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Given a finite set (an alphabet) A we let A ∞ stand for the full shift over A , that is a set of all A -valued infinite sequences. We endow A ∞ with the product topology induced by the discrete topology on A , which turns A ∞ into a compact metrisable space. Let ρ be a metric compatible with the topology on A ∞ . The shift operator σ : A ∞ → A ∞ turns A ∞ into a dynamical system. From the dynamical point of view, the most interesting objects are closed nonempty σ-invariant subsets of A ∞ (shift spaces or subshifts). We also consider the space M(A ∞ ) of all Borel probability measures on A ∞ with the weak * topology. The set of σ-invariant measures in M(A ∞ ) concentrated on a shift space X ⊆ A ∞ is denoted by M σ (X). Each of these objects (invariant measures and subshifts) has a canonically defined sequence of Markov approximations converging to it in a natural topology. This fact, however, is of little practical use, because the convergence is too weak to allow for a transfer of dynamical properties from an approximating sequence to the properties of its limit.

Recall that the natural topology on the space of all subshifts of A ∞ is the hyperspace (Vietoris) topology of nonempty closed subsets of a compact metric space. In other words, a sequence of shift spaces (X n ) ∞ n=1 ⊆ A ∞ converges to a shift space X ⊆ A ∞ in the hyperspace topology if ρ H (X n , X) → 0 as n → ∞ (here, ρ H is the Hausdorff metric corresponding to ρ). Similarly, we say that simplices of invariant measures of shift spaces

(X n ) ∞ n=1 ⊆ A ∞ approximate the simplex of invariant measures of a shift space X ⊆ A ∞ if M σ (X n ) converges to M σ (X) as n → ∞ in the natural hyperspace topology of M σ (A ∞ ), that is, if D H (M σ (X n ), M σ (X)) → 0 as n → ∞
, where D H is the Hausdorff metric corresponding to a metric D compatible with the weak * topology on M σ (A ∞ ).

Fortunately, for both measures and subshifts, stronger metrics than ρ and D are also available. A useful metric for σ-invariant measures is Ornstein's metric dM . In [START_REF] Konieczny | On d-approachability, entropy density and B-free shifts[END_REF] we studied a topology on the powerset of A ∞ induced by the Hausdorff pseudometric dH derived from d-pseudometric on A ∞ . A very similar idea of using d-approximation was independently considered by Dan Thompson [START_REF] Thompson | A 'horseshoe' theorem in symbolic dynamics via single sequence techniques[END_REF], who used it in the settings of [START_REF] Climenhaga | Intrinsic ergodicity beyond specification: β-shifts, S-gap shifts, and their factors[END_REF].

Recall that the pseudometric d is given for x = (x j ) ∞ j=0 , y = (y j ) ∞ j=0 ∈ A ∞ by d(x, y) = lim sup n→∞ 1 n |{0 ≤ j < n : x j ̸ = y j }|.

Since d(x, y) can be zero for distinct x and y, d is not a metric. Nevertheless, after factorizing by the equivalence relation ∼ on A ∞ , where x ∼ y if and only if d(x, y) = 0, we obtain the factor space A ∞ /∼ on which d becomes a complete, non-separable metric. Since d is bounded by 1 on A ∞ , it induces a Hausdorff pseudometric dH on the space CL(A ∞ , d) of all nonempty d-closed subsets of A ∞ . Similarly, dM is a complete bounded non-separable metric on M σ (A ∞ ) inducing a Hausdorff metric dH M on the space CL(M σ (A ∞ ), dM ) of all nonempty dM -closed subsets of M σ (A ∞ ). Note that dM -convergence implies weak * convergence, so for each shift space X ⊆ A ∞ the set M σ (X) is dM -closed. It is also known that the set of ergodic measures on X, denoted by M e σ (X), is dM -closed.

Hence, we obtain two more ways to say that shift spaces

(X n ) ∞ n=1 ⊆ A ∞ approximate X ⊆ A ∞ : lim n→∞ dH (X n , X) = 0. ( 1 
)
lim n→∞ dH M (M σ (X n ), M σ (X)) = 0, (2) 
Note that we do not assume that the approximation in (1) and ( 2) is monotone (meaning X 1 ⊇ X 2 ⊇ . . . and X = X n ), but in practice it is often the case.

In [START_REF] Konieczny | On d-approachability, entropy density and B-free shifts[END_REF], we studied the consequences of the existence of an approximating sequence as in (1) and [START_REF] Bergelson | Rationally almost periodic sequences, polynomial multiple recurrence and symbolic dynamics[END_REF]. We were especially interested in the case when the approximating sequence is the sequence is the sequence of Markov approximations. We introduced d-approachable shift spaces (subshifts that are approached by their topological Markov approximations not only in the 'usual' Hausdorff metric topology, but also in the dH sense). We also considered a condition that is ostensibly a relaxation of (2):

(3)

lim n→∞ dH M (M e σ (X n ), M e σ (X)) = 0.
We proved in [START_REF] Konieczny | On d-approachability, entropy density and B-free shifts[END_REF] that for every shift spaces X and Y over A we have In other words, dH approximation (1) implies convergence of simplices of invariant measures in the Hausdorff metric dH M induced by Ornstein's dM metric on the space M σ (A ∞ ) as in [START_REF] Bergelson | Rationally almost periodic sequences, polynomial multiple recurrence and symbolic dynamics[END_REF]. As a consequence, certain features of simplices of invariant measures of shift spaces in the approximating sequence are inherited by the simplex of the limit.

In analogy with Friedman and Ornstein's result characterizing Bernoulli measures among all totally ergodic shift invariant measures as dM -limits of their own Markov approximations (see [START_REF] Friedman | On isomorphism of weak Bernoulli transformations[END_REF]), we characterized chain mixing d-approachable shift spaces using the newly introduced dshadowing property. In this way we obtained a large family of shift spaces that contains all β-shifts and all mixing sofic shifts, in particular all mixing shifts of finite type. This is because many specification properties imply chain mixing and d-approachability (this is the case, for example, for all shift spaces with the almost specification property). We refer to [START_REF] Konieczny | On d-approachability, entropy density and B-free shifts[END_REF] for more details.

We also showed that if every X n has entropy-dense set of ergodic measures and the sequence (X n ) ∞ n=1 converges to X in the sense defined by any of ( 1)-( 3), then ergodic measures of X are also entropy-dense. This established a new method of proving entropy density. As a consequence we obtained entropy density of ergodic measures for all surjective shift spaces with the d-shadowing property. Entropy density of ergodic measures is a property introduced by Orey in 1986 [START_REF] Orey | Large deviations in ergodic theory[END_REF] and Föllmer and Orey in 1988 [START_REF] Föllmer | Large deviations for the empirical field of a Gibbs measure[END_REF]. Recall that ergodic measures of a shift space X are entropydense if every invariant measure can be approximated with an ergodic one with respect to the weak * topology and entropy at the same time. In particular, M e σ (X) is a dense subset of M σ (X). Note that there are shift spaces with dense, but not entropy-dense, sets of ergodic measures (see [START_REF] Gelfert | On density of ergodic measures and generic points[END_REF]). Density of ergodic measures and entropy density are strongly related to the theory of large deviations and multifractal analysis [START_REF] Comman | Strengthened large deviations for rational maps and full shifts, with unified proof[END_REF][START_REF] Eizenberg | Large deviations for Z d -actions[END_REF][START_REF] Pfister | Large deviations estimates for dynamical systems without the specification property. Applications to the β-shifts[END_REF][START_REF] Pfister | Weak Gibbs measures and large deviations[END_REF], see Comman's article [START_REF] Comman | Criteria for the density of the graph of the entropy map restricted to ergodic states[END_REF] and references therein for more information about that connection.

The results of [START_REF] Konieczny | On d-approachability, entropy density and B-free shifts[END_REF] are also applicable to the study of dynamics of the so-called B-free shifts (or systems), a subject that has recently attracted a considerable interest (see [START_REF] Dymek | Invariant measures for B-free systems revisited[END_REF][START_REF] Dymek | B-free sets and dynamics[END_REF][START_REF] Kasjan | Dynamics of B-free sets: a view through the window[END_REF][START_REF] Keller | Generalized heredity in B-free systems[END_REF][START_REF] Keller | Tautness for sets of multiples and applications to B-free dynamics[END_REF][START_REF] Konieczny | Arcwise connectedness of the set of ergodic measures of hereditary shifts[END_REF][START_REF] Kułaga-Przymus | Hereditary subshifts whose measure of maximal entropy does not have the Gibbs property[END_REF][START_REF] Kułaga-Przymus | On invariant measures for B-free systems[END_REF][START_REF] Kułaga-Przymus | Hereditary subshifts whose simplex of invariant measures is Poulsen[END_REF].

In the present paper, we study further properties of d-approachable shift spaces. In particular, in Section 4 we construct minimal and proximal examples of chain mixing d-approachable shift spaces. These examples demonstrate that our technique yields entropy density for shift spaces that are beyond the reach of methods based on specification, as specification excludes both proximality and minimality. So far only specification-like conditions were invoked to prove entropy density explicitly (see [START_REF] Eizenberg | Large deviations for Z d -actions[END_REF][START_REF] Pfister | Large deviations estimates for dynamical systems without the specification property. Applications to the β-shifts[END_REF]). We note that there exists a general theorem due to Downarowicz and Serafin [START_REF] Downarowicz | Possible entropy functions[END_REF] that guarantees existence of minimal shifts with entropy-dense ergodic measures, but due to its generality it is hard to see concrete examples. We also prove, see Section 2, that d-approachability implies d-stability, where d-stability is a property recently introduced by Tim Austin [1]. Austin combined one of Ornstein's conditions equivalent to Bernoullicity with equivariant analogs of some basic results in measure concentration to characterize Bernoullicity of the equilibrium measure of a continuous potential φ under the assumption that the equilibrium is unique. Austin formulated his main condition in terms of a stronger kind of differentiability of the pressure functional at φ. He proved that the condition is always necessary and he showed that it is sufficient if the shift space is ' d-stable'. Austin remarked that the class of ' d-stable' subshifts includes the full shift and several others examples with the specification property. He also suspected that d-stability holds also for examples without any specification properties. Hence our minimal and proximal examples of d-approachable shifts confirm this suspicion. In Section 3 we also show that the implication (2) =⇒ (1) holds true if all shift spaces involved have the d-shadowing property, hence chain mixing and d-approachability suffice for this implication, see Theorem 11. We note that the implication (2) =⇒ (1) does not hold in general by producing a sequence of shift spaces (X n ) ∞ n=1 such that for some shift space X we have dH

M (M σ (X n ), M σ (X)) → 0 while dH (X n , X) → 1 as n → ∞, see Proposition 14.
We prove (Proposition 12) that it is possible to find a sequence of shift spaces (X n ) ∞ n=1 such that M σ (X n ) converges in dM to a singleton set, that is not a simplex of invariant measures for any shift space. Finally, we prove that the d-shadowing on the measure center of a shift space (the smallest invariant subshift of full measure for every invariant measure) implies the same for the shift. We recall our notation and basic definitions in Section 1. We call ρ H the Hausdorff pseudometric induced by ρ on the space of all nonempty subsets of Z. If ρ is a bounded metric, then ρ H becomes a metric on the set CL(Z, ρ) of closed nonempty subsets of (Z, ρ). Note that in our settings some properties, well-known in the compact case, fail, because we consider (Z, ρ) where ρ is not necessarily compact, but only a bounded pseudometric space. For example, ρ and another pseudometric ρ may induce the same topology on Z but the spaces (CL(Z), ρ H ) and (CL(Z), ρH ) need not be homeomorphic. 1.2. Shift spaces and languages. We let N denote the set of positive integers. We also write N 0 = N∪{0}. Unless otherwise stated, the letters i, j, k, l, m, n always denote integers. An alphabet is a finite set A endowed with the discrete topology. We refer to elements of A as to symbols or letters. The full shift A ∞ is the Cartesian product of infinitely many copies of A indexed by N 0 . We endow A ∞ with the product topology. A compatible metric on

A ∞ is given for x, y ∈ A ∞ by ρ(x, y) = 0, if x = y, 2 -min{j:xj ̸ =yj } , otherwise. The shift map σ : A ∞ → A ∞ is given for x = (x i ) ∞
i=0 ∈ A ∞ and j ≥ 0 by σ(x) j = x j+1 . A shift space over A is a nonempty, closed, and σ-invariant subset of A ∞ . A word over A is a finite sequence of elements of A . The number of entries of a word w is called the length of w and is denoted by |w|. The empty sequence is called the empty word and is the only word of length 0. We denote it by λ. The concatenation of words u = u 1 . . . u k and v = v 1 . . . v m is the word u 1 . . . u k v 1 . . . v m denoted simply as uv. Given x ∈ A ∞ and 0 ≤ i < j we let x [i,j) denote the word x i x i+1 . . . x j-1 over A of length ji. We say that a word w appears in x ∈ A ∞ if there exist 0 ≤ i < j such that w = x [i,j) . A word w appears in a shift space X ⊆ A ∞ if there exists x ∈ X such that w appears in x. The language of a shift space X ⊆ A ∞ is the set B(X) of all finite words over A appearing in X. We agree that the empty word appears in every sequence in A ∞ . For n ∈ N 0 , we let B n (X) ⊆ A n to be the set of all words w ∈ B(X) with |w| = n. Given a set F of finite words over A we define X F to be the set of all x = (x i ) ∞ i=0 ∈ A ∞ such that no word from F appears in x. The resulting set X F is either empty or a shift space. Furthermore, for every shift space X over A one can find a collection F of finite words such that X = X F . A shift space X is a shift of finite type if there exists a finite set F such that X = X F . Every shift space X ⊆ A ∞ is the intersection of a sequence (X M n ) n≥0 of shifts of finite type. To construct that sequence, we define F [n] to consists of all words w over A with |w| = n + 1 and w / ∈ B n+1 (X). In this way, we obtain for each n ≥ 0 a shift of finite type

X M n = X F [n] such that B j (X) = B j (X M n ) for 0 ≤ j ≤ n + 1.
We call the shift space X M n the n-th (topological) Markov approximation of X or finite type approximation of order n to X. We note that for every shift space X, its Markov approximation X M n can be conveniently described using a Rauzy graph. The n-th Rauzy graph of X is a labeled graph G n = (V n , E n , τ n ), where we set V n = B n (X) and E n = B n+1 (X), and for each w = w 0 w 1 . . . w n ∈ E n we define i(w) = w 0 . . . w n-1 ∈ V n , t(w) = w 1 . . . w n ∈ V n , and τ n (w) = w 0 ∈ A . The sofic shift space X n presented by G n satisfies B j (X n ) = B j (X) for j = 1, . . . , n + 1, see Proposition 3.62 in [START_REF] Kůrka | Topological and symbolic dynamics[END_REF]. It is now easy to see that X n is the n-th topological Markov approximations for X.

The following definitions of (chain) mixing and (chain) transitivity are stated only for shift spaces. We will do the same for several notions: instead of presenting a general definition for continuous maps acting on compact metric spaces (for the latter, see [START_REF] Kůrka | Topological and symbolic dynamics[END_REF]), we will state an equivalent definitions adapted to symbolic dynamics. This applies to (chain) transitivity, (chain) mixing, specification and its variants.

A shift space X is transitive if for every u, w ∈ B(X) there exists v with uvw ∈ B(X). A shift space X is topologically mixing if for any u, w ∈ B(X) there exists N ∈ N 0 such that for each n ≥ N there is v = v(n) ∈ B n (X) such that uvw ∈ B(X).

A shift space is chain transitive (respectively, chain mixing) if its topological Markov approximations X M n are transitive (respectively, topologically mixing) for all except finitely many n's.

1.3. Ergodic properties of shift spaces. Let M(X) be the set of all Borel probability measures supported on a shift space X ⊆ A ∞ . In particular, M(A ∞ ) stands for the space of all Borel probability measures on A ∞ . We write M σ (X) and M e σ (X) to denote the sets of, respectively, σ-invariant and ergodic σ-invariant measures in M(X). We endow M(A ∞ ) with the weak * topology, hence it becomes a compact metrisable space and M σ (X) is its closed subset for every shift space X ⊆ A ∞ .

We say that x ∈ A ∞ is generic for µ ∈ M σ (X), if for every continuous function f : X → R the sequence of Cesaro averages of f (σ n (x)) converges and the limit satisfies

lim N →∞ 1 N N -1 n=0 f (σ n (x)) = A ∞ f dµ.
Every ergodic measure has a generic point. By h(µ) we denote the Kolmogorov-Sinai entropy of µ ∈ M σ (X). We say that ergodic measures of a shift space X are entropy dense if for every measure µ ∈ M σ (X), every neighborhood U of µ in M σ (X) and every ε > 0 there is ν ∈ U ∩ M e σ (X) with |h(ν) -h(µ)| < ε. Note that having entropy-dense ergodic measures is preserved by conjugacy.

The functions d and dM

. Given x = (x n ) ∞ n=0 , y = (y n ) ∞ n=0 ∈ A ∞ we set d(x, y) = lim sup n→∞ 1 n |{0 ≤ j < n : x j ̸ = y j }|.
The function d is a pseudometric on A ∞ , but d is not a metric if A has at least two elements, because the implication d(x, y) = 0 =⇒ x = y fails. The function d is not continuous in general. Furthermore, d :

A ∞ × A ∞ → [0, 1] is shift invariant (for all x, y ∈ A ∞ we have d(x, y) = d(σ(x), σ(y))).
Ornstein's metric dM on M σ (A ∞ ) is usually1 defined with the help of joinings. A σ×σ-invariant measure ξ on A ∞ × A ∞ is a joining of µ, ν ∈ M σ (A ∞ ) if µ and ν are the marginal measures for ξ under the projection to the first, respectively the second, coordinate. We write J(µ, ν) for the set of all joinings of µ and ν. Note that J(µ, ν) is always nonempty because the product measure µ × ν belongs to J(µ, ν). Ornstein's metric dM on M σ (A ∞ ) is given by:

dM (µ, ν) = inf ξ∈J(µ,ν) A ∞ ×A ∞ d 0 (x, y) dξ(x, y),
where d 0 (x, y) = 1 if x 0 ̸ = y 0 and d 0 (x, y) = 0 otherwise. The space M σ (A ∞ ) endowed with dM -metric becomes a complete but non-separable (hence, non-compact) metric space. The space M e σ (A ∞ ) ⊆ M σ (A ∞ ) of ergodic measures is dM -closed, as are the spaces of strongly mixing and Bernoulli measures on A ∞ . Entropy function µ → h(µ) is continuous on M σ (A ∞ ) under dM . The convergence in dM implies weak * convergence (for more details, see [START_REF] Ornstein | Ergodic theory, randomness, and dynamical systems[END_REF]).

Applying Hausdorff metric construction described in Section 1.1 to the bounded metric space (M σ (A ∞ ), dM ) we obtain a metric denoted by dH M defined on the space CL(M σ (A ∞ ), dM ) of nonempty closed subsets of (M σ (A ∞ ), dM ). For every shift space X the sets M σ (X) and M e σ (X) are closed sets in the Hausdorff metric dH M . Similarly, starting from the pseudometric space (A ∞ , d) we get a pseudometric dH on the set of all nonempty subsets of A ∞ .

On d-shadowing and d-approachability

. A shift space X ⊆ A ∞ is d-approachable if its Markov approximations X M 1 , X M 2 , . . . satisfy dH (X M n , X) → 0 as n → ∞. Every shift of finite type is d-approachable.
We say that shift space X has the d-shadowing property if for every ε > 0 there is N ∈ N such that for every sequence (w (3) . . .. The d-shadowing property was introduced in [START_REF] Konieczny | On d-approachability, entropy density and B-free shifts[END_REF]. It is closely related to the average shadowing property introduced by Blank [START_REF] Blank | Metric properties of ε-trajectories of dynamical systems with stochastic behaviour[END_REF] and studied in [START_REF] Kulczycki | On almost specification and average shadowing properties[END_REF]. Every mixing sofic shift space has the d-shadowing property and d-shadowing is inherited by dHlimits of shift spaces with the d-shadowing. Note that d-shadowing implies d-approachability, but to prove the converse we need to assume additionally that the shift space in question is chain mixing. The exact statement is Theorem 6 in [START_REF] Konieczny | On d-approachability, entropy density and B-free shifts[END_REF], which says that a shift space X ⊆ A ∞ is chain mixing and d-approachable if and only if σ(X) = X and X has the d-shadowing property. Theorem 6 in [START_REF] Konieczny | On d-approachability, entropy density and B-free shifts[END_REF] lists a third condition, but we won't need it until Section 4, so we postpone the exact statement.

(j) ) ∞ j=1 in B(X) with |w (j) | ≥ N for j = 1, 2, . . . there is x ′ ∈ X such that d(x, x ′ ) < ε, where x = w (1) w (2) w
As we have already mentioned in the introduction, this characterization is a topological counterpart of the result saying that a totally ergodic shift invariant probability measure is Bernoulli if and only if it is the dM -limit of the sequence of its canonical Markov approximations.

In Section 4.1, we also show how to apply this corollary even in the case when natural approximations of our shift are not comparable via inclusion, hence does not form a descending chain of shift spaces.

d-APPROACHABILITY VS. d-STABILITY

We recall the notion of dM -stability that has been recently introduced by Tim Austin [1]. Then we show that it follows from the d-shadowing property. Later we discuss some further properties of dM -stable shifts.

Definition 1. A shift space X ⊆ A ∞ is dM -stable if for every ε > 0 there is an open neighborhood U of M σ (X) in the weak * topology on M σ (A ∞ ) such that if ν ∈ U , then there is µ ∈ M σ (X) with dM (µ, ν) < ε.
Note that we use slightly different notation: Austin writes d instead of dM . Equivalently, a shift space X is dM -stable if any shift-invariant measure which lives close enough to X in the weak * topology is actually close in Ornstein's dM metric on M σ (A ∞ ) to a shift-invariant measure supported on X. This observation (noted already in [1]) is formulated as the next lemma for future reference. We state it in terms of the natural basis

(U n ) ∞
n=1 of open neighborhoods of a shift space X with respect to the Hausdorff topology induced by the usual (product) topology on A ∞ (the topology of the Hausdorff metric ρ H ), where for n ≥ 1 we have

U n (X) = {[u] | u ∈ B n (X)}. Lemma 2. A shift space X ⊆ A ∞ is dM -stable if,
and only if, for any ε > 0 there are δ > 0 and

N ∈ N such that dM (ν, M σ (X)) < ε whenever ν ∈ M σ (A ∞ ), n ≥ N , and ν(U n (X)) > 1 -δ. Proposition 3. If a shift space X ⊆ A ∞ has the d-shadowing property, then X is dM -stable. Proof. Fix 1 > ε > 0.
Use the definition of the d-shadowing property to pick n such that every sequence (w

(j) ) ∞ j=1 in B(X) with |w (j) | ≥ n for every j ≥ 1 is ε/2-traced in the d pseudometric by some point in X. Let ν be a shift-invariant measure on A ∞ such that ν(U n (X)) > 1 -ε/2. We would like to show that dM (ν, M σ (X)) < ε. Let y = (y i ) ∞ i=0 ∈ A ∞ be a generic point for ν (such a point always exists in A ∞ ).
Hence, the frequency of visits of y to in U n (X) satisfies

lim N →∞ 1 N {0 ≤ k < N : σ k (y) ∈ U n (X)} = ν(U n (X)) > 1 -ε/2.
Define m 0 ≥ 0 as the smallest ℓ ≥ 0 such that y [ℓ,ℓ+n) ∈ B n (X). Inductively, given m k for some k ≥ 0, we define m k+1 as the smallest integer ℓ ≥ m k + n such that y [ℓ,ℓ+n) ∈ B n (X). Then the set (1) . . . differs from y only at positions (indices) belonging to the set M . Hence d(y, z) ≤ ε/2. The same is true for y ′ = σ m0 (y) and z ′ = σ m0 (z). Furthermore, y ′ is still generic for ν. By the d-shadowing property, z ′ = v (0) v (1) . . . can be approximated by

M = N 0 \ ∞ k=0 [m k , m k+1 ) is contained in the set {ℓ ∈ N 0 | y [ℓ,ℓ+n) ̸ ∈ B n (X)}, so its upper density is less than ε/2. For k ∈ N 0 , we extend the word y [m k ,m k +n) ∈ B n (X) to the right to form some word v (k) ∈ B(X) of length m k+1 -m k . Then the sequence z = y [0,m0) v (0) v
z ′′ ∈ X such that d(z ′ , z ′′ ) < ε/2. Therefore, d(y ′ , z ′′ ) < ε/2 + ε/2 = ε.
It is a standard fact (see [START_REF] Glasner | Ergodic theory via joinings[END_REF]Thm. 15.23]) that every measure generated by z ′′ is ε-close with respect to the dM distance to the measure generated by y ′ . Hence dM (ν, M σ (X)) ≤ ε. □ Shift spaces with the specification property are primary examples of d-stable shift spaces provided by [1]. Recall that a shift space X ⊂ A ∞ has the specification property if there exists k ∈ N such that for any u, w ∈ B(X) there is v with |v| = k such that uvw ∈ B(X). The specification property is a very useful property with many consequences for a shift space. For more extensive overview on the specification property and its relatives we refer the reader to [START_REF] Kwietniak | A panorama of specification-like properties and their consequences[END_REF]. Here we note that the specification property and even either one of its two weaker, incommensurable variants known as almost specification property or weak specification property, see [START_REF] Kwietniak | A panorama of specification-like properties and their consequences[END_REF], 2 imply dapproachability and chain-mixing, hence d-shadowing ( [START_REF] Konieczny | On d-approachability, entropy density and B-free shifts[END_REF]). Therefore we obtain the following corollary. 2 The nomenclature is not fixed, we follow [START_REF] Kwietniak | A panorama of specification-like properties and their consequences[END_REF]. Recall that a mistake function is a nondecreasing function g : N → N with g(n)/n → 0 as n → ∞. We say a shift space X has the almost specification property if there is a mistake function g : N → N such that for any u, w ∈ B(X) there are u ′ , w ′ with u ′ w ′ ∈ B(X)

satisfying |u| = |u ′ |, |v| = |v ′ |, |{1 ≤ j ≤ n : u j ̸ = u ′ j }| ≤ g(|u|)
, and |{1 ≤ j ≤ n : w j ̸ = w ′ j }| ≤ g(|w|). We say that a shift space X has the weak specification property if there is a mistake function g such that for any u, w ∈ B(X) there is v with uvw ∈ B(X) satisfying |v| = g(|w|). Weak and almost specification properties are independent of each other: neither one implies the other, see [START_REF] Kwietniak | On entropy of dynamical systems with almost specification[END_REF]. Additionally, in contrast with the classical specification property, the weaker versions do not imply the uniqueness of the measure of maximal entropy, see [START_REF] Kwietniak | On entropy of dynamical systems with almost specification[END_REF][START_REF] Pavlov | On intrinsic ergodicity and weakenings of the specification property[END_REF].

Corollary 4. If X is a shift space satisfying one of the following conditions

(1) X has the specification property, (2) X has the weak specification property, (3) X has the almost specification property, then X is dM -stable.

Remark 5. Using Proposition 3 we see that the proximal shift space constructed in Example 20 and the minimal shift space from Section 4.2 (see Theorem 27) are dM -stable. This answers Austin's question in the affirmative way. We note that these examples do not have any of the specification properties mentioned above, because any of these specification properties implies that a shift having one of them and positive topological entropy has many disjoint minimal proper subsets. Hence such a shift space is neither minimal nor proximal.

We list certain properties of dM -stable shift spaces. But first we recall some definitions. Let X ⊆ A ∞ be a shift space. The measure center of X the smallest shift space X + ⊆ X such that µ(X + ) = 1 for every µ ∈ M σ (X). In other words, X + is the smallest subshift of X containing supports of all invariant measures on X. The measure center is determined by the language of all words in B(X) whose cylinders have positive measure for at one measure in M σ (X), that is

B(X + ) = w ∈ B(X) | ∃µ ∈ M σ (X) : µ[w] > 0 .
The following observation follows directly from the definitions. Proposition 6. If X is dM -stable, then so is X + .

We do not know if dM -stability of X + implies the same for X. It is also possible that X + = X holds true for every dM -stable shift space. We note that dM -stability of X implies that the canonical Markov approximations satisfy (1).

Proposition 7. If X ⊆ A ∞ is a dM -stable shift space, then dH M (M σ (X M n ), M σ (X)) → 0 as n → ∞. Proof. Fix ε > 0. Let δ > 0 and n ≥ 1 be such that if ν ∈ M σ (A ∞ ) and ν(U n (X)) > 1 -δ, then dM (M σ (X), ν) < ε. Fix m ≥ n and µ ∈ M σ (X M m ). Since X M m ⊆ U n (X) we see that dM (µ, M σ (X)) < ε, so dH M (M σ (X M m ), M σ (X)) < ε for m ≥ n. Hence, dH M (M σ (X M n ), M σ (X)) → 0 as n → ∞. □
We do not know if dM -stability implies d-approachability even if we assume that the shift space X is chain-mixing, so that the canonical Markov approximations have d-shadowing and hence

(M σ (X M n )) ∞
n=1 is a Cauchy sequence in the complete metric space CL(M σ (A ∞ )), dH M ). We know that some additional assumptions are necessary because the condition dH M (M σ (X M n ), M σ (X)) → 0 as n → ∞ alone does not imply d-stability. A counterexample is provided by any shift of finite type X with non-transitive X + . A concrete example is the shift space X over {0, 1} consisting of only two fixed points 0 ∞ and 1 ∞ . It is a binary shift of finite type with 01 and 10 as the only forbidden words. Such a shift space (trivially) satisfies dH M (M σ (X M n ), M σ (X)) → 0 as n → ∞, but is not d-stable because of Proposition 9 below. Nevertheless, assuming chain-transitivity, we see that dM -stability implies " dM -approachability", that is, dH

M (M σ (X M n ), M σ (X)) → 0 as n → ∞. It remains open if it is enough to assume just chain-transitivity. Proposition 8. If X ⊆ A ∞ is a chain mixing shift space with dH M (M σ (X M n ), M σ (X)) → 0 as n → ∞, then X is dM -stable. Proof. Fix ε > 0. Find N > 0 such that dH M (M σ (X M N ), M σ (X)) ≤ ε/2. Since X is chain mixing, X M
N is a topologically mixing shift of finite type so it also has d-shadowing property (see [START_REF] Konieczny | On d-approachability, entropy density and B-free shifts[END_REF]). Hence X M N is dM -stable by Proposition 3. Let δ > 0 and m ≥ 1 be such that if

ν ∈ M σ (A ∞ ) and ν(U m (X M N )) > 1 -δ, then dM (M σ (X M N ), ν) < ε/2. Without loss of generality we have m ≥ N , so U m (X) ⊆ U m (X M N ). Let µ ∈ M e σ (A ∞ ) be such that µ(U m (X)) > 1 -δ. Then µ(U m (X M N )) ≥ µ(U m (X)) > 1 -δ. Hence dM (µ, M σ (X M N )) < ε/2, so there exists µ ′ ∈ M e σ (X M N ) such that dM (µ, µ ′ ) < ε/2. Since dH M (M σ (X M N ), M σ (X)) < ε/2 there exists ξ ∈ M e σ (X) with dM (ξ, µ) ≤ dM (ξ, µ ′ ) + dM (µ ′ , µ) < ε. □
Next, we note that dM -stability implies weak * density of ergodic measures in M σ (X) and, as a consequence, entropy density (interestingly, we need to prove weak * density first to obtain transitivity of X + and obtain entropy density as a consequence of transitivity of X + ). Hence if X is a dM -stable shift space then the simplex of invariant measures M σ (X) is either a Poulsen simplex or a singleton. Note that the latter possibility can occur. As an example, take X = {0 ∞ }. Proposition 9. If X ⊆ A ∞ is a dM -stable shift space, then X + is transitive and ergodic measures are entropy dense in M σ (X).

Proof. We first prove that M e σ (X) is weak * dense in M σ (X). To prove the density of ergodic measures it is enough to show that for every µ 1 , µ 2 ∈ M e σ (X) the measure 1 2 (µ 1 + µ 2 ) is a limit of a sequence of ergodic measures in M e σ (X). Fix ε > 0. Let δ > 0 and n ≥ 1 be such that if µ(U n (X)) > 1 -δ, then dM (M σ (X), µ) < ε. Since the ergodic measures of A ∞ are dense in M σ (A ∞ ), we can find ν ∈ M σ (A ∞ ) which is sufficiently close to 1 2 (µ 1 + µ 2 ) to guarantee ν(U n (X)) > 1 -δ. By dM -stability, there is ξ ∈ M σ (X) such that dM (ν, ξ) < ε. Since ν is ergodic, we can assure that ξ is an ergodic measure. By the triangle inequality, D(

1 2 (µ 1 + µ 2 ), ξ) ≤ D( 1 2 (µ 1 + µ 2 ), ν) + D(ν, ξ)
. Since ν and ξ can be arbitrarily close in dM , they can be also arbitrarily close in D. Hence ξ can be arbitrarily close to 1 2 (µ 1 + µ 2 ) and the ergodic measures must be weak * dense. Now, transitivity of X + follows easily from weak * density of ergodic measures (see Proposition 6.4 in [START_REF] Gelfert | On density of ergodic measures and generic points[END_REF] for details). By Proposition 6 the measure center X + is a dM -stable shift space. Now, Proposition 7 implies dH

M (M σ ((X + ) M n ), M σ (X + )) → 0 as n → ∞.
Transitivity of X + imply that its Markov approximations are entropy dense shift spaces. Hence ergodic measures are entropy dense in M σ (X + ) by [START_REF] Konieczny | On d-approachability, entropy density and B-free shifts[END_REF], but clearly M σ (X) = M σ (X + ). □ Proposition 10. If X is a strictly ergodic dM -stable shift space, then the unique invariant measure on X is isomorphic to an odometer.

Proof. Assume that X is a strictly ergodic infinite shift space. Let ν be its unique ergodic invariant measure, that is, M σ (X) = {ν}. Hence, for every n ≥ 1 the Markov approximation X M n of X is a transitive uncountable shift of finite type. In particular, for every n ≥ 1 the simplex M σ (X M n ) contains at least two ergodic invariant measures: a periodic measure µ per n (actually, infinitely many such measures, but one is enough for our purposes) and a measure of maximal entropy µ max n which is isomorphic to a product of a Bernoulli measure and a periodic measure (that periodic measure is a Dirac measure on a fixed point if and only if X M n is mixing). Now assume that X is dM -stable, so dH M (M σ (X M n ), M σ (X)) → 0 as n → ∞. It follows that lim n→∞ dM (µ max n , ν) = lim n→∞ dM (µ per n , ν) = 0. A measure that is a dM -limit of periodic measures must be isomorphic to a Haar measure on some odometer (this result is implicit in [START_REF] Daniel | The limits in d of multi-step Markov chains[END_REF] and follows directly from [2, Thm. 1.7]). □

The results in the present section do not provide a complete picture of connections between the notions of dM -stability and d-approachability. For example, we were unable to answer the following questions: Can a non-trivial periodic orbit be dM -stable shift space? Can a strictly ergodic infinite shift space be dM -stable? Is every dM -stable system topologically mixing on its measure center? Can a shift space X such that X + ̸ = X be dM -stable?

COMPARING dH

M WITH dH If (Z, ρ) is a bounded complete metric space, then so is (CL(Z), ρ H ) (see [18, §2.15]). Hence the Hausdorff metric dH M induced on CL(M σ (A ∞ )) by dM is complete and Cauchy condition provides a criterion for convergence of a sequence

(M σ (X k )) ∞ k=1 , where X k ⊆ A ∞ is a shift space for every k ≥ 1. But even if we know that (M σ (X k )) ∞
k=1 converges in dM to some M ∈ CL(M σ (A ∞ ), dM ), it is not clear if there exists a shift space X ⊆ A ∞ such that M = M σ (X). We provide an example showing that this need not to be the case at the end of this section. But first we demonstrate that shift spaces X and Y with the d-shadowing property are dH close if and only if they are dH M close. On the other hand, without the d-shadowing property the inequality in (4) can be strict. We use a variant of Oxtoby's construction of nonuniquely ergodic minimal Toeplitz subshift to show that for every δ > 0 there are shift spaces X and Y such that dH M (M σ (X), M σ (Y )) < δ but dH (X, Y ) > 1 -δ. Finally, we show that if the measure center of a shift space X has the d-shadowing property, then X also has it. 

M M σ (X), M σ (Y ) < ε 2
for some ε > 0, then dH (X, Y ) < 7ε.

Proof. Fix x ∈ X. Use d-shadowing of Y to find s ∈ N such that for every sequence {w (j) } ∞ j=1 of words in B (Y ) with |w (j) | ≥ s for every j ≥ 1, there exists y ∈ Y such that [START_REF] Comman | Strengthened large deviations for rational maps and full shifts, with unified proof[END_REF] d(w (1) w (2) w (3) . . . , y) < ε.

Pick m such that s < mε. By [9, Theorem 3.4] we find l ≥ m such that x can be decomposed into infinite concatenation of blocks, that is, we can write 2) . . . . and the blocks A (1) , A (2) , . . . and B (1) , B (2) , . . . satisfy

(6) x = A (1) B (1) A (2) B ( 
• for every i ≥ 1 we have satisfies m ≤ |B (i) | ≤ l;

• for every i ≥ 1 there exists an ergodic measure µ (i) ∈ M e σ (X) such that

(7) d * (B (i) , µ (i) ) = ∞ k=1 2 -k w∈A k freq(w, B (i) ) -µ (i) ([w]) < ε 2 s , where (8) freq(w, 
B (i) ) =    |{1≤j≤|B (i) |-l+1 : B (i) [j,j+l) =w}| |B (i) | , if |w| = l ≤ |B (i) |, 0, otherwise;
• the set of coordinates of x which belong to the block A (i) in ( 6) for some i ≥ 1 has upper Banach density smaller than ε. In particular we have

(9) lim sup n→∞ |A (1) | + . . . |A (n) | |A (1) B (1) | + . . . + |A (n) B (n) | < ε.
Now, we use the assumption dH M M σ (X), M σ (Y ) < ε 2 and for every i ≥ 1 we find an ergodic measure ν (i) ∈ M σ (Y ) such that [START_REF] Dymek | Invariant measures for B-free systems revisited[END_REF] dM (µ (i) , ν (i) ) < ε 2 .

Following Shields [START_REF] Shields | The Ergodic Theory of Discrete Sample Path[END_REF], for every µ, ν ∈ M σ (A ∞ ) and n ≥ 1 we define J n = J n (µ, ν) to be the set of measures λ n on A n × A n endowed with the powerset σ-algebra such that for every u, w ∈ A n we have µ

[u] = λ n ({u} × A n ) and ν[w] = λ n (A n × {w}). For α > 0 we let ∆ n (α) = {(u, w) ∈ A n × A n : d Ham (u, w) ≤ α}. Finally, for µ, ν ∈ M σ (A ∞ ) we write d * n (µ, ν) = max λn∈Jn(µ,ν) min{α > 0 : λ n (∆ n (α) ≥ 1 -α}.
By [41, Section I.9], in particular [41, Lemma I.9.12], we see that dM (µ (i) , ν (i) ) < ε 2 implies that for every n ≥ 1 we have d * n (µ (i) , ν (i) ) < ε. Hence, for every n ≥ 1 and i ≥ 1 there exists λ

(i) n ∈ J n (µ (i) , ν (i) )) such that λ (i) n (∆ n (ε)) > 1 -ε. Consider the set G (i) n = {u ∈ B n (X) : there exists w ∈ B n (Y ) with λ (i) n ({(u, w)} ∩ ∆ n (ε)) > 0}.
It follows that for every u ∈ G 

n (u)) < ε and λ

(i) n ({(u, w (i) n (u))}) > 0. In particular, ν (i) [w (i) n (u)] > 0 and hence w (i) n (u) ∈ B n (Y ).
In addition, we clearly have

λ (i) n (∆ n (ε)) = λ (i) n ∆ n (ε) ∩ (G (i) n × A n ) > 1 -ε.
By an abuse of notation, for i ≥ 1 and n ≥ 1, by

G (i) n we will understand {[u] : u ∈ G (i)
n }. It follows that for every n ≥ 1 and i ≥ 1 we have ( 11)

µ (i) G (i) n = λ (i) n (G (i) n × A n ) ≥ λ (i) n (∆ n (ε) ∩ G (i) n × A n ) > 1 -ε.
For each i ≥ 1 we take n = s and consider G (i) s ⊆ B s (X). Note that [START_REF] Dymek | B-free sets and dynamics[END_REF] implies that µ (i) ( G (i) s ) > 1 -ε. In analogy with (8), we define freq(G (i) s , B (i) ) to be number of coordinates in B (i) where some word from G (i) s appears in B (i) divided by the length of B (i) , that is,

freq(G (i) s , B (i) ) = {1 ≤ j ≤ |B (i) | -s + 1 : B (i) [j,j+s) ∈ G (i) s } |B (i) | .
We easily see that freq(G (i) s , B (i) ) = w∈G (i) s freq(w, B (i) ).

Let P be the set of coordinates in B (i) covered by occurrences of words from

G (i) s in B (i) , that is P = {1 ≤ p ≤ |B (i) | : ∃1 ≤ j ≤ |B (i) | -s + 1 with B (i) [j,j+s) ∈ G (i)
s and j ≤ p < j + s}. We clearly have [START_REF] Gelfert | On density of ergodic measures and generic points[END_REF] freq(

G (i) s , B (i) ) ≤ |P | |B (i) | . Furthermore (13) µ (i) G (i) s -freq(G (i) s , B (i) ) ≤ w∈G (i) s freq(w, B (i) ) -µ (i) ([w]) . Using d * B (i) , µ (i) < ε 2 s (cf. ( 7 
)) we obtain w∈G (i) s freq(w, B (i) ) -µ (i) ([w]) ≤ w∈A s freq(w, B (i) ) -µ (i) ([w]) (14) 
≤ 2 s d * (B (i) , µ (i) ) < ε. (15) 
Combining ( 13) and ( 14) we get [START_REF] Glasner | Ergodic theory via joinings[END_REF] µ

G (i) s -freq(G (i) s , B (i) ) ≤ ε.
Combining [START_REF] Dymek | B-free sets and dynamics[END_REF] and [START_REF] Glasner | Ergodic theory via joinings[END_REF] we see that

1 -2ε ≤ |P | |B (i) | .
It follows that there exists a decomposition of B (i) such that ( 17)

B (i) = v (i,1) u (i,1) v (i,2) u (i,2) . . . v (i,κ(i)) u (i,κ(i)) v (i,κ(i)+1) ,
where κ(i) is some (large) positive integer, u (i,j) ∈ G (i)

s and v (i,j) ∈ B(X) \ G (i) s . Furthermore, ( 18 
) |v (i,1) | + |v (i,2) | + . . . + |v (i,κ(i)) | + |v (i,κ(i)+1) | |B (i) | ≤ |B (i) | -|P | |B (i) | ≤ 2ε.
(Actually, (18) tells us that v (i,j) is an empty word for many j's.)

We claim that if for each i ≥ 1 we find blocks ŵ(i,j) ∈ B(Y ) (j = 1, . . . , κ(i)) with | ŵ(i,j) | ≥ s for each j and these blocks will satisfy ( 19)

|A (i) B (i) | = | ŵ(i,1) . . . ŵ(i,κ(i)) | and (20) d Ham A (i) B (i) , ŵ(i,1) . . . ŵ(i,κ(i)) ≤ |A (i) | + 2ε|B (i) | + |v (i,1) | + . . . + |v (i,κ(i)+1) | + s |A (i) B (i) | ,
then the proof will be complete. Indeed, assume that for each i ≥ 1 we have found blocks ŵ(i,1) , . . . , ŵ(i,κ(i)) satisfying ( 19) and [START_REF] Keller | Generalized heredity in B-free systems[END_REF], each of them of length at least s. We set ŷ to be infinite concatenation of ŵ(i,1) , . . . , ŵ(i,κ(i)) , where i = 1, 2, . . ., that is ŷ = ŵ(1,1) . . . ŵ(1,κ(1)) ŵ(2,1) . . . ŵ(2,κ(2)) . . . . . . . . . ŵ(i,1) . . . ŵ(i,κ(i)) . . . By ( 6), ( 9), ( 18), [START_REF] Kasjan | Dynamics of B-free sets: a view through the window[END_REF], and (20) such ŷ satisfies (21) d(x, ŷ) ≤ 6ε.

Note that for every i ≥ 1 and for every 1 ≤ j ≤ κ(i) we have ŵ(i,j) ∈ B(Y ) and | ŵ(i,j) | ≥ s, so the d-shadowing property guarantees there is y ∈ Y with ( 22) d(y, ŷ) < ε.

By ( 21) and ( 22) we have d(x, y) < 7ε as needed.

It remains to find appropriate ŵ(i,1) , . . . , ŵ(i,κ(i)) for each i ≥ 1. To this end we fix i ≥ 1 and for each 2 ≤ j ≤ κ(i) we take u (i,j) in equation [START_REF] Furstenberg | Recurrence in ergodic theory and combinatorial number theory[END_REF] to find w (i,j) = w (i,j) (u (i,j) ) ∈ B s (Y ) with d Ham u (i,j) , w (i,j) ≤ ε. Now, for j = 1 we set t

(i) = |A (i) | + |v (i,1) | + |w (i,1) | + |v (i,2) | ≥ s
and we pick any ŵ(i,1) ∈ B t(i) (Y ). For 2 ≤ j ≤ κ(i) we simply extend each w (i,j) to a word

ŵ(i,j) = w (i,j) v(i,j+1) ∈ B |w (i,j) |+|v (i,j+1) | (Y ), where |v (i,j+1) | = |v (i,j+1) |. We clearly have | ŵ(i,j) | ≥ |w (i,j) | = s and d Ham ( ŵ(i,j) , u (i,j) v (i,j+1) ) ≤ |v (i,j+1) | + ε|w (i,j) | | ŵ(i,j) | .
It is now straightforward to see that the blocks ŵ(i,1) , . . . , ŵ(i,κ(i)) satisfy ( 19) and [START_REF] Keller | Generalized heredity in B-free systems[END_REF]. To finish the proof reverse the roles of X and Y . □

Examples.

In this subsection, we explore what happens if we abandon the assumption of dshadowing. First, we prove Proposition 12 showing that the dH M limit of a sequence of simplices of invariant measures need not be a simplex of all invariant measure of some subshift. In particular, the shift spaces X k consisting of a single periodic orbit that have been constructed in the course of the proof of Proposition 12 do not converge in dH -distance to a shift space, as their convergence to a shift X would imply the limit of the corresponding simplices would be M σ (X), see [START_REF] Konieczny | On d-approachability, entropy density and B-free shifts[END_REF].

Proposition 12. For every alphabet A there exists a sequence of transitive finite shifts (X k ) ∞ k=1 such that for some ergodic fully supported measure µ ∈ M e σ (A ∞ ) we have dH M (M σ (X k ), {µ}) → 0 as k → ∞. In particular, there does not exist a shift space X such that {µ} = M σ (X).

Proof. We order the nonempty words over A into a sequence (W k ) ∞ k=0 . Let (δ k ) ∞ k=1 be a sequence of positive reals such that (23)

∞ k=1 δ k < 1/2.

We inductively define words

(V k ) ∞ k=0 by V 0 = W 0 , V k+1 = V a k+1 k W k+1 1 b k+1 for k ≥ 0
in such a way that b k+1 ≥ 0 is the smallest number such that |W k+1 |1 b k+1 is a multiple of |V k | and a k+1 ≥ 1 is chosen so that the following inequality holds true ( 24)

|W k+1 | + b k+1 |V k+1 | < δ k+1 . This implies that c k = |V k+1 |/|V k | is a positive integer. For k ≥ 1, let x (k) = V ∞ k ∈
A ∞ be a periodic point, X k be its orbit, and µ k be the unique ergodic measure of the shift space X k .

Note that

µ k [W k ] ≥ 1/|V k | > 0 and for every n > k we have (25) µ n [W k ] ≥ 1 |V k | (1 -δ k+1 )(1 -δ k+2 ) • . . . • (1 -δ n )) > 0, because the infinite product (1 -δ k+1 )(1 -δ k+2 ) • . . . • (1 -δ n ) .
. . converges to a non-zero limit by [START_REF] Konieczny | On d-approachability, entropy density and B-free shifts[END_REF]. We constructed the words V k in such a way that |V k+1 | is a multiple of |V k | and that V a k+1 k is a prefix of V k+1 for every k ≥ 0, hence using [START_REF] Kulczycki | On almost specification and average shadowing properties[END_REF] we see that for every k ≥ q we have

d(x (k+1) , x (k) ) = d Ham (V a k+1 k W k+1 1 b k+1 , V c k k ) ≤ δ k+1 .
It follows that x (k) is a Cauchy sequence in d pseudometric. Since d is a complete pseudometric the sequence x (k) converges, so there is x ∈ A ∞ such that

lim k→∞ d(x, x (k) ) = 0.
This point x must be then generic for an ergodic shift invariant measure µ such that µ is dM -limit of the measures µ k . Since dM -convergence implies weak * convergence, the portmanteau theorem and ( 25) imply that

µ[W k ] = lim n→∞ µ n [W k ] ≥ 1 |V k | ∞ n=1 (1 -δ n ) > 0. Since µ[W k ] > 0 for every k ≥ 0, the only subshift X such that µ ∈ M σ (X) is the full shift. On the other hand, M σ (X k ) = {µ k } and dH M (M σ (X k ), {µ}) = d(µ k , µ) → 0 as k → ∞. We see that M σ (X k ) = {µ k } converge to {µ} in dH M but there is no subshift X of A ∞ such that M σ (X) = {µ}. □
Our next goal is to show an example of a sequence (X k ) ∞ k=1 of shift spaces such that the dH Mlimit of simplices M σ (X k ) exists and is a simplex of invariant measures of some shift space X, but the shift spaces X k do not converge to X with respect to dH pseudometric.

To find our examples we will adapt the construction of one-sided Oxtoby's sequences. The original Oxtoby's sequence generates a minimal non-uniquely ergodic Toeplitz subshift, see [START_REF] Downarowicz | Survey on odometers and Toeplitz flows[END_REF][START_REF] Oxtoby | Ergodic sets[END_REF][START_REF] Williams | Toeplitz minimal flows which are not uniquely ergodic[END_REF]. As parameters of this construction we need a sequence of positive integers (p k ) ∞ k=0 .

Definition 13. Let p = (p k ) ∞ k=0 be a sequence of positive integers such that p 0 = 1, and for each k ≥ 0 we have that p k divides p k+1 and p k+1 /p k ≥ 3. Let M 0 = ∅, and for k ≥ 1 define

M k = ([-p k , p k ) + p k+1 N) ∩ N. Note that for every i ∈ N there exists a unique k = k(i) ≥ 1 such that i ∈ M k \ k-1 ℓ=0 M ℓ .
We define the Oxtoby sequence with the scale p to be a binary sequence

x(p) ∈ {0, 1} ∞ such that x(p) i = k(i) mod 2.
By Lemma 3.2 in [START_REF] Williams | Toeplitz minimal flows which are not uniquely ergodic[END_REF], if x(p) ∈ {0, 1} ∞ is an Oxtoby sequence with scale p satisfying

∞ k=0 p k p k+1 < ∞,
then the orbit closure of x(p) in {0, 1} ∞ is a minimal shift space X(p) with exactly two ergodic invariant measures.

Proposition 14. If p = (p k ) k∈N is a sequence of positive integers satisfying (26) ∞ k=1 2p k p k+1 < δ,
for some 0 < δ < 1/2, then the minimal shift X(p) obtained as the orbit closure of the Oxtoby sequence with scale p satisfies

dH (X(p), {0 ∞ , 1 ∞ }) > 1 -δ, and dH M (M σ (X(p)), M σ ({0 ∞ , 1 ∞ })) < δ.
Proof. Fix 0 < δ < 1 and a sequence of positive integers p as above. For simplicity we write x for the Oxtoby sequence x(p) defined taking p as its scale and X for the associated minimal subshift X(p) (see Definition 13). By Lemma 3.2 in [START_REF] Williams | Toeplitz minimal flows which are not uniquely ergodic[END_REF], M e σ (X) = {µ ′ , ν ′ }. Let (M k ) ∞ k=1 be a sequence of sets as in Definition 13. Fix k ≥ 1 and consider the prefix x [0,p k+1 ) . Since p k+1 is a multiple of p ℓ for every ℓ ≤ k, using the structure of the sets M k for k ≥ ℓ we get that

M ℓ ∩ [0, p k+1 ) = p k+1 p ℓ+1 • 2p ℓ .
Hence,

( k ℓ=0 M ℓ ) ∩ [0, p k+1 ) p k+1 ≤ k ℓ=0 2p ℓ p ℓ+1 ≤ δ. But for every i ∈ [0, p k+1 ) \ k ℓ=0 M ℓ we have x i = k + 1 mod 2.
In other words, the Oxtoby sequence is constant for all indices i in [0, p k+1 ) \ k ℓ=0 M ℓ with the constant depending only on the parity of k. Since

([0, p k+1 ) ∩ N \ k ℓ=0 M ℓ ) p k+1 ≥ 1 -δ,
we see that for both α = 0 and α = 1 we have

lim sup k→∞ {0 ≤ i < p k+1 : x i = α} p k+1 ≥ 1 -δ.
Hence, for some invariant measure µ, ν ∈ M σ (X) we have µ([0]) > 1 -δ and ν( [1]) > 1 -δ. By ergodic decomposition, these measures are convex combinations of the ergodic measures µ ′ and ν ′ . This implies that for one ergodic measure, say µ ′ , we have µ ′ ([0]) > 1 -δ, while for the other one,

ν ′ ([1]) > 1 -δ.
A generic point for µ ′ has density of ones at most δ, so it is at most δ far away from 0 ∞ . Hence dM (µ ′ , δ 0 ∞ ) < δ. Similarly, dM (ν ′ , δ 1 ∞ ) < δ. Therefore the dH M -distance between sets of ergodic measures on X and {0 ∞ , 1 ∞ } is bounded by δ. By [23, Lemma 14] (see [START_REF] Climenhaga | Intrinsic ergodicity beyond specification: β-shifts, S-gap shifts, and their factors[END_REF] 

in the introduction) we have dH M (M σ (X(p)), M σ ({0 ∞ , 1 ∞ })) = dH M (M e σ (X(p)), M e σ ({0 ∞ , 1 ∞ })) < δ.
On the other hand, by the above calculations, we see that the Oxtoby sequence

x satisfies d(x, 1 ∞ ) > 1 -δ and d(x, 0 ∞ ) > 1 -δ, which means that dH (X(p), {0 ∞ , 1 ∞ }) > 1 -δ. □ Corollary 15.
There exists a sequence (X k ) ∞ k=1 of minimal shift spaces such that for some shift space

X we have dH M (M σ (X n ), M σ (X)) → 0 while dH (X n , X) → 1 as n → ∞. Proof. One can take X = {0 ∞ , 1 ∞ }
and sequence of minimal shift spaces X n generated by Oxtoby sequences x (n) constructed in the previous proposition for a sequence of δ's going to zero. □ 3.2. On d-shadowing on the measure center of X. Let us recall, that the measure center X + of a shift space X is the smallest subshift of X containing supports of all invariant measures on X, that is, X + is the smallest closed set such that µ(X + ) = 1 for every µ ∈ M σ (X). Fix a word u over A with |u| ≥ k. Given a word w over A we define γ w (u) to be the number of occurrences of w in u, that is,

γ w (u) = 1 ≤ j ≤ |u| -k + 1 | u j u j+1 . . . u j+k-1 = w .
Furthermore, for n ∈ N with n ≥ |w| we set Γ w (n) to be largest number of occurrences of w among all words u of length n, that is

Γ w (n) = max{γ w (u) | u ∈ B n (X)}. It is a straightforward consequence of the definition that Γ w (uv) ≤ Γ w (u) + Γ w (v) + |w| -1 for every u, v, w ∈ A * . Thus (27) Γ w (n + m) ≤ Γ w (n) + Γ w (m) + |w| -1
for all n, m. We define the maximum limiting frequency of w in X as

(28) Λ X (w) = lim n→∞ 1 n Γ w (n).
The existence of the limit follows from the subadditivity of the function Γ ′ w (n) = Γ w (n) + |w| -1 and the fact that the difference between ratios Γ w (n)/n and Γ ′ w (n)/n goes to zero. It is known that

(29) Λ X (w) = max µ∈Mσ(X) µ[w] = max ν∈M e σ (X) ν[w],
see [START_REF] Furstenberg | Recurrence in ergodic theory and combinatorial number theory[END_REF]Chap. 3]. This means that w ∈ B(X) \ B(X + ) if and only if Λ X (w) = 0, that is, for every ε > 0 there exists N ∈ N such that for all n ≥ N for all u ∈ B n (X) we have γ w (u) ≤ nε.

Theorem 16. If X + has the d-shadowing property then so does X.

Proof. Fix ε > 0. For ε/3 we use the d-shadowing property of X + to find N 1 such that for any sequence of words {a (j) } ∞ j=1 in B(X + ) with |a (j) | ≥ N 1 there exists x ∈ X + such that d x, a (1) a (2) . . . < ε/3. Now, fix m ≥ N 1 . For w / ∈ B m (X + ) let N w > 0 be such that for all n ≥ N w for all u ∈ B n (X) we have [START_REF] Kwietniak | Topological entropy and distributional chaos in hereditary shifts with applications to spacing shifts and beta shifts[END_REF] γ w (u) ≤ nε |A| m 3m .

Set N 0 = max w∈Bm(X) N w . We take N ∈ N such that m/N < ε/6 and N ≥ max{N 0 , N 1 }.

Let us take any j ≥ 1 and any w (j) ∈ B(X) such that |w (j) | ≥ N . Each w (j) can be written as a concatenation of finite blocks as follows;

w (j) = u (j) 1 u (j) 2 . . . u (j) k(j)-1 u (j) k(j) ,
where |u [START_REF] Kwietniak | Topological entropy and distributional chaos in hereditary shifts with applications to spacing shifts and beta shifts[END_REF] we see that for

(j) i | = m for 1 ≤ i < k(j) and m ≤ |u (j) k(j) | < 2m. Using
1 ≤ i ≤ k(j)-1, the number of u (j) i 's which are not in B m (X + ) is bounded from above by ε|w (j) | 3m .
For each j ≥ 1, we create w(j) by replacing each u

(j) i / ∈ B(X + ) by some word v ∈ B m (X + ) for 1 ≤ i < k(j) and replacing u (j) k(j) by some word v(j) ∈ B(X + ) with |u k(j) | = |v (j) | if u (j) k(j) /
∈ B(X + ). Therefore, we have [START_REF] Kůrka | Topological and symbolic dynamics[END_REF] d w(1) w(2) . . . , w (1) w (2) . . . < mε 3m + 2ε 6 = 2ε 3 .

Notice that for each j ≥ 1 the word w(j) is a concatenation of words from B(X + ) whose lengths are greater or equal to m, so the same applies to w(1) w(2) . . . . Now, we use the d-shadowing property of X + and we find x ∈ X + ⊆ X such that (

. . . < ε/3.

It follows from ( 31) and (32) that d x, w (1) w (2) . . . < ε, which concludes the proof. □

d-APPROACHABLE EXAMPLES OF PROXIMAL AND MINIMAL SHIFT SPACES

Before presenting the details of our constructions, we first recall the necessary background. An (oriented) A -labeled (multi)graph is a triple G = (V, E, τ ), where V is the (finite) set of vertices, E ⊂ V × V is the edge set, and τ : E → A is the label map. For each e ∈ E we write i(e), t(e) ∈ V , to denote, respectively, the initial vertex and the terminal vertex of e. We say that a sequence (finite or infinite) consisting of ℓ ∈ N 0 ∪ {∞} edges e 1 , e 2 , . . . in E is a path of length ℓ in G if for every i < ℓ we have that t(e i ) = i(e i+1 ). A path e 1 , e 2 , . . . , e ℓ is closed if t(e ℓ ) = i(e 1 ).

Given an oriented A -labeled graph G = (V, E, τ ), we define the shift X G ⊆ A ∞ by reading off labels of all infinite paths in G. In other words, X G is the set of all x ∈ A ∞ such that x i = τ (e i+1 ) for each i ≥ 0 for some path e 1 , e 2 , . . . in G. We say that X is a sofic shift if there exists a labeled graph G = (V, E, τ ) such that X is presented by G, meaning that X = X G . Every shift of finite type is sofic. A sofic shift is transitive if and only if it can be presented by a (strongly) connected graph (each pair of vertices can be connected by a path), see [START_REF] Lind | An introduction to symbolic dynamics and coding[END_REF]Prop. 3.3.11]. A sofic shift is topologically mixing if and only if it can be presented by a (strongly) connected aperiodic graph, i.e. the graph with two closed paths of coprime lengths.

To prove the properies of shift spaces resulting from our constructions we will use the following result, which is a direct corollary of a combination of Theorem 6 and Corollary 17 in [START_REF] Konieczny | On d-approachability, entropy density and B-free shifts[END_REF].

Theorem 17. Let (X n ) ∞
n=1 be a decreasing sequence of mixing sofic shift spaces over A such that

∞ n=1 dH (X n , X n+1 ) < ∞, Then X = ∞ n=1
X n is a d-approachable and chain mixing shift space such that dH M (M e σ (X n ), M e σ (X)) → 0 as n → ∞. In particular, X satisfies σ(X) = X and has the d-shadowing property.

Let us recall that [START_REF] Konieczny | On d-approachability, entropy density and B-free shifts[END_REF]Corollary 17] is stated using the lower density. We do not need such flexibility here, so we stated it in terms of the d-pseudodistance.

In fact, we would like to apply Theorem 17 to a sequence of mixing sofic shifts that is not decreasing. A natural way to apply Theorem 17 is to replace the sequence of sofic shifts (X n ) ∞ n=1 with the decreasing sequence of shift spaces (Y n ) ∞ n=1 , where Y n := X 1 ∩ . . . ∩ X n for n ∈ N. It is easy to see that thus defined shift Y n is also sofic for n ∈ N. Indeed, if for m = 1, 2, . . . , n a labeled graph G m = (V m , E m , τ m ) presents the sofic shift space X m , then Y n is a sofic shift presented by the graph G = (V, E, τ ), where V = 1≤k≤n V k and there is an edge from (v 1 , . . . , v n ) ∈ V to (v ′ 1 , . . . , v ′ n ) ∈ V with label ℓ ∈ A if and only if for every 1 ≤ k ≤ n in the graph G k there is an edge from v k to v ′ k labeled with ℓ. We say that the graph G = (V, E, τ ) is the coupling of graphs G k , 1 ≤ k ≤ n. Unfortunately, Y n need not be mixing even if the shift spaces X 1 , . . . , X n are. The problem is that strong connectedness of the graphs G k for 1 ≤ k ≤ n need not ensure strong connectedness of their coupling G. Hence, the induced sofic shift Y n need not be transitive and its ergodic measures need not be dense. Indeed, Figure 1 shows two graphs whose coupling is a sofic shift which is not transitive and whose ergodic measures are not dense in the set of all invariant measures. The same situation takes place for the sofic shifts represented in Figure 2. However, under mild additional assumptions we can ensure that the sofic shifts Y n are transitive. Let X be a sofic shift over the alphabet A and pick a labeled graph G = (V, E, τ ) presenting X. We call a symbol b ∈ A a safe symbol for X if for every edge e ∈ E that goes from a vertex v ∈ V to a vertex v ′ ∈ V , there is an edge e ′ ∈ E from v to v ′ with label τ (e ′ ) = b. The period of a graph G = (V, E) is the greatest common divisor of the lengths of all cycles. Every sofic shift also has a period, which is the greatest common divisor of periods of its presentations through labeled graphs. A graph is aperiodic if it has period 1. Every sofic shift with period 1 has an aperiodic presentation. We will use a standard fact from graph theory, stating that if G = (V, E) is a strongly connected graph with period m then the set of lengths of paths between any pair of vertices u, v ∈ V is the set-theoretic difference of an infinite arithmetic progression with step m and a finite set.

Note that the two shifts in Figure 1 are aperiodic but lack a common safe symbol, while the two shifts in Figure 2 share a safe symbol 0 but have positive periods 8 and 2. Hence, neither assumption in the following proposition can be removed.

Proposition 18. If G k = (V k , E k , τ k ) for 1 ≤ k ≤ n
are strongly connected labeled graphs with a common safe symbol and pairwise coprime periods, then their coupling G is strongly connected.

Proof. Let (v 1 , v 2 , . . . , v k ) and (v ′ 1 , v ′ 2 , . . . , v ′ n ) be any two vertices in G.
For any 1 ≤ k ≤ n, there exists a walk from v k to v ′ k in the graph G k . Let ℓ k denote the length of one such walk and let m k denote the period of G. For all sufficiently large j ∈ N 0 there exists a walk of length jm k + ℓ k from v k to v ′ k . Since the graphs under consideration have a common safe symbol b, we may additionally assume that the edges in aforementioned paths are all labelled with b. Since the integers m k are coprime, there exists infinitely many integers ℓ such that ℓ ≡ ℓ k mod m k for each 1 ≤ k ≤ n. Consequently, we can find ℓ 0 such that for each 1 ≤ k ≤ n there exists in G k a walk from v k to v ′ k of length ℓ 0 , consisting only of edges labeled with b. This walk induces a walk length ℓ 0 from

(v 1 , v 2 , . . . , v k ) to (v ′ 1 , v ′ 2 , . . . , v ′ n ) in G. □ Corollary 19. Let n ∈ N. If X k for 1 ≤ k ≤ n
are transitive sofic shifts with a common safe symbol and pairwise coprime periods, then Y = X 1 ∩ . . . ∩ X n is a non-empty transitive sofic shift with a safe symbol. Furthermore, if for each 1 ≤ k ≤ n the shift space X k is topologically mixing, then Y is also topologically mixing.

4.1.

A d-approachable proximal shift space. We are going to construct a d-approachable and topologically mixing proximal shift. Furthermore, our example is hereditary and has positive topological entropy, hence its ergodic measures are entropy-dense and its simplex of invariant measures is the Poulsen simplex. Assume that A ⊂ N 0 . A shift space X ⊆ A ∞ is hereditary if for every x ∈ X and y ∈ A ∞ with y i ≤ x i for all i ≥ 0 we have y ∈ X. The hereditary closure X of a shift space X is the smallest hereditary shift containing X. That is, X consists of all y ∈ A ∞ such that there exists x = (x i ) i≥0 ∈ X with y i ≤ x i for all i ≥ 0. For more on hereditary shifts, see [START_REF] Kwietniak | Topological entropy and distributional chaos in hereditary shifts with applications to spacing shifts and beta shifts[END_REF]. For some special properties of the simplex of invariant measures of hereditary shifts see Remark 22 below.

Example 20. For n ∈ N we consider a sofic shifts Z n presented by a labeled graph G n = (V n , E n , τ n ) where V n = {v 0 , v 1 , . . . , v 10 n -1 } and edges and their labels given by:

• for every 0 ≤ k < 10 n , there is an edge from v k to v k+1 with label 0, where v 10 n = v 0 ;

• for every 1 ≤ k ≤ 10 n -2 n , there is an edge from k to k + 1 with label 1,

• there is an edge from 10 n -2 n to 10 n -2 n + 2 with label 0. 

Let Z = ∞ n=1 Z n .
v 0 v 1 v 2 v 3 v 4 v 5 v 6 v 7 1 0 1 0 1 0 1 0 0 1 0 1 0 0 u 0 u 1 0 1 1 FIGURE 2.
Two graphs whose periods are not coprime (above) and their coupling (below). ergodic measures on Z are entropy-dense in M σ (Z), it suffices to check that
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∞ n=1 dH (Y n , Y n+1 ) < ∞. Fix n ∈ N. To bound dH (Y n , Y n+1 ), consider x ∈ Y n . Define y ∈ {0, 1} ∞ by y j = x j if j mod 10 n+1 ∈ [0, 10 n+1 -2 n+1 ), 0 if j mod 10 n+1 ∈ [10 n+1 -2 n+1 , 10 n+1 ).
It is clear that y ∈ Z n+1 . Since Y n is hereditary and x ∈ Y n , we see that y belongs to Y n as well. Thus, y ∈ Y n ∩ Z n+1 = Y n+1 . Furthermore, d(x, y) ≤ 1/5 n+1 , and hence dH (Y n , Y n+1 ) ≤ 1/5 n+1 . This completes the proof of entropy density of ergodic measure.

Finally, we prove topological mixing for Z. Bearing in mind that Z and Z n (n ∈ N) are hereditary, in order to show that Z is topologically mixing it is enough to show that for each u, v ∈ B(Z n ) there exists M ∈ N such that for all m ≥ M and all n ∈ N we have u0

m v ∈ B(Z n ) (hence u0 m v ∈ B(Z)).
Fix u, v, denote i = |u| and j = |v|. Let N ∈ N be such that 10 n > i + j + 2(2 n -2), for all n ≥ N . Fix n ≥ N . By the pigeonhole principle, for each m ∈ N there exists t ∈ N such that [t, t + i) mod 10 n ⊂ [0, 10 n -2 n ) and [t + i + m, t + i + m + j) mod 10 n ⊂ [0, 10 n -2 n ). By the definition of Z n , starting a path in the corresponding graph from v t and ending in v t+i+m+j , we can read u0 m v along the path, so the word belongs to B i+m+j (Z n ). We have just proved that for all n ≥ N and all m ∈ N, u0 m v ∈ B(Z n ). It remains to discuss the case when n ≤ N .

Since for each n ∈ N the system Z n is mixing, there exists

M n ∈ N such that u0 m v ∈ B(Z n ) for all m ≥ M n . Put M to be maximum of M n , n ≤ N . Then for m ≥ M , u0 m v ∈ B(Z n ) for all n ≤ N .
But we have already proved the same conclusion for n ≥ N too. This concludes the proof of topological mixing of Z. □ Remark 22. Since Z is hereditary and proximal, some of the results from [START_REF] Konieczny | On d-approachability, entropy density and B-free shifts[END_REF][START_REF] Kwietniak | Topological entropy and distributional chaos in hereditary shifts with applications to spacing shifts and beta shifts[END_REF] apply: Z is distributionally chaotic of type 2 [30, Thm. 23], but not of type [START_REF] Kwietniak | Topological entropy and distributional chaos in hereditary shifts with applications to spacing shifts and beta shifts[END_REF]Thm. 23] (cf. also [START_REF] Oprocha | Families, filters and chaos[END_REF]. Moreover, for each t > 0, the set of all ergodic invariant measures on Z with entropy not exceeding t is arcwise connected with respect to the d-metric on the set of all invariant measures [23, Thm. 6].

4.2.

A d-approachable minimal shift space. We are going to construct a minimal shift space which is d-approximable by a descending sequence of mixing sofic shifts. The sofic shift X n in the sequence will be generated by a finite code B n ⊂ {0, 1} + . The parameters of the construction are an initial finite non-empty set of words B 1 and a sequence of positive integers (t(n)) ∞ n=1 . We assume that t(n) ≥ 2 for every n. We will impose some more conditions on t(n)'s and B 1 later.

Assume we have defined the family of words B n for some n ≥ 1. Write k(n) for the cardinality of B n . Enumerate the elements of B n as β

(n) 1 , . . . , β (n) k(n) , and let τ (n) = β (n) 1 . . . β (n) k(n) denote
their concatenation. Let s(n) (respectively, l(n)) be the length of the shortest (respectively, the longest) word in B n . Words belonging to B n+1 are constructed as follows: first we concatenate t(n) arbitrarily chosen words from B n , then we add the suffix τ (n):

B n+1 = {b 1 b 2 . . . b t(n) τ (n) : b i ∈ B n for 1 ≤ i ≤ k(n)t(n)}.
By the construction, l(n) < τ (n) < s(n + 1) for every n ≥ 1 and so s(n) ↗ ∞ as n → ∞. Moreover, every word from B n is a subword of every word from B n+1 . Recursively, [START_REF] Oprocha | Families, filters and chaos[END_REF] u is a subword of v, for every u ∈ B n , v ∈ B m , n ≤ m.

For n ≥ 1 let X n be the coded shift generated by the code B n . That is, X n consists of all concatenations of words from B n together with their shifts. Since B n is finite, the shift X n is transitive and sofic. It follows from [START_REF] Oprocha | Families, filters and chaos[END_REF] 

that X n+1 ⊆ X n . Hence X = ∞ n=1 X n is a non-empty shift space. Proposition 23. The shift X constructed above is minimal. Proof. If |B 1 | = 1, then X is an orbit of a periodic point. Let us assume that |B 1 | > 1, so |B n | > 1 for every n. We need to prove that if u ∈ B(X) = ∞ n=1 B(X n ) and x ∈ X, then u is appears in x.
Fix x ∈ X and u ∈ B(X). Take n large enough to imply |u| < s(n). Since B(X) ⊆ B(X n ), we see that u must appear in some x ′ ∈ X n . As all words in B n are longer than u and x ′ is a shift (possibly trivial) of an infinite concatenation of words from B n , we conclude that u is a subword of some ū ∈ B(X n ) which is the concatenation of two words v, w in B n (one of them might be empty). By the definition of B n 's, every concatenation vw for words v and w from B n appears in some word from B n+1 , therefore vw and in particular u is a subword of a word w ′ ∈ B n+1 . Hence, condition [START_REF] Oprocha | Families, filters and chaos[END_REF] ensures that u is a subword of all words from B n+2 . But x ∈ X n+2 , so it is a shifted infinite concatenation of words from B n+2 . In particular, some word from B n+2 appears in x, and so does u.

□

From now on, we set B 1 = {0, 11}. For this choice of B 1 a simple inductive argument shows that for each n ≥ 1, the set of lengths of all words in B n is an interval: [START_REF] Orey | Large deviations in ergodic theory[END_REF] for every m with s(n) ≤ m ≤ l(n), there exists u ∈ B n with |u| = m.

Proposition 24. For every n ≥ 1 the coded system X n is a mixing sofic shift.

Proof. Any coded system generated by a finite sequence of words is sofic. In the corresponding graphs, every word in B n is represented by a cycle, and all these cycles have a common vertex.

In particular, the graph presenting X n is strongly irreducible and X n is transitive. In addition, it follows from (34) that there are two words in B n with co-prime lengths, so the graph is aperiodic, thus X n is mixing and has the specification property. □

In the rest of the section, it will be convenient to control the ratio s(n) ℓ(n) . Because of the identities s(n + 1) = t(n)s(n) + τ (n) , l(n + 1) = t(n)l(n) + τ (n) , we get that the ratio is increasing and

s(n) ℓ(n) ≥ 1 2 , n ≥ 1.
On the other, we can ensure that Since |τ (n)|, ℓ(n) and s(n) are determined by t(i), 1 ≤ i < n, we have enough freedom to costruct the sequence t(n) satisfying condition [START_REF] Oxtoby | Ergodic sets[END_REF] in an inductive way.

Case 1: Suppose first that 2s(n) ≤ m ≤ (t(n) -2)l(n). Note that for each j ≥ 2 it follows from (35) that

(j + 1)s(n) ≤ 3 2 j • 2 3 l(n) = jl(n).
As a consequence, the intervals js(n), jl(n) for 2 ≤ j ≤ t(n) -2 fully cover the interval 2s(n), (t(n) -2)l(n) . Hence, we can find j with 2 ≤ j ≤ t(n) -2 such that js(n) ≤ m ≤ jl(n). It follows from [START_REF] Orey | Large deviations in ergodic theory[END_REF] Hence, by the inductive assumption, there exists a word w ′ with w ′ = m such that u ′ w ′ v ′ ∈ B(X).

It remains to notice that uwv is a subword of u ′ w ′ v ′ , where w = τ (n)w has length |w| = τ (n) + w ′ = m. □ Theorem 27. There exists a sequence of positive integers (t(n)) ∞ n=1 such that X is minimal, mixing and has positive entropy and d-shadowing property. In particular, the shift space X has entropy-dense and uncountable set of ergodic measures.

Proof. Since X 1 is a mixing sofic shift it has topological entropy h > 0. By the uniform continuity of the entropy function with respect to dM -distance, there is ε > 0 such that for every µ, µ ′ ∈ M σ ({0, 1} ∞ ) with dM (µ, µ ′ ) < ε we have |h(µ) -h(µ ′ )| < h/3. Fix this ε.

All the conditions (36), [START_REF] Pavlov | On intrinsic ergodicity and weakenings of the specification property[END_REF] with respect to ε specified above, ( 39) and ( 40) can be satisfied simultaneously by one sequence t(n), n ≥ 1. Indeed, it is enough to construct the sequence inductively and take t(n) large enough with respect to right-hand sides of the conditions which all depend only on the previously taken t(i), i < n. Such a sequence then satisfies all assumptions of Propositions 25 and 26. Hence, X is mixing and d-approachable from above by mixing sofic shifts. In particular, the shift has entropy-dense set of ergodic measure and is d-shadowing. Now, it suffices to find two invariant measures on X with different entropies. By the variational principle, there is an ergodic invariant measure ν 1 on X 1 with entropy h. Since X 1 contains a periodic point, there is also an ergodic invariant measure ν 2 on X 1 of entropy zero. The inequality dH M (M e σ (X n ), M e σ (X)) < ε/2 ensures that there is an invariant measure ν ′ 1 on X that is ε-close to ν 1 in dM -distance and so h/3-close to ν 1 in entropy. By the same argument, there is an invariant measure ν ′ 2 on X that is h/3-close to ν 2 in entropy. Since the difference between h(ν 1 ) and h(ν 2 ) equals h, the measures ν ′ 1 and ν ′ 2 have different entropy and in particular are distinct. □
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 4 dH M (M σ (X), M σ (Y )) = dH M (M e σ (X), M e σ (Y )) ≤ dH (X, Y ), hence(1)=⇒ (2) ⇐⇒ (3).
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 1 Hausdorff pseudometrics. Let Z be a set. A pseudometric on Z is a real-valued, nonnegative, symmetric function ρ on Z × Z vanishing on the diagonal {(x, y) ∈ Z × Z : x = y} and satisfying the triangle inequality. Let ρ be a bounded pseudometric on Z. For z ∈ Z and nonempty A, B ⊆ Z, we define ρ(z, B) = inf b∈B ρ(z, b), and ρ H (A, B) = max sup a∈A ρ(a, B), sup b∈B ρ(b, A) .
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 1 FIGURE 1. Two graphs (left) whose coupling (right) is disconnected. The first graph has no safe symbol.
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 3 FIGURE 3. The graph from Example 20 with n = 1.
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 1 satisfying the equivalent condition (the equivalence follows from the inductive definition of s(l) and l(n) mentioned above)(36) t(n) > |τ (n)| 2ℓ(n) -3s(n) , n ≥ 1.

2 :

 2 that there exists a word w with |w| = m of the form w = b 1 b 2 . . . b j with b 1 , b 2 , . . . , b j ∈ B n . Thus, uwv is a prefix of B n+1 (specifically, of any word of the form ub 1b 2 . . . b j vb ′ 1 b 2 . . . b i τ (n), where i = t(n) -j -2 and b ′ 1 , b ′ 2 , . . . , b ′ i ∈ B n ). It follows that uwv ∈ B(X). Case Suppose second that (t(n) -2)l(n) < m ≤ (2t(n) -2)l(n) + τ (n) .Then, by[START_REF] Daniel | The limits in d of multi-step Markov chains[END_REF] we have m ≥ 2s(n) + τ (n) . Arguing similarly as in the first case, we can find a word w with |w| = m of the formw = b 1 b 2 . . . b j τ (n)b ′ 1 b ′ 2 . . . b ′ k , where 1 ≤ j, k ≤ t(n) -1 and b 1 , b 2 , . . . b j , b ′ 1 , b ′ 2 , . . . , b ′ k ∈ B n .Thus, uwv is a subword of the concatenation c 1 c 2 of two words c 1 , c 2 ∈ B n+1 . Hence, uwv is a subword of a word in B n+2 and thus uwv ∈ B(X).Case 3:Suppose third that m > (t(n) -2)l(n) + τ (n). Put u ′ = b 1 b 2 . . . b t(n)-1 uτ (n) ∈ B n+1 , v ′ = b ′ 2 b ′ 3 . . . b ′ t(n) τ (n) ∈ B n+1 , where b 1 , b 2 , . . . , b t(n)-1 , b ′ 2 , b ′ 3 , b ′ t(n) ∈ B n are arbitrary.Put also n ′ = n + 1 and m ′ = mτ (n) . By[START_REF] Pfister | Weak Gibbs measures and large deviations[END_REF], we have m ′ ≥ 2 t(n)s(n) + τ (n) = 2s(n ′ ).

  Then for each n ≥ 1 we have Z n+1 ̸ ⊂ Z n and Z n ̸ ⊂ Z n+1 . The shift space Z defined in Example 20 is hereditary, topologically mixing, has positive topological entropy and the ergodic measures M e σ (Z) are entropy-dense in M σ (Z).Proof. Since all Z n 's are hereditary, 0 is their common safe symbol and the shift Z is hereditary as well. Furthermore, it contains a sequence where 1's appear with positive density, hence Z has positive entropy. For every k ∈ N, in the graph G k presenting Z k in Example 20 there are two closed walks of coprime lengths 10 k and 10

	Proposition 21.

k -1, whence G k is aperiodic. By Corollary 19, for each n ∈ N the intersection Y n := Z 1 ∩ . . . ∩ Z n

is a topologically mixing sofic shift. In particular, the ergodic measures of Y n are entropy dense (

[START_REF] Eizenberg | Large deviations for Z d -actions[END_REF]

). By Corollary 17, in order to conclude that the

Ornstein's metric dM is usually denoted by d, but in[START_REF] Konieczny | On d-approachability, entropy density and B-free shifts[END_REF] as well as in this paper the distinction between d and dM is crucial. We refer to dM as the 'd-bar distance for measures' and we call d on A ∞ 'pointwise d-bar' or simply 'd-bar'.
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Proposition 25. Let ε > 0 and t(n) be such a sequence that satisfies condition [START_REF] Oxtoby | Ergodic sets[END_REF] and [START_REF] Pavlov | On intrinsic ergodicity and weakenings of the specification property[END_REF] t

Proof. Put ε n = ε2 -n . We will show that d(X n , X n+1 ) < ε n for all n ≥ 1, which directly implies [START_REF] Pfister | Large deviations estimates for dynamical systems without the specification property. Applications to the β-shifts[END_REF]. Fix n ≥ 1 and y ∈ X n . Our goal is to find z ∈ X n+1 such that d(y, z) < ε n . Since d is shift invariant, without loss of generality we assume that y is a concatenation of blocks from B n , that is, we have y = b 1 b 2 b 3 . . . , where b j ∈ B n for j = 1, 2, . . . .

We will construct z inductively. First, we note that the word

and let a be the suffix of b j+1 such that |b 1 b 2 . . . b j b j+1 | = |w| + |a|. We observe that there exist [START_REF] Oxtoby | Ergodic sets[END_REF], which is equivalent to [START_REF] Ornstein | Ergodic theory, randomness, and dynamical systems[END_REF]), these two cases cover all possibilities.

. . . Then y and wy ′ differ only on the positions where τ

Let us point out that y ′ is again a concatenation of blocks from B n , even in the case when b ′ 3 is the empty word. Hence, we can apply the same reasoning to y ′ , y ′′ , y ′′′ and so on, to obtain the word z = ww ′ w ′′ . . . . Here, we adopt the convention that y ′′ , w ′ are constructed from y ′ in the same way as y ′ , w were constructed from y, and accordingly for further steps in the construction.

Since w, w ′ , w ′′ ∈ B n+1 , we have z ∈ X n+1 . Note that for each i ≥ 0 we have s

In the last inequality we use the condition (37) that is stronger. Hence, z has all of the required properties. □ Proposition 26. Let the sequence t(n), n ≥ 1, satisfy [START_REF] Ornstein | Ergodic theory, randomness, and dynamical systems[END_REF] and

Then X is mixing.

Proof. We need to show that for all u, v ∈ B(X) there exists M such that for each m ≥ M there exists a word w with |w| = m such that uwv ∈ B(X). Note that we can freely replace u, v with any other words u ′ , v ′ ∈ B(X) which contain u, v as subwords. Hence (repeating an argument from the proof of Prop. 23) we may assume that u, v ∈ B n for some n ≥ 1. Proceeding by induction on m, we will prove the following statement:

Claim: For all m ≥ 0, for all n ≥ 1 such that 2s(n) ≤ m, for all u, v ∈ B(X), there exists w with |w| = m and uwv ∈ B(X).

We may assume that the claim above has been proved for all m ′ < m. We consider three cases depending on the magnitude of m. by the National Science Centre and the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement no. 945339. D. Kwietniak was supported by the National Science Center (NCN) Opus grant no. 2018/29/B/ST1/01340. When this paper was being finished, DK was also partially supported by the Flagship Project "Central European Mathematical Research Lab" under the Strategic Programme Excellence Initiative at Jagiellonian University. J. Konieczny is working within the framework of the LABEX MILYON (ANR-10-LABX-0070) of Université de Lyon, within the program "Investissements d'Avenir" (ANR-11-IDEX-0007) operated by the French National Research Agency (ANR). He also acknowledges support from the Foundation for Polish Science (FNP). The authors would like to express their gratitude to Tim Austin for sharing a very early version of his paper [1]