ) ∞ n=0 is asymptotically equal to the sequence (a k M ℓ J n+S ) ∞ n=0
, which is taken from a finite set independent of j and t. This shows N ℓ (a k I n+R ) ∞ n=0 is finite, as needed. □ As a consequence of Lemma 3.2, the set of bases with respect to which a is asymptotically automatic has a particularly structured form. Before we proceed, we need the following simple lemma on vector spaces.

Lemma 3.3. Let S ⊆ ∞ i=1 Q be a set satisfying the following properties: (i ) for each u ∈ S and i ∈ N, u i ∈ N 0 ; (ii ) for each u ∈ S and m ∈ N, if m | u i for all i ∈ N then (1/m)u ∈ S; (iii ) for each u, v ∈ S, u + v ∈ S; (iv ) for each u, v ∈ S, if u i ≥ v i for all i ∈ N then u -v ∈ S.
Then there exists a vector space V <

∞ i=1 Q such that S = V ∩ N ∞ 0 = {v ∈ V | v i ∈ N 0 for all i ∈ N} . Proof. Let V denote the set of all v ∈ ∞ i=1 Q such that there exist m ∈ N and u ∈ S such that mv + u ∈ S. It is routine to check that if v, v ′ ∈ V and n ∈ N then v + v ′ ∈ V , (1/n)v ∈ V and -v ∈ V .
Thus, V is a vector space. Directly by definition, for all v ∈ S we have v ∈ V and v i ∈ N 0 for all i ∈ N. Suppose conversely that v ∈ V and v i ∈ N 0 for all i ∈ N 0 . Then mv + u ∈ S for some u ∈ S and m ∈ N. We then infer from the closure properties of S that mv ∈ S and v ∈ S. □ For a prime p, we let ν p denote the p-adic valuation, meaning that p νp(n) is the largest power of p that divides n. Let also p 1 , p 2 , . . . be the increasing enumeration of the primes.

Corollary 3.4. Let a be a sequence over a finite alphabet Ω. There exists a vector subspace V <

∞ i=1 Q such that for k ∈ N with k > 1, a is asymptotically k- automatic if and only if (ν p1 (k), ν p2 (k), • • • ) ∈ V . Proof. By Lemma 3.2, the set S = {(0, 0, • • • )} ∪ {(ν p1 (k), ν p2 (k), • • • ) | a is asymptotically k-automatic}
satisfies the assumptions of Lemma 3.3. □

It seems plausible that the following converse to Corollary 3.4 is also true.

Conjecture 3.5. Let V < ∞ i=1 Q be a vector subspace. Then there exists a sequence a over the alphabet {0, 1} such that for k

∈ N with k > 1, a is asymptotically k-automatic if and only if (ν p1 (k), ν p2 (k), • • • ) ∈ V .

Frequencies of symbols

4.1. Logarithmic frequencies. For an sequence a over a finite alphabet Ω and for a symbol ω ∈ Ω, we define the lower and upper (asymptotic) frequencies of ω in a:

freq a (ω) := d ({n ∈ N 0 | a n = ω}) = lim sup N →∞ # {n ∈ [N ] | a n = ω} N , (1) freq a (ω) := d ({n ∈ N 0 | a n = ω}) = lim inf N →∞ # {n ∈ [N ] | a n = ω} N . (2)
More generally, for a word w ∈ Ω ℓ , we define

freq a (w) := d n ∈ N 0 a [n,n+ℓ) = w , (3) freq a (w) := d n ∈ N 0 a [n,n+ℓ) = w . (4)
When freq a (w) = freq a (w), the common value is called the frequency of w is a and is denoted by freq a (w). Replacing d and d with upper and lower logarithmic densities given by

d log (A) = lim sup N →∞ 1 log N N -1 n=0 1 A (n) n + 1 , d log (A) = lim inf N →∞ 1 log N N -1 n=0 1 A (n) n + 1 ,
we similarly obtain the notions of upper and lower logarithmic frequencies

freq log a (w) := d log n ∈ N 0 a [n,n+ℓ) = w , (5) 
freq log a (w) := d log n ∈ N 0 a [n,n+ℓ) = w , (6) 
as well as the notion of logarithmic frequency, freq log a (w) = freq log a (w) = freq log a (w). When a is automatic, the frequencies of symbols are not guaranteed to exist, as shown by the basic example a n = |(n) 2 | mod 2. However, the logarithmic frequencies exist for all symbols, and more generally for all words [AS03a, Thm. 8.4.9]. Thus, it may come as a surprise that there exist asymptotically automatic sequences such that logarithmic frequencies of symbols do not exist.

Proposition 4.1. There exists an asymptotically 2-automatic sequence a over the alphabet {0, 1} such that freq log a (1) = 1 and freq log a (1) = 0. In particular, freq log a (1) does not exist.

Proof. Following the construction in [Kon23, Sec. 4], let (H i ) ∞ i=0 = 2 αi 3 βi ∞ i=0 be the increasing enumeration of the set (7) H = 2 α 3 β α, β ∈ N 0 = {1, 2, 3, 4, 6, 8, 9, 12, . . . }.
Let (γ j ) ∞ j=0 be an increasing sequence of integers with γ 0 = 0, which will be specified in the course of the argument. We define the sequence a by putting a 0 = 0 and for each j ∈ N 0 and each i ∈ N 0 such that

β i ∈ [γ j , γ j+1 ) letting (8) a n = j mod 2 ∈ {0, 1} for n ∈ [H i , H i+1 ).
It follows by the same argument as in [Kon23, Lem. 4.2] that (9) a n = a n+1 = a 2n for almost all n ∈ N 0 and as a consequence a is asymptotically 2-automatic.

We plan to ensure that for each j ∈ N, letting N = 3 γj , we have

(10) 1 log N N -1 n=0 a n n + 1 ∈ [0, 2 -j ) if j ≡ 1 mod 2, (1 -2 -j , 1] if j ≡ 0 mod 2.
Once (10) has been proved, letting j → ∞ we conclude that freq log a (1) = 1 and freq log a (1) = 0, as needed. We also note that (10) only depends on γ 0 , γ 1 , . . . , γ j and not on γ j+1 , γ j+2 , . . .

(this is because each n ∈ [1, N ) = [1, 3 γj ) belongs to an interval [H i , H i+1 ) ⊆ [1, 3 γj ) which satisfies β i < γ j ).
Our plan is to let γ j grow very rapidly with j. Thus, it will suffice to show that, given any values of γ 0 , γ 1 , . . . , γ j-1 , condition (10) holds for all sufficiently large values of γ j . For concreteness, suppose that j ≡ 1 mod 2. For each interval

[H i , H i+1 ) ⊆ [1, 3 γj ), if β i ≥ γ j-1 then we have a n = 0 for all n ∈ [H i , H i+1 ).
Using the rough estimate a n ≤ 1 for all remaining n and applying Lemma 4.2 below concludes the argument. □ Lemma 4.2. For each β ∈ N 0 , we have

(11) lim k→∞ 1 log H k i<k, βi=β Hi+1-1 n=Hi 1 n + 1 = 0.
Proof. Let S k denote the sum in (11) and pick ε > 0. By [START_REF] Konieczny | An asymptotic version of Cobham's theorem[END_REF]Lem. 4.1] we have

H i+1 /H i → 0 as i → ∞. Hence, we can pick i 1 such that H i+1 ≤ (1 + ε)H i for all i ≥ i 1 .
Splitting the outer sum in (11) at i 1 and estimating 1/(n + 1) from above by 1/H

i for n ∈ [H i , H i+1 ), we obtain (12) S k ≤ O ε (1) + ε • # {i | i 1 ≤ i < k, β i = β} ≤ O ε (1) + ε log 2 (H k ).
It follows that

(13) lim sup k→∞ S k log H k ≤ ε log 2 .
Letting ε → 0 concludes the proof. □ 4.2. Rationality of frequencies. Another notable property of automatic sequences is that frequencies of symbols, if they exist, are rational [AS03a, Thm. 8.4.5(b)]. We show that this property also does not extend to asymptotically automatic sequences, which can have arbitrary frequencies of symbols. In particular, this shows that there are uncountably many distinct asymptotically automatic sequences (up to equality almost everywhere and renaming symbols), in contrast with automatic sequences which are easily seen to be countable.

Proposition 4.3. For each θ ∈ [0, 1], there exists an asymptotically 2-automatic sequence a over the alphabet {0, 1} such that freq a (1) = θ.

Proof. For each n ∈ N 0 , there is a unique decomposition of the binary expansion

(14) (n) 2 = u (1) n u (2) n • • • u (r(n)) n v n , where r(n) ∈ N 0 , u (i) n ∈ Σ * 2 1 and u (i) n 1 = i for i = 1, 2, . . . , r(n), and v n ∈ Σ * 2 and v n 1 ≤ r(n).
We will take a of the form (15)

a n = f (u (r(n)) n ),
where f : Σ * 2 → {0, 1} remains to be specified. Claim 1: We have # N 2 (a) = 1. In particular, a is asymptotically 2-automatic.

Proof: We need to prove that for almost all n ∈ N 0 we have ( 16)

a n = a 2n = a 2n+1 .
The decomposition of (2n) 2 as in ( 14) takes the form

(17) (n) 2 = u (1) n u (2) n • • • u (r(n)) n (v n 0),
and thus u

(r(2n)) 2n = u (r(n)) n
and a n = a 2n for all n. To prove the second equality in (16), we begin by noting that, similarly to (17), the decomposition of (2n + 1) 2 as in ( 14) takes the form

(18) (n) 2 = u (1) n u (2) n • • • u (r(n)) n (v n 1), unless v n 1 = r(n), in which case (19) s 2 (n) = (n) 2 1 = 1 + 2 + • • • + r(n) + r(n) = r(n) 2 + 3r(n) /2. Let R = r 2 + 3r /2 r ∈ N 0 . It will suffice to show that s 2 (n) ̸ ∈ R for almost all n ∈ N 0 .
Let L be a large integer and consider a random variable n uniformly distributed on [2 L ]. Then s 2 (n) has binomial distribution Bin(L, 1/2). By Hoeffding's inequality, we have (20)

P |s 2 (n) -L/2| > L log L ≤ 2/L 2 .
A standard estimate on binomial coefficients, which is easily derived from Stirling's formula, asserts that (21) max

x∈Z P s 2 (n) = x = 2 -L L ⌊L/2⌋ ≪ 1 √ L .
Thus, bearing in mind that #R ∩ [N ] = √ 2N + O(1), we can estimate

P s 2 (n) ∈ R ≤ |x-L/2|≤ √ L log L 1 R (x)P s 2 (n) = x + P |s 2 (n) -L/2| > L log L ≪ log L L + 1 L 2 → 0 as L → ∞. It follows that s 2 (n) ̸ ∈ R for almost all n ∈ N 0 , as needed. △
We let f be any map from Σ * 2 to {0, 1} with the property that for each r, m ∈ N 0 with r ≤ m we have

# {w ∈ Σ m 2 | f (w) = 1, |w| 1 = r} = θ m r . ( 22 
)
Such a map can easily be constructed by picking, for each r, m

∈ N 0 with r ≤ m, a partition {w ∈ Σ m 2 | |w| 1 = r} = X 0 ∪ X 1 into two sets with cardinalities #X 1 = θ m r and #X 0 = (1 -θ) m r
, and then putting f (w) = 1 for w ∈ X 1 and f (w) = 0 for w ∈ X 0 .

Claim 2: We have freq a (1) = θ.

Proof: Let N be a large integer, and let L = ⌈log 2 N ⌉. We need to approximate # {n ∈ [N ] | a n = 1}. Towards this end, we partition [N ] into cells

E = E(r, m, u (1) , u (2) , . . . , u (r-1) , v), (23) 
where r, m ∈ N 0 , u (1) , u (2) , . . . , u (r-1) , v ∈ Σ * 2 , defined as the set of those n ∈

[N ] for which r(n) = r, u (r) n = m, u (1) n = u (1) , u (2) n = u (2) , . . . , u (r-1) n = u (r-1)
, and v n = v. We will say that the cell E given by ( 23) is "good" if all of the following conditions hold, and "bad" otherwise:

(i ) |r - √ L| ≤ 2 log L; (ii ) |m -2r| ≤ 20r log L; (iii ) [u (1) u (2) . . . , u (r-1) 1 m v] 2 < N .
Let also U g and U b denote the union of all good and bad cells, respectively. Our plan is to show that f is well-behaved on U g and that U b is negligibly small.

We begin with estimating the cardinality of U b . Let Z denote the set of those n ∈ [N ] whose binary expansion (n) L 2 = 0 . . . 0(n) 2 (padded with 0s to length L) contains a subword w with

|w| 1 - 1 2 |w| > 3 2 |w| log L. ( 24 
)
It follows from Hoeffding's inequality that, if we fix the positions where w begins and ends and we choose n ∈ [2 L ] uniformly at random, the probability that (24) holds at most 2 exp(-3 log L) = 2L -3 . Since there are L+1 2 ways to pick a nonempty subword of a length-L word, using the union bound we obtain

#Z ≤ 2 L • L + 1 2 • 2L -3 ≪ N L .
Consider a bad cell E, given by (23), and assume that N (and hence also L) is sufficiently large. If (i) is false then E ⊆ Z, since for any n ∈ E, condition (24) holds for w = (n) L 2 , which can easily be derived from the fact that |w| = L and (r 2 + r)/2 ≤ |w| 1 ≤ (r 2 + 3r)/2. Similarly, if (i) is true but (ii) is false then E ⊆ Z, since for any n ∈ E, condition (24) holds for w = u (r(n)) n . Finally, if (i) is true but (iii) is false then the word u (1) u (2) . . . , u (r-1) is a prefix of (N ) 2 , and its length is at least r(r -1)/2 ≥ L/3. Thus, E is contained in an interval of length 2 2/3L ≪ N 2/3 < N/L. Combining the estimates obtained above, we conclude that

#U b ≪ N/L = o N →∞ (N ). ( 25 
)
Consider now a "good" cell E, given by (23). It follows from condition (iii) that

E = [u (1) u (2) . . . u (r-1) wv] 2 w ∈ Σ m 2 , |w| 1 = r . (26) Thus, it follows from (22) that # {n ∈ E | a n = 1} = θ m r = ⌊θ • #E⌋ . (27) Assuming that L is sufficiently large, we have m r ≥ m r r ≥ 3 2 √ L/2 = ω N →∞ (1). ( 28 
)
(We recall that ω N →∞ (1) denotes an expression that tends to ∞ with N .) Thus, the expression in ( 27) is (θ -o N →∞ (1))#E.

We are now ready to estimate

# {n ∈ [N ] | a n = 1} ≥ # {n ∈ U g | a n = 1} = E good (θ -o N →∞ (1)) • #E = (θ -o N →∞ (1))(N -#U b ) = θN -o N →∞ (N ).
where the sum is taken over all the cells E that are "good". Dividing by N and letting N → ∞, we conclude that freq a (1) ≥ θ. Using analogous reasoning, we obtain the complementary estimate freq a (1) ≤ θ. △

Combining Claims 1 and 2 completes the argument. □

Subword complexity

Subword complexity of a sequence a over a finite alphabet Ω is the function p a which assigns to each ℓ ∈ N the number of length-ℓ subwords of a:

(29) p a (ℓ) := # w ∈ Ω ℓ (∃ n ∈ N 0 ) w = a [n,n+ℓ) .
A notable feature of automatic sequences is that their subword complexity is linear: p a (ℓ) = O(ℓ). This property does not directly extend to asymptotically automatic sequences. In fact, given a finite alphabet Ω it is not hard to construct a sequence over Ω that is asymptotically constant (and thus asymptotically k-automatic for each k ≥ 2) and which contains each finite word as a subword (and thus has maximal possible subword complexity, p a (ℓ) = #Ω ℓ ). In particular, we see that two asymptotically equal sequences can have diametrically different subword complexities.

The discussion above suggests that subword complexity is not the right notion to consider in the asymptotic regime. Instead, we introduce a new notion of asymptotic subword complexity, defined as the function p a which assigns to each ℓ ∈ N the number of length-ℓ subwords of a which appear with positive asymptotic frequency:

p a (ℓ) := # w ∈ Ω ℓ freq a (w) > 0 . ( 30 
)
It follows directly from the definition that for any sequence a and any ℓ ∈ N we have p a (ℓ) ≤ p a (ℓ). Moreover, p a (ℓ) only depends on the equivalence class of a up to asymptotic equality, that is, if a ≃ b then p a (ℓ) = p b (ℓ) for all ℓ ∈ N.

Proposition 5.1. Let a be an asymptotically automatic sequence. Then p a (ℓ) = O(ℓ).

Proof. Assume that a is asymptotically k-automatic and takes values in a finite alphabet Ω. Pick d, a (0) , a (1) , . . . , a (d-1) and ϕ : Σ * k → Σ d as in Proposition 2.7. Let ℓ ∈ N and pick i ∈ N with k i-1 ≤ ℓ < k i . Consider the sequence a ′ given by

a ′ n = a (ϕ((n) i k ))
⌊n/k i ⌋ . Since a ≃ a ′ , we have p a ′ (ℓ) = p a (ℓ). Thus, it suffices to show that there are O(ℓ) length-ℓ words which appear in a ′ with positive upper frequency. Pick one such word w ∈ Ω ℓ . Applying the pigeonhole principle, we can find 0 ≤ r < k i such that

d n ∈ N 0 a ′ [k i n+r,k i n+r+ℓ) = w > 0.
Recall that for h ∈ [0, 2k i ) we have

a ′ k i n+h = a (ϕ((h) i k )) n+⌊h/k i ⌋ ,
where h/k i ∈ {0, 1}. Thus, the word a ′ [k i n+r,k i n+r+ℓ) is completely determined by a

(j) n d-1 j=0 , a (j) n+1 d-1 j=0 and r. It follows that p a ′ (ℓ) ≤ #Ω d • #Ω d • k i ≤ Cℓ,
where C := k • #Ω 2d . In particular, p a ′ (ℓ) = O(ℓ), as needed. □

Although the notion of asymptotic subword complexity is quite natural, it does not seem to have been systematically studied in the literature. To justify interest in this notion, we prove several basic properties, which are analogues of standard facts about subword complexity. Given a sequence a ∈ Ω ∞ , it will be convenient to consider the set given by

X a := x ∈ Ω ∞ freq a (w) > 0 for each subword w of x . ( 31 
)
It is routine to verify that for a word w ∈ Ω * we have freq a (w) > 0 if and only w is a subword of some x ∈ X a . In particular, p a (ℓ) ≥ p x (ℓ) for all x ∈ X a and ℓ ∈ N.

Lemma 5.2. Let a be a sequence over a finite alphabet Ω such that freq a (ω) > 0 for all ω ∈ Ω. Then exactly one of the following holds:

( †) there exist w ∈ Ω * and x ∈ X a such that a = wx; ( ‡) there exist w i ∈ Ω * such that freq a (w i ) > 0 = freq a (w i (w i+1 ) 1 ) for all i ∈ N 0 and a = w 0 w 1 w 2 . . . . Proof. We first note that if a admits a representation as in ( †) then freq a (u) > 0 for each subword u of x and consequently a cannot be represented as in ( ‡).

Assume next that a cannot be represented as in ( †). We greedily construct a representation as in ( ‡). Let α 0 denote the initial symbol of a. Note that a has a prefix w with freq a (w) = 0 since otherwise we would have a ∈ X a . Since freq a (ω) > 0 for ω ∈ Ω, we have |w| ≥ 2. Pick the shortest possible w and write it in the form w = w 0 α 1 where w 0 ∈ Ω * and α 1 ∈ Ω. By definition, freq a (w 0 ) > 0. We may write a in the form a = w 0 a ′ , where a ′ ∈ Ω ∞ begins with α 1 . Then a ′ has a minimal prefix, which we will denote by w 1 α 2 , with freq a (w 1 α 2 ) = 0, since otherwise we would have a ∈ w 0 X a . Thus, we may write a ′ = w 1 a ′′ . Iterating this reasoning, we find w 0 , w 1 , w 2 , • • • ∈ Ω * and α 0 , α 1 , α 2 , • • • ∈ Ω such that a = w 0 w 1 w 2 . . . and for each i ∈ N 0 , α i is the initial symbol of w i , freq a (w i ) > 0 and freq a (w i α i+1 ) = 0. □ We point out that the assumptions of Lemma 5.2 are easy to satisfy. Indeed, if it is not the case that freq a (ω) > 0 for all ω ∈ Ω then we can find a smaller alphabet Ω ′ ⊆ Ω and a sequence a ′ ∈ (Ω ′ ) ∞ with a ′ ≃ a and freq a ′ (ω) > 0 for all ω ∈ Ω ′ . Lemma 5.3. Let a be a sequence over a finite alphabet Ω such that freq a (ω) > 0 for all ω ∈ Ω, and assume that a admits a representation as in ( ‡). Then (32) lim

N →∞ 1 N N -1 n=0 |w n | = ∞.
Proof. For the sake of contradiction, suppose that (33) lim inf

N →∞ 1 N N -1 n=0 |w n | < L
for some integer L. Let N be a large integer such that Note that [N ] = w,α M(N ; w, α), where the union is taken over all pairs w, α which satisfy the conditions mentioned above. If #Ω = 1 there is nothing to prove, so we may freely assume that #Ω ≥ 2. The number of possible pairs w, α is at

most #Ω • (#Ω 2L + #Ω 2L-1 + • • • + 1) < #Ω 2L+2
, so we can find a pair w, α with #M(N ; w, α) ≥ N/2#Ω 2L+2 . Since there are finitely many possible pairs w, α, we conclude that for one of them we have #M(N ; w, α) ≥ N/2#Ω 2L+2 for infinitely many values of N . In particular, we have (36) freq a (wα) ≥ lim sup

N →∞ #M(N ; w, α) N -1 n=0 |w n | ≥ 1 2L#Ω 2L+2 > 0,
contradicting an earlier assumption. □

We are now ready to classify sequences with particularly low asymptotic subword complexity. Recall that each sequence a such that p a (ℓ) ≤ ℓ for at least one ℓ ∈ N is ultimately periodic, in which case p a (ℓ) is bounded as ℓ → ∞ [START_REF] Coven | Sequences with minimal block growth[END_REF]. A similar result is true in the asymptotic regime. Recall that we say that a sequence a is asymptotically invariant under a shift if there exists m ∈ N such that (a n ) ∞ n=0 ≃ (a n+m ) ∞ n=0 . Proposition 5.4. Let a be a sequence over a finite alphabet Ω. If there exists ℓ ∈ N such that p a (ℓ) ≤ ℓ then a is asymptotically invariant under a shift. Conversely, if a is asymptotically invariant under a shift then p a (ℓ) is bounded as ℓ → ∞.

Proof. We may assume without loss of generality that freq a (ω) > 0 for all ω ∈ Ω. For each x ∈ X a we have p x (ℓ) ≤ p a (ℓ) ≤ ℓ, and hence x = vu ∞ is eventually periodic with the pre-period |v| and the period |u| bounded as a function of ℓ and #Ω, say |v| , |u| ≤ L (the bound on the period can be inferred e.g. from the argument given in [Fog02, Prop. 1.1.1]). It now follows from Lemma 5.3 that a is asymptotically invariant under the shift by L!. Conversely, if a is asymptotically invariant under the shift by some m ∈ N then p a (ℓ) ≤ #Ω m for all ℓ ∈ N. □ It follows from the remark above that for each sequence a that is not eventually periodic we have p a (ℓ) ≥ ℓ + 1 for all ℓ ∈ N. Sequences for which equality p a (ℓ) = ℓ + 1 holds for all ℓ ∈ N are known as Sturmian sequences and have been extensively studied; see e.g. [Fog02, Chpt. 5] for extensive discussion. There are several alternative characterisations of Sturmian sequences. Specifically, a sequence a is Sturmian if and only if it takes one of the following forms: a n = ⌊θ(n + 1) + ρ⌋ -⌊θn + ρ⌋ , or a n = ⌈θ(n + 1) + ρ⌉ -⌈θn + ρ⌉ , (37) where θ ∈ (0, 1) \ Q and ρ ∈ [0, 1). We have the following asymptotic analogue.

Proposition 5.5. Let a be a sequence over {0, 1} and assume that p a (ℓ) = ℓ + 1 for all ℓ ∈ N. Then there exists θ ∈ [0, 1) \ Q and ρ ∈ [0, 1) ∞ such that ρ n+1 = ρ n for almost all n ∈ N 0 and a n = ⌊(n + 1)θ + ρ n ⌋ -⌊nθ + ρ n ⌋ for all n ∈ N 0 .

Proof. We may assume without loss of generality that freq a (ω) > 0 for ω ∈ {0, 1}. If a admits a decomposition a = wx as in ( †) then p a (ℓ) = p x (ℓ) = ℓ + 1 for all ℓ ∈ N, and thus x is a Sturmian word. As a consequence, we can find the required representation of a with ρ eventually constant. Thus, we may assume that a does not admit a decomposition ( †) and hence it has a decomposition ( ‡) for some words w 0 , w 1 , w 2 , . . . . For all x ∈ X a we have p x (ℓ) ≤ p a (ℓ) = ℓ + 1 for all ℓ ∈ N. Thus, all x ∈ X a are either Sturmian or eventually periodic. Suppose first that X a contains at least one Sturmian word x. Let θ ∈ [0, 1) \ Q denote the slope of x; thus, x is given by x n = ⌊(n + 1)θ + ρ⌋ -⌊nθ + ρ⌋ (n ∈ N 0 ) for some ρ ∈ [0, 1) (possibly with the exception of one value of n). For each ℓ ∈ N we have p a (ℓ) = p x (ℓ) = ℓ + 1. Hence, each word w with freq a (w) > 0 is a subword of x. In particular, for each i ∈ N 0 , there is some

σ i ∈ [0, 1) such that w i,m = ⌊(m + 1)θ + σ i ⌋ -⌊mθ + σ i ⌋ for 0 ≤ m < |w i |. It follows that we can pick ρ of the form ρ = ρ ′ 0 ρ ′ 0 . . . ρ ′ 0 |w0| times ρ ′ 1 ρ ′ 1 . . . ρ ′ 1 |w1| times ρ ′ 2 ρ ′ 2 . . . ρ ′ 2 |w2| times . . . for some ρ ′ 1 , ρ ′ 2 , • • • ∈ [0, 1)
. As a consequence of Lemma 5.3 we have that ρ n+1 = ρ n for almost all n ∈ N 0 . Now, suppose that all x ∈ X a are eventually periodic, and hence can be written in the form x = vu ∞ for some v ∈ Ω * and u ∈ Ω * with u ̸ = ϵ which cannot be written as a power of a shorter word. Our next goal is to show that the lengths of the periods |u| are uniformly bounded.

For the sake of contradiction, assume that for each ℓ 0 there is a word x = vu ∞ ∈ X a as above with ℓ := |u| ≥ ℓ 0 . Note that p x (ℓ-1) = ℓ. Indeed, p x (ℓ-1) cannot be larger since p x (ℓ-1) ≤ p a (ℓ-1) = ℓ, and it cannot be smaller since that would imply that u ∞ has a period strictly less than ℓ. Thus, each word w ∈ Ω ℓ-1 with freq a (w) > 0 is a subword of u ∞ . Let us next consider a pair of sequences

v 1 u ∞ 1 , v 2 u ∞ 2 ∈ X a with |u 1 | =: ℓ 1 < ℓ 2 := |u 2 |. Since freq a (u ℓ2/ℓ1 1
) > 0, up to periodic shift and up to changing at most one symbol, the words u ℓ2/ℓ1 1 and u 2 are equal. Consider now a third sequence

v 3 u ∞ 3 ∈ X a with ℓ 3 := |u 3 | > 100ℓ 1 ℓ 2 . Applying the earlier argument to the pairs v 1 u ∞ 1 , v 3 u ∞ 3 and v 2 u ∞ 2 , v 3 u ∞ 3
we conclude that there exist periodic shifts u 1 and u 2 of u 1 and u 2 such that u ℓ3/ℓ1 1 and u ℓ3/ℓ2 2 differ from u 3 in at most one position. Bearing in mind that ℓ 1 ℓ 2 is a period of both u ∞ 1 and u ∞ 2 , we conclude that u ∞ 1 = u ∞ 2 , contradicting the assumption that ℓ 1 < ℓ 2 . Let L be the maximal period of x ∈ X a and put M = L!. Note that it follows from Proposition 5.4 that a is not asymptotically invariant under the shift by M . Hence, there exists ε > 0 such that we can find arbitrarily long words w ∈ Ω * with freq a (w) > 0 such that there are at least ε |w| positions 0 ≤ n < |w| -M such that w n ̸ = w n+M (this follows readily from Lemmas 5.2 and 5.3). For each word w ∈ Ω * with freq a (w) > 0 and |w| ≥ M , let w denote the word over {0, 1} with length |w| = |w| -M given by w n = 0 if w n = w n+M and w n = 1 otherwise, and let L be the family of all words w that arise this way. With the same ε > 0 as above, we see that there exist arbitrarily long words w ∈ L such that |w| 1 ≥ ε |w|. Thus, it follows from Lemma 5.6 below that there exists x ∈ {0, 1} ∞ such that each subword of x belongs to L and freq x (1) > 0. A compactness argument shows that there exists x ∈ X a such that for each n ∈ N 0 we have x n = 0 if x n = x n+M and x n = 1 otherwise. This contradicts the earlier observation that each x ∈ X a is eventually periodic with period at most L, and finishes the argument. □ Lemma 5.6. Let L ⊆ {0, 1} * be an infinite set of words closed under taking subwords. Suppose that there exists ε > 0 such that for infinitely many words w ∈ L we have |w| 1 ≥ ε |w|. Then there exists x ∈ {0, 1} ∞ such that freq x (1) > 0 and each subword of x belongs to L.

Proof. Let α denote the infimum of all real numbers ε > 0 such that for each sufficiently long w ∈ L we have |w| 1 < ε |w|. By assumption, α > 0. Pick a decreasing sequence δ ℓ > 0 such that δ ℓ → 0 as ℓ → ∞ and |w| 1 < (α + δ ℓ ) |w| for all w ∈ Σ ℓ k . Let (m i ) ∞ i=1 be a rapidly increasing sequence of positive integers, to be determined in the course of the argument, and let (ℓ i ) ∞ i=0 be the sequence given by ℓ 0 = 1 and ℓ i+1 = m i+1 ℓ i .

Consider, for some i ∈ N, a word w ∈ L of length ℓ i satisfying |w| 1 ≥ (α -δ ′ ℓi )ℓ i , where δ ′ ℓi := (4/α -1)δ ℓi . We may decompose w = w 0 w 1 . . . w mi-1 where

|w r | = ℓ i-1 for all 0 ≤ r < m i . Expressing |w| 1 as mi-1 r=0 |w r | 1 , we that the proportion of words w r (0 ≤ r < m i ) such that |w r | 1 < (α -δ ′ ℓi-1 )ℓ i-1 is at most δ ℓi-1 + δ ′ ℓi δ ′ ℓi-1 + δ ℓi-1 = α 4 + δ ℓi • 4/α -1 δ ′ ℓi-1 + δ ℓi-1 . ( 38 
)
Picking m i sufficiently large as a function of ℓ i-1 , we can ensure that the expression in (38) is less than α/2. As a consequence we can decompose w as w = uw ′ v, where

|w ′ | = ℓ i-1 , |w ′ | 1 ≥ (α -δ ′ ℓi-1 )ℓ i-1
and |v| 1 ≥ (α/2)ℓ i (we take w ′ = w r for the minimal admissible value of r). Iterating this construction, we can find words w (j) , u (j) , v (j) ∈ L for 0 ≤ j ≤ i such that w (i) = w and w (j+1) = u (j) w (j) v (j) , |w (j) | = ℓ j , |w (j) | 1 ≥ (α -δ ′ ℓj )ℓ j and v (j) 1 ≥ (α/2)ℓ j+1 for 0 ≤ j < i. Applying a compactness argument, we can find infinite sequences w (j) , u (j) , v (j) ∈ L which satisfy the properties mentioned above for all j ∈ N 0 .

Consider the sequence x = v (0) v (1) v (2) . . . . It is clear from the construction that all subwords of x belong to L. Since |v (j) | 1 ≥ (α/2)ℓ j+1 and j h=0 |v (h) | < ℓ j+1 , we have freq x (1) ≥ α/2 > 0, as needed. □

Classification problems

Given a class of sequences C, a natural question in the theory of automatic sequences is: Which members of C are automatic? Here, we discuss some problems of this type in the asymptotic regime.

6.1. Bracket sequences. A generalised polynomial is an expression constructed using ordinary polynomials, the floor function, addition and multiplication. In contrast with ordinary polynomials, their generalised counterparts can be bounded or even finitely-valued but non-constant. Bounded generalised polynomials have been extensively investigated by many authors, including Håland-Knutson, Bergelson, Leibman and others, see e.g. [START_REF] Håland | Uniform distribution of generalized polynomials[END_REF], [START_REF] Håland | Uniform distribution of generalized polynomials of the product type[END_REF], [START_REF] Håland | Polynomials involving the floor function[END_REF], [START_REF] Bergelson | Distribution of values of bounded generalized polynomials[END_REF], [START_REF] Leibman | A canonical form and the distribution of values of generalized polynomials[END_REF], [START_REF] Bergelson | An Extension of Weyl's Equidistribution Theorem to Generalized Polynomials and Applications[END_REF]. In [START_REF] Adamczewski | Bracket words: a generalisation of Sturmian words arising from generalised polynomials[END_REF] we undertook a systematic study of letter-to-letter codings of finitelyvalued generalised polynomial sequences, which we dub bracket sequences. In a series of papers, [START_REF] Byszewski | Sparse generalised polynomials[END_REF], [START_REF] Byszewski | Automatic sequences and generalised polynomials[END_REF], [START_REF]Generalised polynomials and integer powers[END_REF], we obtained a complete classification of automatic bracket sequences: they are precisely the eventually periodic sequences. The vast bulk of the difficulty in the aforementioned problem stems from the need to consider asymptotically constant sequences. This issue does not arise when we consider asymptotically automatic sequences, leading to a much shorter argument. Proposition 6.1. Let a be a bracket word over a finite alphabet. Then the following conditions are equivalent:

(i ) a is asymptotically k-automatic for at least one k ≥ 2;

(ii ) a is asymptotically k-automatic for all k ≥ 2;

(iii ) a is asymptotically equal to a periodic sequence.

Proof. It is clear that we have the chain of implications (iii) ⇒ (ii) ⇒ (i), so we only need to prove (i) ⇒ (iii). We apply essentially the same reasoning as in the proof of Theorem B in [START_REF] Byszewski | Automatic sequences and generalised polynomials[END_REF]. The main difference is that we replace the notion of a "weakly periodic function f : N 0 → X" used in [START_REF] Byszewski | Automatic sequences and generalised polynomials[END_REF] with a yet weaker notion of an "asymptotically weakly periodic function f : N 0 → X", that is, a function f such that for any restriction f ′ of f to an arithmetic sequence (given by f ′ (n) = f (an+b) with a ∈ N and b ∈ N 0 ) there exist q ∈ N and distinct r, r ′ ∈ N 0 such that

f ′ (qn + r) = f ′ (qn + r ′ ) for almost all n ∈ N 0 . (39) 
(For weakly periodic functions, (39) is required to hold for all n ∈ N 0 .) The proof then proceeds along the same lines as in [START_REF] Byszewski | Automatic sequences and generalised polynomials[END_REF], except that we occasionally need to exclude density zero sets of integers n for which (39) is false. In Lemma 2.4 and Theorem 2.6 we need to take R = N 0 , which is the only case that is used in the proof of Theorem B, and in Lemma 2.4 we use the fact that each syndetic set has positive lower density. □

As an application, we can consider bracket sequences of particularly simple form and classify the ones that are asymptotically equal to an automatic sequence, cf. [AS03b, Thm. 6.2]. Corollary 6.2. Let α, β ∈ R, m ∈ N ≥2 , and let a be the sequence given by a n = ⌊αn + β⌋ mod m. If a is asymptotically equal to an automatic sequence then α ∈ Q.

Multiplicative sequences

. A complex-valued sequence a = (a n ) ∞
n=1 is multiplicative if a nm = a n a m for all n, m ∈ N with gcd(n, m) = 1, and completely multiplicative if the requirement that gcd(n, m) = 1 can be dropped. The problem of classifying automatic multiplicative sequences 1 has been considered in many papers, including [Yaz01, SP03, BC09, BCC10, Coo10, BBC12, BCH14, AG18, KK19, KK20, Kon20, Li20], culminating in a complete resolution in [START_REF] Konieczny | Multiplicative automatic sequences[END_REF]. Theorem 6.3. Let a be a finitely-valued multiplicative sequence. Then a is automatic if and only if it is p-automatic for a prime p and takes the form

a p i n = c i b n for i ∈ N 0 , n ∈ N, p ∤ n,
1 A slight notational inconvenience stems from the fact that automatic sequences are most naturally defined on N 0 and multiplicative sequences -on N. In order to avoid this issue we adopt the convention where each multiplicative sequence a = (an) ∞ n=1 indexed by N is extended to N 0 by setting a 0 = 0.

where b and c are eventually periodic sequences.

In this section we will show that each asymptotically automatic completely multiplicative sequence behaves in a periodic manner on all prime powers, except possibly for some more complicated behaviour on small primes. It it very likely that one can obtain a complete classification, in the spirit of [START_REF] Konieczny | Multiplicative automatic sequences[END_REF], but for the sake of exposition we prove a somewhat weaker result. Proposition 6.4. Let a be a sequence that is both multiplicative and asymptotically k-automatic. Then a ≃ 0 or there exists a Dirichlet character χ such that a p i = χ(p i ) for each sufficiently large prime p and each i ∈ N.

Before we approach the proof, we discuss some corollaries and preliminaries. First, since any modification of an automatic sequence on a set with density zero is asymptotically automatic, we have the following consequence, expressed purely in terms of automatic and multiplicative sequences. Corollary 6.5. Let a be a multiplicative sequence that is asymptotically equal to an automatic sequence. Then a ≃ 0 or there exists a Dirichlet character χ such that a p i χ(p i ) for each sufficiently large prime p and each i ∈ N.

In particular, we see that some of the classical multiplicative sequences are not asymptotically equal to an automatic sequence. Corollary 6.6. There is no automatic sequence a with a ≃ µ, where µ denotes the Möbius sequence given by

µ n = (-1) k if n = p 1 p 2 . . . p k is the product of k distinct primes, 0 if n is divisible by a square.
Likewise, there is no automatic sequence a with a ≃ λ, where λ denotes the Liouville sequence given by

λ n = (-1) k if n = p 1 p 2 . . . p k is the product of k primes.
The fact that there exist asymptotically shift-invariant sequences that are not asymptotically equal to a periodic sequence leads to some technical difficulties. In order to overcome them, we will need the following result, which is essentially contained in [START_REF] Klurman | Correlations of multiplicative functions and applications[END_REF]. We call a sequence 1-bounded if it takes values in {z ∈ C | |z| ≤ 1}. To avoid breaking the flow of discussion, we delegate the proof to the appendix. Theorem 6.7. Let a be a 1-bounded, finitely-valued multiplicative sequence that is asymptotically invariant under a shift. Then a ≃ 0 or a is periodic.

We will also need the following basic lemma. Lemma 6.8. Let a be a multiplicative sequence. Suppose that there exists Q, r ∈ N with gcd(r, Q) = 0 such that a n = 0 for almost all n ≡ r mod Q. Then a ≃ 0.

Proof. Let Z be the set of all primes p such that a p = 0. There are two cases to consider, depending on the size of Z. Suppose first that p∈Z 1/p = ∞. Since a n = 0 for each n with p | n and p 2 ∤ n for some p ∈ Z, for each finite set F ⊆ Z we have

d ({n | a n ̸ = 0}) ≤ p∈F 1 - p -1 p 2 ≪ exp - p∈F 1 p .
Since F ⊆ Z was arbitrary, we conclude that a ≃ 0, as needed. Suppose next that p∈Z 1/p < ∞ and hence (bearing in mind the prime number theorem in arithmetic progressions) in each residue class s + QZ with gcd(s, Q) = 1 we can find infinitely many primes p with a p ̸ = 0. Since for each n ∈ N 0 with a n ̸ = 0 that is not divisible by p we have a pn = a p a n ̸ = 0, it follows that

0 = d ∈ N 0 a n ̸ = 0, n ≡ r mod Q ≥ 1 p d n ∈ N 0 a n ̸ = 0, n ≡ s -1 r mod Q - 1 p .
Letting s vary and passing to the limit p → ∞, we conclude that a n = 0 for almost all n ∈ N 0 coprime to Q, and hence also for almost all n ∈ N 0 . □ Proof of Proposition 6.4. If a ≃ 0 there is nothing to prove, so assume that this is not the case. As a preliminary simplification, we will use an argument similar to one employed in [START_REF] Konieczny | On multiplicative automatic sequences[END_REF] to reduce to the case where a is completely multiplicative. Let p be a large prime. It follows from the pigeon-hole principle that there exists i, r, r ′ ∈ N 0 with 0 ≤ r, r ′ < k i /p and gcd(k, r) = gcd(k, r ′ ) = 1 such that r ̸ ≡ r ′ mod p and

(a k i n+r ) ∞ n=0 ≃ (a k i n+r ′ ) ∞ n=0 and a k i n+pr ∞ n=0 ≃ a k i n+pr ′ ∞ n=0 . (40) 
As a consequence, for almost all n ∈ N 0 with k i n + r ′ ̸ ≡ 0 mod p we have

a k i pn+pr = a k i pn+pr ′ = a p a k i n+r ′ = a p a k i n+r . (41) 
Let j ∈ N. By (41), for almost all n ∈ N 0 with k i n + r ≡ p j mod p j+1 we have a p j+1 a (k i n+r)/p j = a p a p j a (k i n+r)/p j . (42) Using Lemma 6.8 we conclude that a p j+1 = a p a p j . Thus, applying induction with respect to j we conclude that a p j = a j p . Pick a threshold p 0 such that the equality a p j = a j p holds for all primes p ≥ p 0 and all j ∈ N, and consider the sequence a given by

a n = 0 if n is divisible by a prime p < p 0 , a n otherwise. ( 43 
)
Then a is completely multiplicative, asymptotically k-automatic, and takes the same value as a on all powers of sufficiently large primes. Hence, replacing a with a if necessary, we may assume that a is completely multiplicative.

Pick d, a (0) , a (1) , . . . , a (d-1) and ϕ : Σ * k → Σ d as in Proposition 2.7. Let H be an integer that is sufficiently multiplicatively rich that ϕ(0

H u) = ϕ(0 2H u) for all u ∈ Σ * k , and put K := k H . Define a map ψ : N 0 → Σ d by ψ(m) = ϕ(0 h (m) k )
, where h is the unique integer satisfying H ≤ h < 2H and h + |(m) k | ≡ 0 mod H. This construction ensures that for each m ∈ N 0 and for each i ∈ N 0 that is sufficiently large in terms of m (more precisely:

K i-1 > m) we have (44) a K i n+m ∞ n=0 ≃ a (ψ(m)) n ∞ n=0 .
We note that automaticity of ϕ implies that ψ is k-automatic.

Claim 1: For each q ∈ N and m, m ′ ∈ N 0 , if a q ̸ = 0 and ψ(qm) = ψ(qm ′ ) then ψ(m) = ψ(m ′ ).

Proof: For each sufficiently large i, for almost all n ∈ N 0 we have

a (ψ(m)) n = a K i n+m = a -1 q a K i qn+qm = a -1 q a (ψ(qm)) qn = a -1 q a (ψ(qm ′ )) qn = a -1 q a K i qn+qm ′ = a K i n+m ′ = a (ψ(m ′ )) n .
It follows that a (ψ(m)) ≃ a (ψ(m ′ )) and hence ψ(m) = ψ(m ′ ). △

We will need the following standard technical result, is closely related to [Kon20, Lem. 3.4] and is fully proved e.g. in [START_REF] Klurman | Classification automatic semigroups and related problems[END_REF]. For the rest of the argument, we let M denote the integer introduced below. We assume that M is divisible by k (otherwise we can freely replace M with kM ).

Claim 2: There exists a positive integer M such that for each j ∈ Σ d with

d log ({n ∈ N 0 | gcd(n, M ) = 1, ψ(n) = j}) > 0,
for each q ∈ N comprime to M and each r ∈ Z/qZ we also have

d log ({n ∈ N 0 | gcd(n, M ) = 1, ψ(n) = j, n ≡ r mod q}) > 0. Claim 3: We have d log ({n ∈ N | gcd(n, M ) = 1, ψ(n) = ψ(1)}) > 0. Proof: Pick any j such that d log ({n ∈ N | gcd(n, M ) = 1, ψ(n) = j}) > 0.
Pick any q belonging to that set, that is, ψ(q) = j and gcd(q, M ) = 1. Consider the set

A = {n ∈ N | gcd(n, M ) = 1, ψ(qn) = j} .
By Claim 2 we have d log (A) > 0, as

d log (qA) = d log ({n ∈ N | gcd(n, M ) = 1, ψ(n) = j, n ≡ 0 mod q}) > 0.
For each n ∈ A we have ψ(qn) = ψ(q) = j. If a q ̸ = 0 then it follows from Claim 1 that ψ(n) = ψ(1). Since n ∈ A was arbitrary, we conclude that

d log ({n ∈ N | gcd(n, M ) = 1, ψ(n) = ψ(1)}) ≥ d log (A) > 0,
and the proof is complete. It remains to consider the case where a q = 0 for all q as above. Inspecting the argument, we see that this is only possible if a n = 0 for almost all n ∈ N that are coprime to M , and hence (since a is multiplicative) a ≃ 0, contradicting an earlier assumption. △

We will routinely use the following observation in conjunction with Claim 1 to remove the assumption that a q ̸ = 0. Claim 4: For each q ∈ N coprime to M we have a q ̸ = 0. Proof: For the sake of contradiction, suppose that a q = 0. By Claims 2 and 3, there exists r ∈ N such that ψ(qr) = ψ(1). Let i be a sufficiently large integer. Then

0 = a K i qn+qr ∞ n=0 ≃ a K i qn+1 ∞ n=0 .
Hence, it follows from Lemma 6.8 that a ≃ 0, contradicting an earlier assumption. △ Claim 5: Let q, r ∈ N be coprime to M . If ψ(q) = ψ(r) = ψ(1) then ψ(qr) = ψ(1).

Proof: By Claim 2, there exists u ∈ N coprime to M and such that ψ(qru) = ψ(1) = ψ(q). Hence, by Claim 1, we have

ψ(ru) = ψ(1) = ψ(r).
Using Claim 1 again, we obtain

ψ(u) = ψ(1) = ψ(qru).
Yet another application of Claim 1 yields ψ(1) = ψ(qr), as needed. △

Claim 6: Let q, q ′ , r ∈ N be coprime to M . If ψ(q) = ψ(q ′ ) and ψ(qr) = ψ(1) then ψ(q ′ r) = ψ(1). Proof: By Claim 2, there exists u ∈ N coprime to M such that ψ(q ′ ru) = ψ(1) = ψ(qr).

Hence, by repeated applications of Claim 1 we obtain

ψ(q u) = ψ(q) = ψ(q ′ ) ψ(u) = ψ(1) = ψ(q ′ ru) ψ(1) = ψ(q ′ r),
as needed. △

Claim 7: Let q, q ′ , r, r ′ ∈ N be coprime to M . If ψ(q) = ψ(q ′ ) and ψ(r) = ψ(r ′ ) then ψ(qr) = ψ(q ′ r ′ ).

Proof: By Claim 2, there exist q, r ∈ N coprime to M and such that ψ(q q) = ψ(rr) = ψ(1).

By Claim 6 we also have ψ(q ′ q) = ψ(r ′ r) = ψ(1).

By Claim 5, it follows that ψ(qr qr) = ψ(1) = ψ(q ′ r ′ qr).

Thus, by Claim 1 we conclude that ψ(qr) = ψ(q ′ r ′ ), as needed. △

We are now ready to use ψ to construct a multiplicative sequence that is genuinely automatic (as opposed to merely asymptotically automatic). Define

G := {ψ(q) | q ∈ N, gcd(q, M ) = 1} , and G 0 = G ∪ {0 G }, where 0 G ̸ ∈ G. Let f : N 0 → G be given by f (n) = ψ(n) if gcd(n, M ) = 1; 0 G if gcd(n, M ) > 1.
We define a binary operation ⊙ on G by ψ(q) ⊙ ψ(r) = ψ(qr)

for q, r ∈ N coprime to M ; this definition is well-posed thanks to Claim 7. We extend ⊙ to G 0 by setting g ⊙ 0 G = 0 G ⊙ g = 0 G for all g ∈ G 0 . It is routine to verify for all n, m ∈ N 0 we have

f (nm) = f (n) ⊙ f (m).
include k-automatic sequences and polynomial sequences. Conversely, one can show that each finitely-valued k-regular sequence is k-automatic.

In analogy with asymptotically k-automatic sequences, we can define asymptotically k-regular sequences. Thus, a sequence a ∈ R ∞ is asymptotically k-regular if and only if M k (a) := M k (a)/≃ is a finitely-generated R-module or, equivalently, if there exists a finite number of sequences a (0) , a (1) , . . . , a (d-1) such that for each b ∈ M k (a) there exist t 0 , t 1 , . . . ,

t d-1 ∈ R such that b ≃ t 0 a (0) + t 1 a (1) + • • • + t d-1 a (d-1) .
Clearly, asymptotically k-regular sequence include k-regular sequences and asymptotically k-automatic sequences. It also remains true, with essentially the same argument, that each finitely-valued asymptotically k-regular sequence is asymptotically k-automatic.

An important feature of real-valued k-regular sequences is that their rate of growth is at most polynomial, meaning that if a ∈ R ∞ is k-regular then lim sup

n→∞ log |a n | log n < ∞.
This is no longer true for asymptotically k-regular sequences, which, as we will see below, can grow arbitrarily fast. This suggests that asymptotically k-regular sequences exhibit significantly less structured behaviour than k-regular sequences.

Proposition 7.1. For each f : N 0 → N 0 , there exists a k-regular sequence a ∈ Z ∞ such that a n ≥ f (n) for all n ∈ N 0 .

Proof. We rely (once more) on the construction in [Kon23, Sec. 4], cf. Prop. 4.1. Let H = {H i } ∞ i=0 = {2 αi 3 βi } ∞ i=0 be as in Proposition 4.1, and let a be given by ( 45)

a n = F (β i ) for n ∈ [H i , H i+1 ) and i ∈ N 0 ,
where F : N 0 → N 0 is an increasing function that remains to be specified. Following the same argument as in [START_REF] Konieczny | An asymptotic version of Cobham's theorem[END_REF]Lem. 4.2], we see that #N 2 (a) = 1, which in particular implies that a is asymptotically 2-regular. Since for each γ ∈ N, the union of all intervals [H i , H i+1 ) such that β i ≤ γ has density 0, we can construct a non-decreasing sequence γ ∈ N ∞ 0 such that γ n → ∞ as n → ∞ and for almost all n, letting i denote the unique index such that n ∈ [H i , H i+1 ), we have γ n ≤ β i . Thus, a n ≥ F (γ n ) for almost all n. Picking F (γ) := max {f (n) | γ n ≤ γ} we conclude that a n ≥ f (n) for almost all n.

Finally, let a ′ be given by a ′ n = max(a n , f (n)). Then directly from definition we have a ′ n ≥ f (n) for all n ∈ N 0 and a ′ is asymptotically 2-regular because a ′ ≃ a. □

In [START_REF] Bell | A generalization of Cobham's theorem for regular sequences[END_REF], Bell proved the analogue of Cobham's theorem for k-regular sequences. With a similar argument, we can obtain a slightly stronger version, which is analogous to [Kon23, Thm. B]. We will say that a sequence a ∈ R ∞ satisfies a linear recurrence (over R) if there exists d ∈ N and t 1 , t 2 , . . . , t d ∈ R such that

a n+d = t 1 a n+d-1 + t 2 a n+d-2 + • • • + t d a n
for all n ∈ N 0 .

If R = Z and a is additionally k-regular for some k ≥ 2 then this is equivalent to the requirement that there exists Q ∈ N and polynomial sequences p m for 0 ≤ m < Q such that a n = p m (n) for each sufficiently large n ≡ m mod Q. For the sake of simplicity, we only consider the case where R = Z and the bases k, ℓ are coprime.

Theorem 7.2. Let k, ℓ ∈ N be coprime, and let a ∈ Z ∞ be a sequence that is both k-regular and asymptotically ℓ-regular. Then a ≃ a ′ for a k-regular sequence a ′ ∈ Z ∞ that satisfies a linear recurrence.

Before we approach the proof, it will be convenient to introduce some preliminaries. For u ∈ Σ k we define a linear map T

u : Q ∞ → Q ∞ , given by T u (a) := a k |u| n+[u] k ∞ n=0 , a ∈ Q ∞ . ( 46 
)
The operators T u follow a familiar composition rule:

T uv = T v T u for u, v ∈ Σ *
k . We note that, for a k-regular sequence a, the module M k (a) and the space span Q N k (a) are invariant under T u . Since the space of sequences that are almost everywhere 0 is closed under T u , for each asymptotically k-regular a we also have the map

T u : M k (a) → M k (a). The same formula (46) defines a map T u : F ∞ p → F ∞ p for prime p.
Lemma 7.3. Let k ∈ N, let p be a prime and let a, a ′ ∈ F ∞ p be k-regular sequences such that for all i ∈ Σ k , the maps

T i : M k (a) → M k (a) and T i : M k (a ′ ) → M k (a ′ ) are invertible. If a ≃ a ′ then a = a ′ . Proof. The sequence b ∈ F ∞ p given by b n = 0 if a n = a ′ n , 1 if a n ̸ = a ′ n ,
is almost everywhere zero and k-regular, and hence k-automatic, since F p is finite. It follows that there exists a word w ∈ Σ * k such that a n = a ′ n for all n ∈ N 0 such that (n) k contains w as a subword. In particular, we have T w (a) = T w (a ′ ). Since T w is invertible (on either M k (a) or M k (a ′ )) we conclude that a = a ′ . □ Lemma 7.4. Let k ∈ N and let a ∈ Q ∞ be a k-regular sequence. Then there exists θ > 0 such that for each a

′ ∈ M k (a) either a ′ ≃ 0 or d({n ∈ N 0 | a ′ n ̸ = 0}) ≥ θ.
Proof. Suppose, conversely, that we have a family a

(i) ∈ M k (a) (i ∈ N 0 ) with 0 < d n ∈ N 0 a (i) n ̸ = 0 → 0 as i → ∞.
Passing to a subsequence we can assume without loss of generality that

d n ∈ N 0 a (i) n ̸ = 0 ≥ 2d n ∈ N 0 a (i+1) n ̸ = 0 for each i ∈ N 0 .
As a consequence, for each linear combination

b = I+J i=I t i a (i)
with I, J ∈ N 0 , t i ∈ Q and t I ̸ = 0 we have

d ({n ∈ N 0 | b n ̸ = 0}) ≥ d n ∈ N 0 a (i) n ̸ = 0 • 1 - 1 2 -• • • - 1 2 J > 0.
As a consequence, the sequences a (i) are linearly independent, contradicting the assumption of regularity. □ Proof of Theorem 7.2. We first consider the case where for each i ∈ Σ * k the map T i is invertible on span Q N k (a). For each prime p the sequence a mod p := (a n mod p) ∞ n=0 is both k-automatic and asymptotically ℓ-automatic. Hence, it follows from [Kon23, Thm. B] that a mod p is asymptotically periodic. With the same argument as in [START_REF] Bell | A generalization of Cobham's theorem for regular sequences[END_REF]Prop. 3.10], we see that T u (a) mod p is asymptotically periodic with period coprime to k for each u ∈ Σ * k with |u| ≥ dim span Q N k (a). Note that the maps T i mod p : M k (a mod p) → M k (a mod p) are invertible for all sufficiently large primes p. Thus, it follows from Lemma 7.3 that T u (a) mod p is (exactly) periodic. Hence, we conclude from [Bel07, Thm. 3.4] that T u (a) satisfies a linear recurrence. Applying this result to all u ∈ Σ * k with |u| = dim span Q N k (a), we conclude that a satisfies a linear recurrence (c.f. [Bel07, Thm. 3.11]). Additionally, inspecting the proof of [Bel07, Thm. 3.4] we see that the length of said linear recurrence is bounded by a quantity dependent only on dim span Q N k (a).

Consider now the general case. Let w ∈ Σ * k be such that dim T w span Q N k (a) is least possible. Then for each u ∈ Σ * k such that w is a subword of u, the sequence a ′ = T u (a) has the property that for each i ∈ Σ k , the restriction of T i to M k (a ′ ) is invertible. Hence, we conclude from the special case considered above that the restriction of a ′ to each residue class modulo some Q = O(1) coincides with a polynomial sequence of degree at most d = O(1). Thus, we have constructed a large family of arithmetic progressions of the form k i QN 0 + r (i, r ∈ N 0 ) where a behaves in the expected way; our remaining task is to understand how the restrictions of a to different progressions are interrelated.

For i ∈ N 0 , let b (i) denote the sequence given by b

(i) n = d+1 m=0 (-1) m d + 1 m a n+k i Qm for n ∈ N 0 . (47) Then b (i) n = 0 for each n ∈ N 0 such that (n) i
k contains w as a subword. For j, s ∈ N 0 such that s + k i Q(d + 1) < ℓ j , consider further the sequence c (i,j,s) given by

c (i,j,s) n = b (i) ℓ j n+s for n ∈ N 0 . (48) 
Inspecting the definitions, we see that c (i,j,s) ∈ M ℓ (a). Moreover, since k and ℓ are coprime, we have

d n ∈ N 0 c (i,j,s) n ̸ = 0 ≤d n ∈ N 0 w does not appear in (n) i k → 0 as i → ∞.
Thus, it follows from Lemma 7.4 that there exists i ∈ N 0 such that for all j, s like above we have c (i,j,s) ≃ 0. In other words, b (i) n = 0 for almost all n ∈ ℓ j N 0 + s. Note that almost all positive integers belong to ℓ j N 0 + s for some admissible j, s; more precisely, we have

d   J j=0 ℓ j -k i Q(d+1) s=0 ℓ j N 0 + s   → 1 as J → ∞.
It follows that b (i) ≃ 0. Thus, we may partition N 0 into a union of pairwise disjoint arithmetic progressions (I m ) ∞ m=1 with step

k i Q such that M m=1 |I m | /M → ∞ as M → ∞
and for each m, (a n ) n∈Im coincides with a polynomial sequence of degree at most d. Consider any pair of infinite arithmetic progressions P 1 = k i1 QN 0 + r 1 and P 2 = k i2 QN 0 + r 2 with 0 ≤ r 1 < k i1 , 0 ≤ r 2 < k i2 such that the restrictions of a to either progression coincides coincides with a polynomial of degree at most d, as constructed earlier. Suppose additionally that i 1 , i 2 ≥ i and r 1 ≡ r 2 mod k i . Then we can find m such that #(P 1 ∩ I m ), #(P 2 ∩ I m ) > d and as a consequence the restrictions of a to P 1 and P 2 (and I m ) are given by the same polynomial. Varying the choice of P 1 and P 2 we conclude that a coincides with a polynomial of degree at most d almost everywhere on each residue class modulo k i Q. □

We close this section with a conjecture, which appears to be the correct analogue of Cobham's theorem (cf. [Bel07, Thm. 1.4] and [Kon23, Thm. A]).

Conjecture 7.5. Let k, ℓ ∈ N be multiplcatively independent, and let a ∈ Z ∞ be a sequence that is both asymptotically k-regular and asymptotically ℓ-regular. Then a satisfies a linear recurrence almost everywhere, i.e., there exists d ∈ N and t 1 , t 2 , . . . , t d ∈ Z such that

a n+d = t 1 a n+d-1 + t 2 a n+d-2 + • • • + t d a n
for almost all n ∈ N 0 . or there exists s ∈ C with Re(s) < 1 such that a n = n s for all n ∈ N. In the former case, since the set {|a n | | n ∈ N, a n ̸ = 0} is bounded away from 0, we have a ≃ 0. In the latter case, since a n is finitely-valued, we have s = 0, meaning that a = 1.

Let us now consider the general case, where a is invariant under the shift by some d ∈ N, not necessarily equal to 1. We will heavily rely on the material in [START_REF] Klurman | Correlations of multiplicative functions and applications[END_REF]. If a ≃ 0 then there is nothing left to prove, so assume that this is not the case. It will be convenient to decompose a as the product of multiplicative sequences a (p) corresponding to different primes p. If p is a prime then the sequence a (p) is specified for primes r and exponents i by 1) in [START_REF] Klurman | Correlations of multiplicative functions and applications[END_REF]), the mean value of c exists (thus, A is well-defined) and is the product of contributions coming from the primes:

A = p C p ,
where C p := lim

N →∞ 1 N N n=1 c (p) n . ( 53 
)
Note that A is real and A > 0 because the limit in (52) converges and a is finitelyvalued and not asymptotically equal to 0.

The "distance" between a and another 1-bounded multiplicative sequence b is defined by Proof: Let h := ν p (d) and for i ∈ N 0 let z i := a p i . For each n ∈ N with ν p (n) =: i we have

D(
ν p (n + d) =        i if i < h, h if i > h, h + ν p n+d p h if i = h. (56) 
If p ̸ = 2 then ν p ((n + d)/p h ) can take any value in N 0 , and if p = 2 then ν p ((n + d)/p h ) can take any value in N. We also note that each possible pair of values ν p (n), ν p (n + d) occurs for a periodic set of values of n, and hence with positive frequency. Thus, assuming for a moment that p ̸ = 2, it follows from (56) that λz i = z i for all i < h, (57) λz i = z h for all i > h, (58) λz h = z i for all i ≥ h. (59) If p = 2 then (59) only holds for i > h.

It follows from ( 58) that (z i ) ∞ i=0 is eventually constant: z i = λ -1 z h for all i > h. As a consequence, a (p) is periodic with period p h+1 . This proves the first part of the claim. For the second part, taking i = h = 0 in (59) we conclude that λ = 1. Hence, (58) implies that z i = z 0 = 1 for all i ≥ 1 and consequently a (p) = 1. △

In the case where D(a, 1) < ∞, we are now ready to finish the argument. Indeed, in this case each of the sequences a (p) is periodic, and each except for finitely many of them is the constant sequence 1, and hence a is periodic. In general, it is not necessarily the case that D(a, 1) < ∞ but we have the following slightly weaker fact.

Claim 3: There exists t ∈ R and a primitive Dirichelet character χ with some conductor q such that for the sequence b given by b n = χ(n)n it we have D(a, b) < ∞.

Proof: Since the limit defining A converges, we also have 

Lemma 2. 1 .

 1 Let k ≥ 2 and let a, b be asymptotically k-automatic sequences. Then the Cartesian product a ×

  |w n | < N L, and let M(N ) denote the set (35) M(N ) = {n ∈ [N ] | |w n | ≤ 2L} . It follows from Markov's inequality that #M(N ) ≥ N/2. For w ∈ Ω * with |w| ≤ 2L and α ∈ Ω such that freq a (wα) = 0, consider M(N ; w, α) = {n ∈ M(N ) | w n = w, w n+1 begins with α} .

Appendix A .

 . Shift invariant multiplicative sequencesProof of Theorem 6.7. Suppose first that a is invariant under the shift by 1

a

  a r i if r = p,1 otherwise, and extended to N by multiplicativity. Clearly, a n = p a (p)n for all n ∈ N. We will also use the sequences c and c(p) given by c n = |a n | 2 and c n a n+d . (51) On one hand, because a is asymptotically invariant under the shift by d, we have s theorem[START_REF] Halász | On the distribution of additive and the mean values of multiplicative arithmetic functions[END_REF] (cf. eq. (

n=

  a, b) := p prime 1 -Re a p b p p ∈ [0, ∞]. Claim 1: If D(a, 1) < ∞ then for each prime p there exists a root of unity λ such that a for almost all n ∈ N. Proof: By Theorem 1.3 in [Klu17], the limit in (51) admits a factorisation: the Cauchy-Schwarz inequality shows that |B p | ≤ C p , and hence comparing (53) and (54) we conclude that |B p | = C p for all primes p. Let p be a prime and pick λ ∈ C with |λ| such that λB p ∈ R + . 2C p -2 |B p | = 0. (55) Since a is finitely-valued, it follows that a (p) n+d = λa (p)n for almost all n. For each z ∈ C that appears in a with positive upper frequency, the same is true of λz, λ 2 z, . . . , and consequently λ is a root of unity. △ Claim 2: Let p be a prime and let λ be a root of unity such that a(p) n+d = λa (p)n for almost all n ∈ N. Then a (p) is periodic. If p ∤ 2d then a (p) = 1.

  in the same position as in the second half of the proof of Lemma 4.3 in [Klu17]. The claim follows by combining Tao's result on two-point correlations of multiplicative functions [Tao16], ([Klu17, Thm. 4.1]) with a technical lemma due to Elliott [Ell10] ([Klu17, Lem. 4.2]) and repeating the reasoning at the end of the proof of Lemma 4.3 in [Klu17] verbatim. △ Claim 4: We have t = 0. Proof: For the sake of contradiction, suppose that t ̸ = 0 and let τ := t/π. Since a and χ are finitely-valued, there exist θ ∈ [0, 1) and ε, δ > 0 such that for each sufficiently large prime p with |{τ log p} -θ| < δ we have Re(a p χ(p)p -it ) < 1 -ε. It follows from the prime number theorem that for each sufficiently large n, the number of primes p with |τ log p -n -θ| < δ is exp n+θ+δ τ (n + θ + δ)/τ -0 is a constant dependent on δ, τ and θ. It follows that D(a, b) 2 ≥ ε contrary to the defining property of b. △ Claim 5: The sequence ab = a n χ(n) ∞ n=1 is periodic.

It follows that (G 0 , ⊙) is a finite abelian semigroup, which is the image of (N 0 , •) under the semigroup homomorphism f . Moreover, ψ(1) is the identity element in G, and by Claim 2, each element of G has an inverse. Hence, (G, ⊙) is a group.

Claim 8: The map f is periodic.

Proof: If (G, ⊙) is isomorphic to the cyclic group C n for some n ∈ N then G 0 can be identified with the subset of complex numbers {z ∈ C | z n = 1 or z = 0}, under which identification f can be construed as a multiplicative map f : N 0 → C. Hence, the conclusion follows from Theorem 6.3. The general case can readily be derived by considering characters of (G, ⊙). △

Let L be a period of f that is also a multiple of M . Consider the complex-valued multiplicative sequence a ′ , given by

Claim 9: The sequence a ′ is asymptotically invariant under shift by L.

Proof: For each n with gcd(k, n) > 1 we have a ′ n = a ′ n+L = 0, so we only need to verify that a ′ n = a ′ n+L for almost all n coprime to k. Let P i,r be the arithmetic progression given by P i,r = K i N 0 + r, where i, r ∈ N 0 , r < K i-1 -L, and gcd(r, M ) = 1. For almost all n ∈ N 0 we have

, where the union runs over all integers r with 0 ≤ r < K i-1 -L and gcd(r, M ) = 1, it will suffice to show that d(B j ) → 0 as j → ∞. It is not hard to construct a word w ∈ Σ * K that is not contained in the last j digits of the base-K expansion of any n ∈ B j . (For instance, one can pick w = (0 h 1) M where h is a sufficiently large and multiplicatively rich integer; the key idea is that if w appears in (n) K and gcd(n, k) = 1 then n belongs to M different arithmetic progression of the form K i N 0 + r with r < K i-h ≤ K i-1 -L and at least one of those progressions satisfies gcd(r, M ) = 1.) It follows that

which together with earlier considerations proves the claim. △

Combining Claim 9 with Theorem 6.7 finishes the argument. □

Regular sequences

The fact that automatic sequences are necessarily finitely-valued poses a significant limitation. This motivated Allouche and Shallit to introduce a closely related notion of a regular sequence [AS92], [START_REF] Allouche | The ring of k-regular sequences[END_REF]. Let R be an integral domain (e.g. R = Z or R = F p ) and let K be the field of fractions of R (e.g.

is finitely generated. In the case where R = Z, this is equivalent to the assertion that N k (a) spans a finite-dimensional space over Q. In particular, k-regular sequences Proof: The sequence ab is multiplicative, asymptotically invariant under the shift by qd, and satisfies D(ab, 1) = D(a, b) < ∞. Thus, applying the earlier reasoning with ab in place of a we conclude that ab is periodic. △ Claim 6: The sequence a is periodic.

Proof: It follows from Claim 5 that the restriction of a to integers coprime to qd is periodic with period qd. For integers m, m ′ , r ∈ N 0 such that m, m ′ divide a power of qd and 0 ≤ r < qd lcm(m, m ′ ), consider the set P of integers n such that (1) n/m is an integer coprime to qd;

(2) (n + d)/m ′ is an integer coprime to qd;

(3) n ≡ r mod qd lcm(m, m ′ ). Clearly the set P is periodic. For n ∈ P we have

and in particular a n and a n+d are constant on P . Since a n+d = a n for almost all n ∈ N and P has positive density or is empty, we conclude that a n+d = a n for all n ∈ P . Taking the union over all possible choices of m, m ′ , r we conclude that a n+d = a n for all n ∈ N. △ □