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Deep learning depth-intensity reconstruction from
compressive TCSPC SPAD-based imaging

Valentin Poisson, William Guicquero, and Gilles Sicard

Abstract—Direct time-of-flight (D-ToF) image sensors based on
Time-Correlated Single Photon Counting (TCSPC) systems face
two main challenges, i.e., the limitation of spatial resolution by the
amount of data to store and the accuracy of the reconstruction
under high background noise. The key contribution of this paper
to overcome these issues consists in the introduction of a custom
pixel-wise Compressive Sensing (CS) hardware implementation
in combination with a deep learning reconstruction algorithm.
Besides the reduction of the pixel pitch, the CS approach limits
the probability of counters overflows, enabling larger photon
counts operating mode, easing the depth/intensity reconstruction
process in practice. Compared to prior work on deep learning
models for TCSPC data, our proposed approach achieves a
similar depth-intensity reconstruction accuracy in the typical low-
photon flux mode of operation. However, when combined with
the proposed CS hardware implementation compatible with high
photon counting, our solution outperforms the most advanced
SPAD sensing strategies as well as the best-in-class remote
processing, both in terms of intensity-depth reconstruction per-
formance and pixel pitch reduction.

Index Terms—Time-Correlated Single Photon Counting, Time-
of-Flight imaging, SPAD image sensors, LiDAR, Compressive
sensing, Cellular Automaton, Deep Generative Model.

I. INTRODUCTION

Direct time-of-flight (D-ToF) sensors are now key devices
for a wide range of imaging applications [1]–[3]. However,
D-ToF measurements are subject to high level background
noise illumination which poses a great challenge for state-
of-the-art computational reconstruction algorithms for 3D
imaging. To avoid noisy image reconstructions, traditional
imaging algorithmic methods based on pixel-wise Maximum
Likelihood (ML) estimation are proposed [4]. In addition,
several works have also added spatial constraints, such as
introducing a Total Variation (TV) regularization [5] or
block-matching and 3-D filtering [6]. [7] even proposed an
additional pixel-wise adaptive gating ML estimation method
to discard photon detection times out of the gating interval.
Furthermore, deep learning approaches [8], [9] that now
outperform by far prior works [5]–[7], recently succeed to
achieve a very high reconstruction fidelity under extremely
low photon counts and a very low Signal-to-Background
noise ratio (SBR).

D-ToF measurements noise is not the only major concern
in the context of depth imaging. Indeed, although the depth
sensors based on single-photon avalanche diodes (SPAD) can
benefit from the most advanced 3D-stacking IC technologies
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[10], some hardware-related limitations still remain. Those are
mainly due to the Time-Correlated Single Photon Counting
(TCSPC) data format itself. This data format consists in
gathering ToF measurements (i.e., round trip time of a light
pulse whose laser source is synchronized with the sensor
[11]) into histograms to further enables post-processing
tasks. However, it intrinsically limits pixel pitch shrinkage,
timing accuracy (i.e., depth precision) and spatial/temporal
resolution (i.e., number of pixels and frame rate). In order to
reduce the amount of TCSPC data, [12] proposed a method
called Folded inter-frame Histogram (FiFH) which consists in
building two smaller histograms, one representing the most
significant bits (i.e., a coarse temporal resolution) while the
other is for the less significant bits. In addition, an extension
to the FiFH method was proposed by [13] adding a control
electronics to filter the second histogram using the estimated
result from the first which increases the SNR and thus the
accuracy of depth estimation. Similarly, [14] implemented an
in-pixel zoom histogramming TDC architecture inspired by
dichotomy partitioning where the bin equivalent duration is
thus sequentially shrunk by half, requiring only two counters.
Otherwise, the use of a signed Up/Down counter (UDC) by
[15] further reduced the memory requirements. Unfortunately,
although alleviating some hardware constraints, these methods
imply a per-pixel complex SPAD scheduling while discarding
most of the information except the histogram peak position.

On the other hand, in addition to being highly relevant
in terms of depth reconstructions accuracy, deep learning
data processing methods will most likely play an important
role in overcoming SPAD hardware limitations (i.e., overall
data throughput, data storage, photon detection efficiency).
For example, [16]–[19] developed Deep Learning algorithms
–namely image-guided depth up-sampling– which consists in
reconstructing a high resolution depth map from a full-scale
RGB frame combined with its associated low resolution
depth map, thereby indirectly relaxing hardware constraints.
Besides, the Compressive Sensing (CS) strategy [20] has been
investigated in the context of SPAD imaging in combination
with DL data processing methods, by the use of a spatial
light modulator (e.g., a Digital Micro-mirror Device, DMD)
in front of the sensor [21]–[24]. Unfortunately, optical-CS
seems to be impractical for consumer electronics as long as
they rely on the use of bulky optical systems which makes
the system sensitive to process and temperature variations,
while requiring complex and unstable calibrations.

Instead, this paper depicts a custom deep learning ap-
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Fig. 1: Deep Neural Network topology for depth-intensity reconstruction from compressed histograms.

proach using a compression pattern aiming at converting high-
dimensional raw data to low-dimensional data, replacing the
canonical in-pixel TCSPC sensing scheme. The first section in-
troduces a photon-efficient depth reconstruction that integrates
a learned-compression pattern layer. This was first designed
without taking into consideration hardware constraints, i.e.,
only with the purpose of demonstrating the possible dimen-
sionality reduction of the TCSPC histograms without much
intensity-depth information loss. Then, the second section
presents a pixel-wise histogram CS scheme from its mathe-
matical formulation to its possible implementation using an in-
pixel Cellular Automaton (CA), supplanting the combination
of the counter-based TDC (i.e., TCSPC) and the learned
pattern linear projection. Finally, the two last sections provide
hardware synthesis and experimental results to highlight the
advantages and competitiveness of the proposed CS method in
terms of pixel area optimization and reconstruction accuracy.

II. DEEP NEURAL NETWORK COMBINED WITH A
PIXEL-WISE TCSPC LEARNED PROJECTION

A. Network architecture

To improve the performance of TCSPC LiDAR systems, es-
pecially under noisy measurements, this paper proposes a Deep
Neural Network model that aims at jointly inferring depth, D,
and intensity maps, T , from raw TCSPC SPAD data h. This
topology is divided into modules; the compression stage, the
depth and intensity decoders, both providing multiple depth
and intensity initial reconstructions, and the multiscale filtering
(MF) that adaptively tune the weights of each reconstruc-
tion sub-channel. Last layers of this topology perform pixel-

wise reconstructions selections combined with residual skip
connections among the depth and intensity decoders outputs
filtered by the MF module (i.e., respectively lower part and
upper part of Fig. 1) which stack several reconstructions from
various filters, gathering both local, region-based information
and pixel-wise temporal information. Luminance/Intensity T
reconstructions additionally rely on a physical model with
assumptions on frame-based normalization.

Regarding the linear compression module (red block in Fig.
1), this layer converts high-dimensional TCSPC data to low-
dimensional data in the shape of a pixel-wise vector aiming
at preserving semantic information. In other words, this layer
corresponds to a Conv2D1x1 in the sense of CNN, i.e., a pixel-
wise Fully Connected (FC) layer. Note that, this will be the
layer considered as the CS layer in the next sections.

On the depth decoder side, to remove histogram scaling
variability from one pixel to another, this module first embeds
a pixel-wise L∞ normalization (dark gray block in Fig. 1).
Then, “Gaussian filters” in the temporal domain with various
σi radius, ranging from 0 to 14 (N.B. pulse width is about 16
bins) is performed (yellow blocks in Fig. 1). A second filter,
which is a per-pixel cascaded temporal filter, is then applied
(orange blocks in Fig. 1). In order to take advantage of local
temporal and spatial information simultaneously, 3D filters
(Conv3D) are also cascaded afterwards (deep orange blocks
in Fig. 1). The LeakyReLU activation is used rather than the
canonical ReLU activation function in order to alleviate the
“dying ReLU” problem. Every filter then provides a depth
estimation output thanks to the combination of a Softmax
(gridded block in Fig. 1) and a ramp layer (light gray block in



3

Modality SBR Shin [5] Rapp [7] Peng [8] Yao [9] ours
m=256 m=64 m=32 m=16 m=12 m=8

10 : 2 0.0570 0.0479 0.0198 0.0182 0.0159 0.0207 0.0204 0.0176 0.0186 0.0202
Depth 2 : 10 0.1906 0.0612 0.0494 0.0528 0.0596 0.0836 0.1016 0.0770 0.0893 0.1381

5 : 50 0.2502 0.0592 0.0264 0.0241 0.0311 0.0349 0.0454 0.0347 0.0371 0.0473
2 : 100 0.3188 0.0939 0.0308 0.0293 0.0357 0.0373 0.0482 0.0386 0.0394 0.0480

Avg. 0.1849 0.0703 0.0335 0.0327 0.0382 0.0483 0.0586 0.0467 0.0509 0.0686

10 : 2 12.68 16.91 N/A N/A 19.96 21.54 20.52 20.28 20.38 20.70
Intensity 2 : 10 8.136 15.10 N/A N/A 24.63 27.31 28.52 10.59 14.10 17.87

5 : 50 8.708 15.95 N/A N/A 25.41 28.00 27.76 13.45 18.98 21.52
2 : 100 8.301 11.61 N/A N/A 21.27 22.64 20.82 20.74 20.08 21.05

Avg. 9.322 14.90 N/A N/A 22.47 24.61 24.29 16.24 18.20 20.05

TABLE I: Quantitative comparisons of several Intensity-Depth reconstruction methods under various SBR. Note that depth
results are reported as an average RMSE (m) and intensity results are reported as an average PSNR (in dB).

Fig. 1) that act as a trainable peak detector (as a softargmax
[25] would do). Finally, three layers of Conv2D3x3 are used
for an additional refinement stage.

For the intensity decoder module, since the original
temporal dimension is considered irrelevant for intensity
reconstructions with respect to the induced complexity on
the topology, an average pooling (third-axis AP) layer (green
block in Fig. 1) first reduces the scale of the input tensor in
the temporal axis. Then in the same way as the depth decoder
module, several convolutional layers are cascaded, each one
providing intensity reconstructions that are concatenated in
order to provide a set of intensity reconstructions. Note that
for a proper behaviour of the convolutions, a custom 3D/2D
padding has been implemented with a reflect padding instead
of a zero padding for all modules of our model.

MF modules both take as input the intensity and depth maps
provided by the decoders. It leverages local collaborations
between pixels reconstructions through downscaling and
then upscaling as a U-net structure [26] with an expanding
coefficient value γ that relates to the number of channels
increase at each scale. These modules for depth and intensity
reconstructions selection incorporate, Conv2D3x3 with a
stride of 2 × 2 for downscaling steps (orange blocks in Fig.
1), and Conv2D3x3 with an 2 × 2 × 1 upsampling (US)
(green blocks in Fig. 1). The MF attention module for depth
selection ends with two separate Conv2D1x1 layers, one with
a Softmax activation and the other with a Tanh activation
respectively represented by a grid pattern and a orange-black
gradient (see Fig. 1). The output of the softmax enables to
further control the pixel-wise channel selection among the
variety of depth reconstructions RD, through a pixel-wise
multiplication layer followed by a summation performed
by a pixel-wise FC, providing the selected reconstruction
D′. Besides, the output of the tanh activation function
adds the depth reconstruction residual error to the selected
reconstruction D′. Instead, the MF attention module for
intensity estimation is terminated by three 1×1 convolutional
layers with tanh activation functions, in order to estimate
the number of photons per pixel from the laser source T ′

1

and from the background illumination source T ′
2. In the

same fashion as for the depth module, the second tanh
activation function performs the signal and noise photon

number estimation residual error to be added to the previous
estimation T ′

1 and T ′
2. An additional physically-driven

layer is used for the final intensity estimation (illustrated
by the black block in Fig. 1) taking as input the depth
estimation D, the photons quantity estimated from laser
pulse T ′

1 and from background illumination T ′
2 and the third

convolutionnal layer outputs of the MF attention module.
This black block embeds the knowledge of physical laws (cf.
Eq. 1 where J is a all-ones matrix) that govern the given
imaging measurement system dataset in the learning process
(e.g., distance inverse-square law and frame-based intensity
normalization). Finally, the last convolutional layer with
tanh activation functions (denoted A) performs a pixel-wise
selection of the intensity estimator from the weighted sum
of the background photon counts estimator or the laser pulse
photon counts estimator. This pixel-wise selection enables
an accurate intensity reconstruction even when there is few
photon coming from the laser pulse due to the distance
measurement inverse square law and conversely when there
is few photon coming from background illumination.

T = A⊙ T ′
2

T ′
2

+ (J −A)⊙ T ′
1

T ′
1

⊙ D2

D2
. (1)

B. Experimental results using learned-compression pattern

To highlight the interest of the proposed solution, a
quantitative benchmark has been conducted on ”pseudo-
realistic” SPAD raw data generated from the simulation
model presented in [8] with SPAD control asynchronicity.
This simulation ToFs model encapsulates several physical
parameters such as the laser source power, distance
inverse-square law, scene point brightness, SPAD control
asynchronicity, dark count rate [27] and background noise
measurements [28]. The simulation model generates the
SPAD TCSPC measurements train dataset from the NYU
V2 dataset [29], and the test dataset from the Middlebury
dataset [30]. To ensure a proper matching between the train
dataset and the test dataset, and to avoid unnecessary training
for long range depths, all images whose dynamic range is
greater than the one of the test dataset have been removed.
In addtion, a data augmentation is performed, consisting in
generating 12 samples of each NYU image with a dynamic
range below 3m under 12 SBRs (i.e., an average of 1, 2, 3,
5, 10 signal photon counts and 2, 10, 50, 100 noise photon
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Ground Truth

SB
R

=
1:

10
0

RMSE=0.135m RMSE=0.318m RMSE=0.200m RMSE=0.138m

SB
R

=
5:

50

RMSE=0.3052m RMSE=0.1063m RMSE=0.0512m RMSE=0.0803m RMSE=0.0664m RMSE=0.0583m

SB
R

=
10

:2

RMSE=0.0966m RMSE=0.0848m RMSE=0.0361m RMSE=0.0322m RMSE=0.0257m RMSE=0.0236m

SB
R

=
5:

10

RMSE=0.1380m RMSE=0.0782m RMSE=0.0395m RMSE=0.0433m RMSE=0.0360m RMSE=0.0358m

Ground Truth

SB
R

=
1:

10
0

PSNR=27.25 dB PSNR=27.39 dB PSNR=27.37 dB

SB
R

=
5:

50

PSNR=−7.287 dB PSNR=33.208 dB PSNR=25.88 dB PSNR=27.39 dB PSNR=54.877 dB

SB
R

=
10

:2

PSNR=33.951 dB PSNR=36.800 dB PSNR=25.88 dB PSNR=27.39 dB PSNR=40.143 dB

SB
R

=
5:

10

PSNR=17.612 dB
(a) Shin [5]

PSNR=35.797 dB
(b) Rapp [7]

blabla
(c) Peng [8]

PSNR=21.15 dB
(d) DNN (m=8)

PSNR=23.91 dB
(e) DNN (m=16)

PSNR=43.034 dB
(f) DNN (m=256)

Fig. 2: Intensity-Depth reconstructions for various SBR, reported with RMSE (in meters) and PSNR (in dB) metrics. Note
that, [8] does not provide any estimation of the intensity and under the 1:100 SBR [5] and [7] completely fail for both tasks.
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counts). The simulation model finally provides a 3D output
data volume with the 2D pixel array resolution and a third
axis of 256 values (i.e., a time bin resolution of 80ps and a
dynamic range of 20ns (6m)).

This subsection therefore reports our proposed DNN
performances in comparison to prior works [5], [7]–[9]
without any further hardware considerations (i.e., considering
an optimized learned-compression pattern) and under low
photon counts. For a fair comparison, our proposed DNN and
that of [8], [9] were trained with the same training data i.e.,
64× 64× 256 tensors and similarly to the original work, i.e.,
using PyTorch, with a batch size of 4, a random initialization,
an Adam optimizer [31], and a learning rate of 10−4 with
a learning rate decay of 0.9 after each epoch. Instead, our
DNN was trained using TensorFlow2, with a batch size of 8
and a number of epochs of 40 with a learning rate of 10−3

and a decay of 0.95 after each epoch, starting from the 10th

epoch. Note that for a proper convergence of our model,
the training process of our neural network is performed in a
2-stage fashion so that the “Gaussian filters” and the ramps
are made trainable only during the second stage (i.e., 80
epochs in total). For the sake of simplicity, a Mean Squared
Error (MSE) loss has been used with the Adam optimizer for
all experiments reported in this paper. In order to limit the
proposed DNN model size, γ is fixed to 1.5.

Even though the proposed DNN only achieves an average
depth reconstructions root mean square error (RMSE) of
0.0382 m, i.e., a similar accuracy to [8], [9] cf., Tab. I. It
provides decent depth reconstructions (cf. Fig.2) in compar-
ison to [5] and [7] with respectively a 80% and 46% lower
average depth RMSE for m = 256 (uncompressed case). With
a compression corresponding to m = 32, our method still
improves the depth reconstruction performance by respectively
69% and 18%, compared to [5], [7]. Note that, our method
clearly outperforms [5], [7] for any SBR, except in the 2:10
SBR case. In addition, an acceptable intensity reconstruction
is obtained for m ≥ 16, especially when compared to prior
works. These results pave the way to possible data dimen-
sionnality reduction through the use of a learned compression
pattern (i.e., a linear projection represented by the the red
block in Fig. 1). Consequently, to reduce the pixel pitch in
practice, while enabling the high photon flux operating mode,
we propose to implement a data-agnostic linear projection in
the name of a CS scheme, instead of a learned compression
pattern (cf. the following section).

III. DATA-AGNOSTIC COMPRESSION PATTERN USING
SHUFFLED CELLULAR AUTOMATA

Due to the limitation related to the one-hot type of
encoding in standard TCSPC systems, the second goal of
this paper is to replace the learned-compression pattern in
the DNN topology in Sec. II by an on-the-fly data-agnostic
CS hardware implementation. Let us recall that LiDAR
systems based on the TCSPC principle [32] make repeated
measures of the propagation time of a light pulse emitted

Fig. 3: SPAD Operation System Overview: direct time-of-
flight measurement (D-ToF) of a light pulse reflected by a
target using a TCSPC or a CS-TCSPC system.

by a transceiver (i.e., pulsed laser) and then received by
a receiver (i.e., SPAD sensor). These propagation time of
flights (ToFs) are then stored in the shape of a histogram.
Prior works [5], [7], [8], [16] commonly consider the low
photon counts mode of operation allowing to neglect the
pile-up effect but is very restrictive and constraining in terms
of reconstruction performance. In fact, SPAD pixels can only
detect the first incident photon during each laser cycle, after
which it enters into a dead time (i.e., any further photons can
be detected). In high photon counts mode of operation, the
measured histograms thus exhibit an exponentially decaying
shape leading to complex reconstruction algorithms. However,
this unwanted histogram shaping issue can be efficiently
bypassed thanks to an asynchronous SPAD control [33]. This
recent technique consists in temporally misaligning the SPAD
measurement windows with the TDC and the pulse laser
–still synchronous to each other– by a constant circular shift
tSi

(cf., Fig. 3), in order to smooth out pile-up distortions
[34]. Asynchronous control furthermore relaxes hardware
constraints because of reducing the probability of counter
overflows by spreading out the histogram; thus motivating its
consideration for this work.

Thanks to this asynchronous SPAD control, the result-
ing histogram model exhibits pseudo-sparsity (i.e., is said a
compressible signal because only few coefficients have high
magnitude values) under various background photon counts as
illustrated in Fig. 4 (a). This condition is required to fulfill the
CS theoretical background [20] and to properly take advantage
of a ”chaotic” encoding at sensor level as presented in [35]
and [36]. Therefore, mathematically speaking, we proposed to
replace the first learned-compression pattern layer (red color
block in Fig. 1) by an untrained linear projection of a measured
ToF histogram h ∈ Nn. This is performed using the matrix
Φ ∈ {−1,+1}m×n (Rademacher-like distribution considered
for its universality property [37]), providing the measurement
vector y ∈ Zm (Eq. 2). The choice of a signed modulation also
limits the probability of counters overflows since all the bins
of the histogram will count more or less the same amount
of noise-related photons, which will lead to a value of the
counters centered around zero (i.e., assumed to be similar to
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(a) TCSPC baseline (straightforward approach)

(b) TCSPC histogram Compressive Sensing (ours)

Fig. 4: System-level views of baseline (a) and its variant (b).

a 0-centered Gaussian distribution).

y = Φh (2)

From the sensor point-of-view, a raw D-ToF measurement
v(ρi) ∈ {1, ..., n} provided by a TDC is a time index
corresponding to a one-hot vector ρi ∈ {0, 1}n for the ith ToF
acquisition, i ∈ {1, ..., N}. In order to actually build the pixel-
wise histogram h, this vector ρi only needs to be summed
over N TDC successive acquisitions thanks to its intrinsic
position coding (i.e., h =

∑N
i=1 ρi). ρi has a unique non-

zero coefficient equal to 1 at the position v(ρi) and knowing
that the multiplication by Φ is distributive with respect to the
addition; building y is equivalent to calculating the sum over
i of the columns Φv(ρi)

of Φ at v(ρi) positions (cf. Eq. 3).

y = Φ
N∑
i=1

ρi =
N∑
i=1

Φv(ρi)
(3)

It thus advantageously enables a direct acquisition of CS
measurements without the need for an explicit representation
of h at any time, making the approach highly relevant in
terms of hardware implementation. It means that the only
requirement is to replace the one-hot encoding of the measured
ToF by a said ”chaotic” encoding (i.e., the columns of Φ,
Φv(ρi)

). To our knowledge, the most appropriate solution is to
use a basic Cellular Automaton (CA) replacing the commonly
used TDC plus one-hot encoding. Indeed, CAs [38] have
been employed in a wide range of systems and have recently
become practical candidates to enable on-the-fly generations of
CS matrices [39]–[41]. Note that a binary CA is composed of a
finite number of cells that have a single binary state at each cell
and discrete time step. For a regular Elementary CA (ECA),
each cell state only depends on a logic rule taking as inputs
the previous states of the cell itself and its two neighbors.
The main advantage of CAs is that a complex global behavior
can be obtained using only very few digital logic gates. Since

the CA is dedicated to the generation of a pseudo-random
sequence, a slight modification has been made to the structure
of the ECA rule 30. As depicted in Fig. 5, a simple routing
for static shuffling is added to further increase the statistical
independence of the binary states produced.

Fig. 5: Structure of a Shuffled Cellular Automaton (SCA).

As presented in Fig. 4 and according to Eq. 3, the con-
struction of the histogram h can thus be formally replaced by
the direct construction of a CS measurement vector y. This
way, the number of clock cycles between the laser shot and
the SPAD trigger (i.e., ToF index) is equal to the previously
denoted v(ρi) and the state vector of the SCA is considered
to be equal to Φv(ρi)

in its signed representation.

(a) Rule 30 with
canonical initializa-
tion.

(b) Rule 30 with ran-
dom initialization.

(c) Rule 30 SCA
with random initial-
ization.

Fig. 6: Cell states for various CA configurations (∼ Φ).

(a) µM = 0.875,
µA = 0.1959

(b) µM = 0.75,
µA = 0.1956

(c) µM = 0.75,
µA = 0.1938

Fig. 7: Normalized Gram matrix (∼ ΦTΦ with zero diagonal
for proper rendering) of the sensing matrices as presented in
Fig. 6, where µM corresponds to the mutual coherence and
µA is the average of the Gram matrix except the diagonal.

The same way as a TDC starts counting from zeros, the
SCA starts updating its states from the initial state triggered
by the laser shot and stops on the SPAD trigger. However,
this deterministic process (i.e., the state sequence (columns
of Φ) only depends on the logic rule, the shuffle map and
the initial states, see Fig. 5) requires a proper choice of
the Wolfram’s rule, the initialization and the shuffle pattern,
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to ensure having the longest possible cycle to provide a
full rank Φ. Even if the CS community mainly focused
on the Class 3 cellular automaton rule 30 which exhibits a
proper chaotic behavior [42], using a shuffle stage does not
imply any additional hardware component (only based on CA
cells interconnections) while improving the properties of the
generated pseudo-random vectors (see Fig. 6 for cell states
(∼ Φ) and Fig. 7 for Gram matrices (∼ ΦTΦ)).

IV. HARDWARE SYNTHESIS RESULTS

Both hardware architectures presented in Fig. 4 were syn-
thesized using SYNOPSYS® Design-Compiler™ over a 40nm
standard cell technology to obtain the area results reported
in Tab. II and Tab. III. For the sake of clarity, synthesis-
estimated digital areas are given in equivalent pixel pitches
(µm) instead of areas (µm2). Our synthesis results are to
be put in perspective against the exceedingly well optimized
design of [32] that presents a tiled full custom designed
histogram builder with a pitch of 36.72µm targeting 16 bins
of B=14 bitwidth each. Those results which are obtained using
an equivalent technology node show a size difference factor
of 1.2 (i.e., 44.9µm for the same configuration as in [32]).
This gap would be bridged by redesigning our architecture
using a full custom design methodology with specific attention
to area minimization. The main takeaway is that the relative
results between Tab. II and Tab. III demonstrate that SCA
configurations imply a marginal size increase (lower than 10%)
compared to an uncompressed TCSPC baseline that explicitly
builds a ToF histogram for the same number of measurements
(i.e., m=n) and with identical counters bitwidths.

n\B 4 5 6 7 8 9 10 11 12 13 14

8 19.1 20.8 22.4 23.9 25.3 26.6 27.9 29.1 30.3 31.4 32.5

16 25.3 27.9 30.3 32.5 34.5 36.5 38.3 40.1 41.8 43.4 44.9

256 97.8 108 118 127 136 143 151 158 165 171 178

TABLE II: Equivalent pixel pitch (µm) required obtained from
TCSPC baseline architecture synthesis (Fig. 4 (a)).

m\B 4 5 6 7 8 9 10 11 12 13 14

8 15.3 19.9 22.0 23.9 25.6 27.3 28.8 30.3 31.6 33.0 34.3

16 21.6 28.1 31.1 33.7 36.1 38.5 40.7 42.8 44.8 46.7 48.6

TABLE III: Equivalent pixel pitch (µm) required obtained
from SCA architecture synthesis (Fig. 4 (b)).

V. EXPERIMENTAL RESULTS USING DNN COMBINED WITH
DATA AGNOSTIC COMPRESSIVE SENSING

This last section presents the CS design performances in
comparison to existing, SPAD-optimized sensing designs,
i.e., the SiFH [13] and FiFH [12] methods. For the sake
of fair comparisons, we propose to replace the canonical
argmax peak detection usually used for FiFH and SiFH by
our own DNN reconstruction algorithm in order to properly
characterize the CS scheme itself, decorrelated from the effect
of the reconstruction strategy. Note that one CS input channel
is replaced by a dummy photon counter. The proposed
DNN model was therefore trained with FiFH [12], SiFH

SBR Fifh (m=16) Sifh (m=16) CS (m=8) CS (m=16)
B=5 B=7 B=5 B=7 B=5 B=7 B=5 B=7

40 : 2000 0.40 0.04 0.33 0.03 0.08 0.09 0.05 0.05
40 : 4000 0.64 0.15 0.38 0.14 0.11 0.11 0.06 0.06
120 : 4000 0.62 0.14 0.38 0.12 0.07 0.05 0.03 0.04

Avg. 0.51 0.09 0.34 0.07 0.07 0.06 0.03 0.04
Pitch (µm) 28 32 28 32 20 27 28 34

TABLE IV: Depth comparisons of several acquisition methods
under various SBR, reported as an average RMSE in m.

SBR Fifh (m=16) Sifh (m=16) CS (m=8) CS (m=16)
B=5 B=7 B=5 B=7 B=5 B=7 B=5 B=7

40 : 2000 12.2 33.1 28.2 10.7 28.5 25.5 35.1 29.5
40 : 4000 10.7 20.6 27.5 12.6 27.1 26.5 37.4 30.6
120 : 4000 10.7 20.8 27.6 12.9 29.9 26.5 38.5 31.7

Avg. 11.4 26.2 28.0 13.4 29.2 26.9 36.9 31.1
Pitch (µm) 28 32 28 32 20 27 28 34

TABLE V: Intensity comparisons of several acquisition meth-
ods under various SBR, reported as an average PSNR in dB.

[13] as well as with CS data inputs, in the same way as
described in sec. II, except for the considered SBRs. The data
augmentation here consists in the generation of 9 samples
for each image of the NYU dataset having a dynamic range
below 3m (under 9 SBRs, i.e., an average of 40, 80, 120, 200,
400 signal photon counts and 2000, 4000 noise photon counts).

In case of the absence of counter overflows, Tabs. IV and
V reports that FiFH and SiFH [12], [13] can outperform our
solution in some conditions. However, considering a practical
bit depth, our proposed design shows better performances than
[12], [13]. Even with same reconstruction algorithm, histogram
CS allows to reach a highly accurate reconstruction, while
being able to reduce both the size of measurement vectors
and their bitwidths (B=5), therefore reducing the total memory
needs (acting on the pixel pitch, cf. section IV). On the other
hand, when decreasing the bitwidth (i.e., to B=5), the perfor-
mances of [12], [13] are significantly downgraded cf., Fig. 8
and Fig. 9. These Tabs. also highlight that our CS approach
provides a better depth estimation RMSE compared to [12],
[13] (B=7), with an estimated pitch reduction of 39%. It leads
to the conclusion that –in terms of depth estimation accuracy
and for the considered configurations– our proposed system
improves by a 11x factor the depth RMSE at iso-surface (a
pitch of 28µm) or a pixel surface reduction by a 2x factor at
iso-performance (a RMSE of 0.07m). Similar conclusions can
be drawn when considering intensity reconstruction results.

Finally, Fig. 10 puts into perspectives the results with a
learned-compression pattern under low photon counts with
the ones obtained using the proposed CS scheme, under
high photon counts. Although the SCA implementation highly
constrains the measurement vector with a small bitwidth
of B=5, counters do not much overflow even under high
photon counts. Fig. 10 demonstrates that the proposed DNN
combined with the CS provides more accurate depth/intensity
reconstructions than the DNN topology integrating learned-
compression pattern (if saturation issues are not taken into
consideration directly during the training stage).
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Fig. 8: Intensity-Depth reconstructions under hardware constraints with counters bitwidth of B=7 and high photon counts.
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Fig. 9: Intensity-Depth reconstructions under hardware constraints with counters bitwidth of B=5 and high photon counts.



9

SB
R

=
1:

10
0

RMSE=0.1804 RMSE=0.2448 RMSE=0.1201 RMSE=0.1052

SB
R

=
2:

50

RMSE=0.0947 RMSE=0.1357 RMSE=0.0836 RMSE=0.0779

SB
R

=
1:

10
0

RMSE=0.1802 RMSE=0.1754 RMSE=0.1896 RMSE=0.1175

SB
R

=
2:

50

RMSE=0.0939 RMSE=0.1007 RMSE=0.0736 RMSE=0.0633

SB
R

=
1:

10
0

PSNR=13.74 dB PSNR=28.64 dB PSNR=25.08 dB PSNR=37.49 dB

SB
R

=
2:

50

PSNR=11.18 dB PSNR=27.79 dB PSNR=30.46 dB PSNR=37.73 dB

SB
R

=
1:

10
0

PSNR=9.732 dB PSNR=28.71 dB PSNR=23.50 dB PSNR=35.29 dB

SB
R

=
2:

50

Ground truth
Method:
Config:

#Photons:

PSNR=8.441 dB
DNN
(m=8)

100

PSNR=28.58 dB
DNN

(m=16)
100

PSNR=28.15 dB
DNN+CS

(m=8, B=5)
2000

PSNR=32.88 dB
DNN+CS

(m=16, B=5)
2000

Fig. 10: Intensity-Depth reconstructions. Note that the 2nd and 3rd columns reconstructions are under low photon counts (an
average photon counts of 100) due to hardware constraints related to the TCSPC data format. While the 4th and 5th columns
reconstructions are under high photon counts (an average photon counts of 2000) thanks to the CS hardware design.
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VI. CONCLUSION

This paper introduces a Deep Neural Network (DNN) with
a linear compression front-end whose goal is to demonstrate
a possible input data dimensionality reduction without too
much information loss. Under the low photon counts SPAD
operating mode, this work typically reports state-of-the-art
results with an average RMSE depth reconstruction loss of
only 0.016 m and an average PSNR intensity reconstruction
increase of 10 dB in comparison to prior works.

Subsequently, a Compressive Sensing (CS) hardware
implementation scheme replacing the DNN learned-
compression pattern layer is proposed, enabling to relax
hardware constraints on the SPAD sensor, at the pixel
level. The CS design consequently reduces the number of
memory words as well as the number of bits per words,
thereby reducing the pixel pitch required for an in-pixel
implementation with the use of a pixel-wise shuffled
Cellular Automaton (CA). Based on the same reconstruction
algorithm, the proposed acquisition method thus allows a
higher reconstruction performance compared to existing, most
efficient sensing methods [12], [13] with an estimated pitch
reduction of approximately 40%. Finally, the CS scheme
avoids counters overflows even under high photon counts,
which, in combination with the proposed DNN, provides a
higher reconstruction accuracy than the best-in-class remote
processing work that limits its mode of operation to low
photon counts.
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