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TCSPC histogram data modeling
A custom EM algorithm dedicated to a mixture of truncated-shifted Erlangs

Valentin Poisson, William Guicquero, and Gilles Sicard.

Abstract—In active 3D imaging based on a Time Correlated
Single Photon Counting (TCSPC) system, photons “of interest”
measured with Single Photon Avalanche Diodes (SPADs) are often
mixed with high background photon noise. This low Signal-to-
Background ratio (SBR) makes the reconstruction of luminance
and depth maps difficult. State-of-the-art (SoA) works relying
on Bayesian approaches [1], [2] or Deep Learning (DL) [3], [4]
usually study the restrictive case of low-photon counts mode of
operation. On the contrary, this paper aims to consider the
high photon counts, synchronous operating mode, where the
SPAD “Dead Time” is spread over a large number of bins of
the Time-of-Flight (ToF) histogram (i.e., pile-up effect). A new
method is then proposed to estimate pixel parameters from
such a ToF histogram in which the photon arrival times is
assumed to follow a truncated-Shifted Erlang (E ) distribution.
The underlying algorithmic task consists in estimating 4 latent
parameters of each E distribution of a mixture model, only from
an observed draw of the process distribution in the shape of a ToF
histogram. To solve the highly non-convex nature of this problem,
a customized nested Expectation-Maximization algorithm (c-
GEM) has been designed based on a proper combination of Max-
imum Likelihood Estimation, Moments Matching, Parametric
Imputation and support estimation via Variable Neighborhood
Search. The proposed framework was successfully evaluated with
synthetically generated data leading to accurate depth-luminance
reconstructions.

I. INTRODUCTION

A SPAD-TCSPC system consists in measuring single pho-
ton arrival times with Time-to-Digital Converters (TDC). From
the system point of view, a transmitter (laser) emits short light
pulses, which, once reflected on an object, can be detected
by the associated SPAD receiver. This allows the round trip
time of the laser pulse to be measured. From there, physical
quantities information, such as depth and luminance, can be
inferred by analyzing the statistical distributions of the photon
arrival times. The main goal in a photon-efficient reconstruc-
tion algorithm is to distinguish the different light sources by
the corresponding statistical distributions they imply in the
photon arrival times process.

For a deep system-level analysis, the TCSPC SPAD-based
imaging system is considered as a queueing loss model [5].
Where photon arrivals are the customers, generated from
the Poisson process property of photons emitted by a light
source [6]; SPAD sensors refer to the servers with a constant
service process time “Dead Time”; and “stored photons” (in
a TOF histogram) refer to the departure process. Due to the
multiplicity of light sources, as well as their intermittence,
the photon arrival times process will instead be considered
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Fig. 1: Loss system overview.

as being constructed from a Piecewise Constant Poisson
Process (PCPP) composed of C Poisson intensity levels
(i.e., C intermittent light sources as illustrated in Fig. 1).
Furthermore, the “stored photons” can be interpreted in
two ways. That is to say, when the “stored photons” come
from several SPAD sensors set up in parallel periodically as
illustrated by nodes in Fig. 1. Otherwise, when the “stored
photons” come from a single SPAD sensor –in the considered
case where TCSPC SPAD-based imaging system is a periodic
photon counting sequence measurement (cf., Fig. 3)–.
This paper aims at properly modeling the unknown “stored
photons” process, in order to develop a dedicated algorithm
to estimate latent physical quantities. Based on the Poisson
process stationary and independent increments property
[7] and the superposition property of independent Poisson
(sub)processes [8], [9], we can state that the “stored photons”
process distribution is, just as the photon arrival times process
(input of the loss system illustrated in Fig. 1), a piecewise
uniform temporal distribution of the event. Unfortunately, the
servers of the equivalent queueing loss system involve Poisson
process time dependence due to a constant service process –
i.e., the SPAD “Dead Time” denoted τ–. This so-called “Dead
Time” actually corresponds to the time duration following
an avalanche during which the SPAD device is unable
to detect another photon. Therefore, the “stored photons”
must be considered using the generalized problem of the
Poisson process characterization in terms of a time-correlated
counting process with the phase-type distribution (PH) which
results from the convolution of the probability densities
of the events [10] (output of the loss system illustrated
in Fig. 1). For example, the probability distribution of the
sum of two or more independent random variables can be
viewed as the convolution of their individual distributions.
The Erlang-k Probability Distribution Function (PDF) is the
one that properly models the sum of k independent random
exponential inter-arrival times i.e., Zk = X1 +X2 + ...+Xk

in the typical case of a system of one or more inter-related
Poisson processes occurring in phases [11], as written in Eq. 1.
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P(Zk = zk) = P

[
k∑

j=1

Xj

]

=

∫ zk

0

∫ x1

0

...

∫ xk−1

0

λ e−λ(zk−x1)

... λ e−λ(xk−1−xk) λ e−λ(xk) dxk ... dx1

=
λkzk−1

k e−λzk

(k − 1) !

(1)

Without photon detection loss, the time distribution
of events with this notation still converges to a uniform
distribution by summing the Erlang-k phases from k = 0 to
k →∞. However, because of the service time τ , the queuing
loss system considered here implies that events occurring
during the service time (i.e., generated by a previous event
zk i.e., ∀ k ∈ {1, ..., N}, [zk; zk + τ ]) are less likely to be
observed by the system due to its congestion. Since then,
“stored photons” shows a time shift τ between two sequential
photon arrival times, zk and zk+1. The Erlang-k PDFs are
consequently shifted by (k − 1)τ revising the Eq. 1 to
the Eq. 2 and implying a non-uniform time distribution of
events if summing the Erlang-k phases from k = 0 to k →∞.

P(Zk = zk) = P

 k∑
j=1

((k − 1)τ + Xj)


=

∫ zk−(k−1)τ

0

∫ x1+τ

τ

...

∫ xk−1+τ

(k−1)τ

λ e
−λ(zk−x1−(k−1)τ)

... λ e
−λ(xk−1−xk+τ)

λ e
−λ(xk−(k−1)τ)

dxk ... dx1

=
λk(zk − α)k−1 e−λ(zk−α)

(k − 1) !
, where α = (k − 1)τ

(2)

An additional parameter β refers to the ending time of the
server measurements or of the input Poisson process. Indeed,
the superposition of Poisson sub-processes does not occur
in phase since the laser pulse light source admits a time
dependent starting and ending points respectively denoted
α and β, which yields to an additional Truncated-Shifted
property of the Erlang-k (E ).

Once the “stored photons” process distribution is properly
defined, the rest of this paper focuses on a custom opti-
mization method for the estimation of E parameters. The
core algorithmic inner loop implements a set of tools such
as Maximum Likelihood Estimation [12], Moments Matching
[13], Parametric Imputation [14] and Variable Neighborhood
Search [15]. While a Genetic search [16] based on a statistical
test, drives an outer loop aiming at inferring the number of
model components.

II. C-EM FOR A MIXTURE OF TRUNCATED-SHIFTED
ERLANGS

The objective, through the use of a mixture of E , is
to estimate the number of PCPP intensity levels and finds
their boundary locations with the use of the corresponding
time index of each variation, α and β. Considering that the

Algorithm 1: c-EM algorithm to fit E

Data: h ∈ NB

Result: Estimated parameter Θ̂ from its random initialization
// E-step (section II-A)

1 for s← 1 to S do
2 γ̂b,s ← hb

πsE (b;θ̂s)∑S
j=1 πjE (b;θ̂j)

, b ∈ {1, 2, ..., B}
3 end

// M-Step (section II-B)
4 for s← 1 to S do

5 λ̂s ← ksπ̂s

µ̂
(obs)
s +µ̂

(cens)
s

, π̂s ←
∑β̂s

b=1
γ̂b,s

Ec(θ̂s)
6

α̂s ←
{

α̂s − ϵs, if DKL(ĥ∥h) ≥ DKL(ĥϵs∥h)
µ̂s −

√
ksv̂s, otherwise.

7 β̂s ← α̂s −
W−1

(
( 1
e )

(ks−1)
(ρs−1)

)
+(ks−1)

λ̂s

8 end

PCPP is composed of C Poisson intensity levels being the
superposition of C independent Poisson arrival sub-processes
[17], the number of components of the mixture distribution is
equal to S, i.e., the amount C of rate change multiplied by
the ratio of measurement period time over the service time
(i.e., S =

∑C
c=1 Card(Gc) commonly with Card(Gc) ≤ 2 in

the typical TCSPC use case). This gives the following mixture
model mE :

mE (z;Θ) =

S∑
s=1

πs
λks
s (z − αs)

ks−1 e−λs(z−αs)

(ks − 1) !
1z∈[αs,βs], (3)

where πs corresponds to the weight of the sth phase and
Θ is the concatenation of S different set of parameters θT

s =
[λs, ks, αs, βs]. λs, ks, αs and βs respectively stand for the
intensity parameter, the shape parameter, the starting and the
ending times of the sth phase.

A. Histogram-based expectation (E-step)

In our typical use case, we state that the collected data,
z ∈ RN , can be depicted through an approximation of its E
distribution, the measured histogram h. Indeed, all the obser-
vation times values are counted onto a series of time-intervals,
which results in an histogram of the observations. Although
losing the information provided by the observation sequences
for the parameters estimation, storing and processing only the
histogram makes the inference problem more tractable both
in terms of memory requirements and computing resources.
Therefore, the time series of size N are sampled through the
observations distribution only, i.e., h ∈ NB , with bins indexed
b ∈ {1, ..., B} and bin width Bw. For notation simplification,
αs and βs will now define αs =

⌊
αs

Bw

⌋
and βs =

⌊
βs

Bw

⌋
, i.e.,

bin-quantized shift and censoring times. The truncated-Shifted
Erlang PDF E in Eq. 3 is thus revised here:

E (b;θs) = πs
λks
s (b− αs)

ks−1 e−λs(b−αs)

(ks − 1) !
1b∈[αs,βs]. (4)
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Due to its better tractability, the “log-likelihood” optimiza-
tion trick is preferred (cf. Eq. 5).

l(Θ|h) =
B∑

b=1

hb∑
i=1

ln

(
S∑

s=1

δb,i,sπsE (b;θs)

)

=

B∑
b=1

S∑
s=1

γb,s ln (πsE (b;θs))

(5)

Following this notation, δb,i,s is defined as equal to 1 if and
only if the corresponding sample belongs to the sth phase, and
0 otherwise. It advantageously allows to move the summation
over s outside the logarithm into the logarithm in order to
rewrite the log-likelihood function while introducing γb,s. Note
that hb represents the measured bin value of h at index b
and γb,s =

∑hb

i=1 δb,i,s refers to the total amount of events
occurring at time bin b for the phase s. Moreover, γb,s variables
are latent, in the sense that they are not directly observed,
justifying the use of the EM algorithm rather than regular
Maximum Likelihood Estimation (MLE).

B. Combination of optimization methods (M-step)

Note that, [18], [19] already derived an EM type of algo-
rithm for PH distributions under truncated data. However, an
EM algorithm is not straightforwardly compatible in the case
of mE (b;Θ) because PH random variables do not have the
same sampling space, especially due to the shift parameter α̂s.
Therefore, this paper presents parameter estimation variants in
order to overcome this issue.

1) Erlang weight, π̂s: Firstly, to avoid a bias on the weight
estimation obtained by simply adding the corresponding
estimated values (E-step), as written in Eq. 6.

π̂s =

∑B
b=1 γ̂b,s∑S

s=1

∑B
b=1 γ̂b,s

(6)

The truncated time parameter βs needs to be “removed”
from π̂s calculation. To do so, π̂s can be inferred thanks to the
Cumulative Distribution Function (CDF) Ec

(
θ̂s

)
as written

in Eq. 7 which normalizes the estimated values only over the
interval of distribution support, defined as [α̂s, β̂s].

π̂s =

∑B
b=1 γ̂b,s

Ec

(
θ̂s

) =

∑B
b=1 γ̂b,s

1−
∑ks−1

j=0

e−λ̂s(β̂s−α̂s)(λ̂s(β̂s−α̂s))
j

j !

(7)

2) Erlang intensities, λ̂s: The standard MLE of the Erlang
intensities would be:

λ̂s =
ksπ̂s

µ̂s − α̂s
=

ksπ̂s

µ̂
(obs)
s + µ̂

(cens)
s

=
ksπ̂s∑∞

b=α̂s+1 γ̂b,s(b− α̂s)
.

(8)
where µs refers to the first moment estimation. However, a

proxy problem is rather considered here because the zeroing
truncation of γ̂b,s over the interval [[β̂s,+∞]] corrupts the
estimation of λ̂s. Thus, a Parametric Imputation (PI) is used
to infer the first moment of the truncated samples, µ̂(cens)

s , in
addition to the first moment of observed samples, µ̂

(obs)
s =

∑β̂s

b=α̂s+1 γ̂b,s(b − α̂s) (cf. Alg. 1-line 5). Indeed, assuming
that λ̂s remains the same before and after censoring, the
calculation of µ̂

(cens)
s can be performed using the standard

unshifted Erlang distribution integral (cf., Eq. 9).

µ̂(cens)
s = π̂s

∫ ∞

β̂s

bE (b; θ̂s)db

= π̂s

∫ ∞

β̂s

b
λ̂ks
s (b− α̂s)

ks−1 e−λ̂s(b−α̂s)

(ks − 1) !
db

= π̂s
ks

λ̂s

∫ ∞

β̂s

λ̂ks+1
s (b− α̂s)

ks e−λ̂s(b−α̂s)

ks !
db

= π̂s
ks

λ̂s

ks∑
j=0

e−λ̂s(β̂s−α̂s)
(
λ̂s(β̂s − α̂s)

)j

j !

(9)

3) Erlang shift, α̂s: A Moment Method (MM) [20] com-
bined with a custom Variable Neighborhood Search (VNS)
[21] is introduced here to properly estimate α̂s while bypassing
the intractability of the standard log-likelihood maximization
formulation. First, considering the Shifted-Erlang distribution
function E , and defining the latent equivalent variance v̂s for
an untruncated Erlang distribution as a sum of two independent
random variables (respectively consisting in observed and
truncated data), we then have µ̂s = µ̂

(obs)
s + µ̂

(cens)
s + α̂s

as well as v̂s = v̂
(obs)
s + v̂

(cens)
s and we can therefore define

the following update rule for α̂s,

α̂s = µ̂s −
√

ks

(
v̂
(obs)
s + v̂

(cens)
s

)
. (10)

The empirical estimation of the variance for the observed
data is then obtained using the König-Huygens theorem [7]:

v̂(obs)s =

β̂s∑
b=α̂s+1

γ̂b,s(b− α̂s)
2 −

(
µ̂(obs)
s

)2
. (11)

On the other hand, v̂(cens)s is estimated using the standard
unshifted Erlang distribution integral.

v̂(cens)
s = η −

(
µ̂(cens)
s

)2
, (12)

where η is computed using Eq. 13:

η = π̂s

∫ ∞

β̂s

b2E (b; θ̂s)db

= π̂s

∫ ∞

β̂s

b2
λ̂ks
s (b− α̂s)

ks−1 e−λ̂s(b−α̂s)

(ks − 1) !
db

= π̂s
ks(ks + 1)

λ̂2
s

∫ ∞

β̂s

λ̂ks+2
s (b− α̂s)

ks+1 e−λ̂s(b−α̂s)

(ks + 1) !
db

= π̂s
(ks + 1)ks

λ̂2
s

ks+1∑
j=0

e−λ̂s(β̂s−α̂s)
(
λ̂s(β̂s − α̂s)

)j

j !
.

(13)

However, if α̂s overpasses the latent value αs, bins that
are observed but overruled by the c-EM (i.e., bBw < α̂s)
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cannot contribute to reduce the value of α̂s. It motivated the
introduction of a VNS, randomly drawing a step back variable
ϵs that follows an exponential decay rate of variance given by
the MM update value (Eq. 14). The drawn value giving the
lowest distance using the Kullback–Leibler divergence, DKL()
[22] is then selected, cf., Alg. 1-line 6.

ϵs ∼ Exp
(∣∣∣µ̂(obs)

s + µ̂(cens)
s −

√
ksv̂s

∣∣∣) (14)

4) Erlang right-truncation, β̂s: Instead of using a likeli-
hood function of the truncated data which is not tractable in
our case [23], we propose to find the value β̂s for which the
numerical calculation of the CDF on the interval [α̂s, β̂s] is
equal to the following normalized analytical formulation:

1−
ks−1∑
j=0

e−λ̂s(β̂s−α̂s)
(
λ̂s(β̂s − α̂s)

)j
j !

=

∑B
b=1 γ̂b,s

π̂s
. (15)

Unfortunately, this method fails as soon as β̂s < βs because
the observed data belonging to the sth E will be rejected on
both terms, disabling an appropriate update of β̂s. In order to
enable stretching forwards β̂, we propose to add a Laplace-
windowed version of the residual distribution (ĥb−hb) to the
normalized numerical calculation term. Therefore, we define:

ρs =

∑B
b=1 γ̂b,s

(
1 + (ĥb − hb)

1√
(B−β̂s)

e
− 1√

(B−β̂s)
|b−β̂s|

)
π̂s

.

(16)
To update β̂s, we then force the following equality:

1−
ks−1∑
j=0

e−λ̂s(β̂s−α̂s)
(
λ̂s(β̂s − α̂s)

)j
j !

= ρs (17)

Solving Eq. 17 for β̂s thus leads to the Eq. of Alg. 1-
line 6, ∀ks ∈ {1, 2} without bias and without unwanted local
convergence of β̂s, where W−1 refers to the second principal
branch of the Lambert function [24].

III. PRIORS IN C-EM FACILITATING GLOBAL
OPTIMIZATION

Even if we consider that the number of phases S is
unknown, it is assumed to be the sum of the number
of sub-phases of each Poisson sub-processes (i.e., S =∑C

c=1 Card(Gc) with Card(Gc) ∈ {1, 2}). From this and
based on some other prior knowledge described below, exten-
sions to the c-EM algorithm have been further developed to
tackle the highly non-convex mixture parameters estimation in
combination with the order selection of this mixture model as
written in Alg. 2.

A. Custom regularization

A custom regularization is introduced in a matter of mu-
tually constraining the parameters optimization of every E ,
under application-specific priors and in order to ease a faster

Algorithm 2: Genetic based c-EM (c-GEM) algorithm
to fit a mixture of truncated Shifted Erlang distribution

Data: h ∈ NB

Input: P,C, ϵd, ϵKL, χ
2, χ̂2

Result: “Global” estimated parameter Θ̂
(1)

1 while χ̂2 > χ2 do
2 for p← 1 to P do
3 C ← C + 1

4 Θ̂
(p)
C =

[
λ̂
⊤
C , π̂

⊤
C , α̂

⊤
C , β̂

⊤
C

]
5 end
6 while ∆Θ(1) > ϵd, D

(1)
KL > ϵKL do

7 for p← 1 to P do
// c-EM (Sec. II):

8 α̂(p), β̂
(p)

, π̂(p), λ̂
(p)
← Alg. 1

// Regularization (Sec. III-A):

9 λ̂
(p)

c ← ζλ̂
(p)

c (∆⊤∆− ζId)
−1

10 α̂(p)
c ← (∆⊤∆− ζId)

−1(∆⊤DT + ζα̂(p)
c )

11 end
// Genetic search (Sec. III-B)

12 if Iterations == MaxIt then
// Selection

13 for p← 1 to P do
14 Θ̂(p) ← Sort

(
Θ̂
)

15 end
// Crossover and mutation

16 for p← ⌊P2 ⌋+ 1 to P do
17 Θ̂(p) ← Θ̂(P+1−p)

18 for s← 1 to S do
19 α̂

(p)
s

iid∼ Supp(max{ĥ(p) − h, 0})
20 end
21 end
22 end

// Evaluation

23 for p← 1 to P do

24 D
(p)
KL(ĥ

(p)∥h) =
∑B

b=1 ĥ
(p)
b log

(
ĥ
(p)
b

hb

)
25 end
26 end

// Order selection (Sec. III-B)

27 χ̂2 =
∑B

b=1
(ĥ

(1)
b −hb)

2

hb

28 end

convergence. Firstly, E distributions describing the same Pois-
son sub-process c should have a common scale parameter
λc, (i.e., ∀s ∈ Gc, λs = λc). Secondly, arrival times
measured by one node of the system are necessarily spaced
by one service time (known) due to the previous arrivals (cf.,
DT ∈ {τ}Card(Gc) in Eq. 18). These equality constraints are
relaxed by using l2 regularization [25] terms ∥∆λ̂

⊤
c ∥22 and

∥∆α̂⊤
c −DT∥22 as reported in Eq. 18, with ∆ a differential

operator. In addition, a ”low-pass filter” term weighted by a
scaling parameter ζ is introduced to avoid abrupt changes from
one iteration to the next, this for both λ̂

⊤
c and α̂⊤

c .
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λ̂
⊤
c = argmin

λ̂c

(ζ∥λ̂⊤
c − λ̂

⊤(prev)

c ∥22 + ∥∆λ̂
⊤
c ∥22)

α̂⊤
c = argmin

α̂c

(ζ∥α̂⊤
c − α̂⊤(prev)

c ∥22 + ∥∆α̂⊤
c −DT∥22)

(18)

B. Order selection of the mixture model

To properly estimate the order of the mixture model, an
outer loop aims at identifying the number of mixture groups,
embedding the inner loop which estimates each mixture
model parameters until a stopping criterion is reached (i.e.,
the relative difference –between successive iterations– of the
parameter vectors values below ϵd = 10−7, and the relative
difference of the Kullback-Leibler [22] below ϵKL = 10−7 as
written in Alg. 2). In practice, the outer loop iteratively adds a
new group of G phases in the mixture model depending on the
result of a Chi-square test [26] (with a confidence threshold
of 0.95). Note that, the number of groups, C, is initialized to
one with an initialization of G phases per group.

In order to handle the high non-convexity of the problem,
several runs (noticed P in Alg. 2) of the c-EM with various
parameters initialization are first evaluated using the Kullback-
Leibler divergence function (DKL()). Half of the resulting
models with the lowest divergence are duplicated and then
mutated, as the natural selection step of an evolutionary
algorithm [27] (cf., Alg. 2). The mutation consists in a random
draw of α̂s, ∀s ∈ S from the positive residual support function
(i.e., α̂s

iid∼ Supp(max{ĥ− h, 0})).

IV. EXPERIMENTAL RESULTS

A. Synthetic data trace fit, parametric estimation

Our genetic based c-EM (c-GEM) is first evaluated on 100
synthetic mE distributions with random parameters Θ; and
with an order of mixture from 1 (C = 1, G = 1) to 8 (C = 4,
G = 2). Typical proper model fits are reported in Fig. 2 that
even include groups with overlapping distribution supports.

C = 3, G = 1 C = 4, G = 1

C = 3, G = 2 C = 4, G = 2

Fig. 2: c-EM estimations on synthetic histogram data.

h (%) λ (%) α (%) π (%) β (%)
C=1, G=1 0.7 0.5 0.0 0.8 0.0
C=1, G=2 1.2 0.7 0.0 0.7 0.0
C=2, G=1 0.3 2.8 1.0 2.1 0.0
C=2, G=2 0.4 5.9 0.6 4.9 0.2
C=3, G=1 0.1 7.2 1.8 12.0 3.8
C=3, G=2 0.1 17.2 2.4 15.8 2.0
C=4, G=1 0.1 25.1 5.0 26.2 7.7
C=4, G=2 0.1 25.6 5.9 30.6 4.5

TABLE I: Parametric estimation performance of the proposed
c-GEM on synthetic data, in terms of the relative error (in %).

Table I shows the average of parameters relative error
obtained from the c-GEM algorithm on the overall generated
histogram database. We can observe that the relative error
significantly increases with the number of phases of the model
but remains acceptable. The c-GEM may yet unfortunately
converge to a local minimum. It typically arises because the
α̂s exploration has not been performed properly, especially
when several Poisson processes share very similar parameters
values, either it is the starting point, the ending point and/or
the intensity parameter.

B. Real traffic traces, simulated SPAD data

A SPAD TCSPC simulation platform has been derived from
the model described in [28], [29] to provide “pseudo-realistic”
pixel-wise histogram data from depth-luminance scenes of
the Middlebury dataset [30] as illustrated in Fig. 3. The
estimation of the parameters of mE allows the extraction of
multiple physical scene characteristics, such as depth inferred
from the E shift position α and the luminance from the E
intensity parameter, λ. Figs. 5 and 6 report the histograms
associated to the color-framed pixels in the corresponding
reconstructed depth and luminance images. Note that all
Poisson sub-processes refer to two illumination sources, the
background illumination and the laser as described in the
model of [31]. In addition, the background light distribution
is somehow subdivided into 4 parts (i.e., before, during, after
the laser pulse, and after the “Dead Time” cf., Figs. 5 and 6).

Fig. 3: SPAD system overview.
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Fig. 4: Depth-luminance reconstructions. Note that the 2nd and 3rd column reconstructions are under low photon counts (i.e.,
100− 500 photons ToF samples size) since they were designed for these typical photon regimes and do not work in the high
photon regimes. While the fourth column reconsctructions are under high photon counts (i.e., 5 · 103 photons ToF samples
size).
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PSNR=48.73 dB

PSNR=24.83 dB

Fig. 5: Depth-Luminance estimation from 2 · 104 photons ToF samples size. Note that third and forth image rows correspond
to the pixels histograms surrounded in color in the upper image reconstructions.
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Fig. 6: Depth-Luminance estimation from 5 · 103 photons ToF samples size. Note that third and forth image rows correspond
to the pixels histograms surrounded in color in the upper image reconstructions.
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The joint reconstructions using our proposed algorithm are
shown in Fig. 4. Depth-luminance reconstruction accuracy
for the considered scene has been respectively estimated
to 0.03m root mean square error (RMSE) and 24dB peak
signal to noise ratio (PSNR). Tab. II reports a comparison
with respect to prior works of [1] and [2] that respectively
exhibit a 0.9m and 1.28m RMSE (depth) and a 16.2dB
PSNR and 13.2dB PSNR (luminance) under 0.10 SBR. [1],
[2] actually fail due to their inappropriate model neglecting
the pile-up effect which has been taken into account for
our simulations. Indeed, these techniques were specifically
designed for uniform time-correlated Poisson noise, an
irrelevant assumption in case of pile-up. More specifically,
regarding [1], [2] depth reconstruction under low SBR,
the accumulation of photon counts completely hides the
background object (due to the inverse square law of photons
quantity). Indeed, it unfortunately leads to shorter distance
detection, explaining the detection of many foreground objects
(i.e., dark pixels in Fig. 4). In addition, incorrect modeling
of the temporal distribution of the number of photon arrival
times from the laser pulse itself (i.e., exponential distribution
poorly modeled by a Gaussian distribution) inevitably leads
to an error in the estimation of the mean as observed in
Fig. 4, for example for the estimation of the teapot depth.
Moreover, [1], [2] reconstruction algorithms based on the
uniform-Gaussian model are not able to correctly estimate the
luminance map because they do not take into account, in their
Gaussian distribution model, the exponential rate parameter
that encodes the luminance information with respect to our
physically-plausible model.

Instead, despite of the considered complex histogram model,
our EM algorithm provides high fidelity depth-luminance
reconstruction under various SBRs using the appropriate dis-
tribution model and an efficient genetic-based expectation-
maximization (c-GEM) method to properly manage non-
convex issues. Regarding our depth reconstruction perfor-
mance, the RMSE metric is not truly representative between
each of our reconstructions under different noise levels be-
cause of salt-and-pepper like noise (i.e., sparsely occurring
white and black pixels). In addition, luminance reconstruction
is more complex under high SBR (less photon noise) since
it is estimated from the decaying shapes of the background
illumination photon counts as well as the laser pulse photon
counts. Compared to [32], [33] works, our model includes a
shift estimator, α that advantageously enables the proposed
pixel-wise algorithm which appears to be compatible with
the specific problem of depth-luminance reconstruction from
TCSPC data. In addition, better reconstruction performances –
for a concrete deployment of the algorithm– could be achieved
taking advantage of a spatial collaboration, such as using any
spatial regularization technique as Total Variation [1].

V. CONCLUSION

This paper focused on the statistical analysis of time
distribution output by complex queueing systems, involving
PCPP inputs. The extension of the EM algorithm for fitting

Intensity (PSNR in dB) Depth (RMSE in m)
SBR Shin [1] Rapp [2] Our Shin [1] Rapp [2] Our
0.31 17.07 11.26 29.98 0.50 0.47 0.03
0.10 16.17 13.16 24.10 0.88 1.28 0.03
0.06 15.49 14.09 14.23 0.94 1.38 0.03

TABLE II: Quantitative comparisons of average depth-
luminance reconstructions of the Middlebury dataset [30]
under various SBR and from the optimal photon regime of
each methods (i.e., low photon counts for [1], [2] and high
photon counts for our custom c-GEM algorithm.

mixtures of right truncated Shifted Erlang (mE ) probability
distribution functions has been thus introduced. Although
estimating such a model involves high computational
complexity of the algorithms, the benefit of the high
parametrization enabled by mE is that it provides a general
model of Phase-type distribution (PH) with very flexible
shapes for numerous real use cases. In order to accurately
estimate the number of phases in the mixture distribution
model as well as the 4 latent parameters of each component,
a custom genetic based Expectation-Maximization (c-GEM)
algorithm has been proposed. The core algorithmic inner
loop implements a set of tools such as Maximum Likelihood
Estimation [12], Moments Matching [13], Parametric
Imputation [14] and Variable Neighborhood Search [15]. An
outer loop additionally aims at inferring the number of model
components thanks to a Genetic search approach [16] based
on iterative statistical tests.

Besides providing high accuracy of depth-luminance recon-
structions under various SBRs, the proposed algorithm has the
advantage of being compatible with a wide range of complex
models, for instance involving the detection of multiple object
reflections, for super-resolution imaging or enabling multi il-
lumination sources classifications (e.g., SPAD sensors sharing
memory and electronics circuitry). This problem statement has
been shown to be relevant in the context of a specific TCSPC
imaging system (long laser pulses with a large Dead Time).
But the arrival process assumptions seem to span a fairly
broad class, so several other settings can be addressed e.g.,
phone calls arriving [34], patient arriving to the hospital [35],
portfolio credit risk [36].
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