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Chapter 1 ®)
Introduction to Atmospheric Simulation oo
Chambers and Their Applications

Astrid Kiendler-Scharr, Karl-Heinz Becker, Jean-Francois Doussin,
Hendrik Fuchs, Paul Seakins, John Wenger, and Peter Wiesen

Abstract Atmospheric simulation chambers have been deployed with various
research goals for more than 80 years. In this chapter, an overview of the various
applications, including emerging new applications, is given. The chapter starts with
a brief historical overview of atmospheric simulation chambers. It also provides an
overview of how simulation chambers complement field observations and more clas-
sical laboratory experiments. The chapter is concluded with an introduction to the
different aspects requiring consideration when designing an atmospheric simulation
chamber.

Atmospheric simulation chambers, such as those in the EUROCHAMP network,
are highly valuable research tools for investigating chemical and physical processes
that occur in air. They are used in a large number of applications, ranging from
air quality and climate change to cloud microphysics, cultural heritage and human
health. Chambers were originally developed as laboratory-based systems to investi-
gate the formation of clouds or photochemical smog and hence, were called cloud
chambers or smog chambers, respectively. Their ability to provide a controlled envi-
ronment to study the formation and evolution of atmospheric pollutants, by isolating
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specific compounds of interest and controlling the oxidizing environment, made
them especially useful in elucidating the key factors governing photochemical smog
formation on a local to regional scale. Within EUROCHAMP-2020 and across the
world, chambers dedicated to the exploration of atmospheric chemistry outnumber
the atmospheric physics and cloud chambers. For this reason, this guide has an
emphasis on atmospheric chemistry related aspects of simulation chambers.

Initially, smog chamber experiments were focused on elucidating the processes
responsible for the observed increase in atmospheric secondary pollutants such as
ozone and peroxyacyl nitrates (PAN-type compounds). This approach was later
broadened to include studies of the kinetics and mechanisms of gas phase atmo-
spheric oxidation and chambers have been extremely useful in producing kinetic
data, branching ratio and product distributions (Becker 2006). Together with data
arising from flow tubes and flash photolysis experiments, this knowledge allowed
the scientific community to build complex numerical chemical codes that have led to
the development of the models used to predict ozone formation. Nowadays, cham-
bers are also essential tools for evaluating these chemistry models and for predicting
the formation of secondary pollutants in the absence of uncertainties associated with
emissions, meteorology and mixing effects (Carter and Lurmann 1991; Dodge 2000;
Hynes et al. 2005). Experimental chamber data have been key to the development
and optimisation (e.g. Gery et al. 1989; Carter 2010; Bloss et al. 2005a), as well as
the evaluation (e.g. Saunders et al. 2003; Goliff et al. 2013; Jenkin et al. 2012; Bloss
etal. 2005b; Metzger et al. 2008; McVay et al. 2016) of chemical mechanisms used in
a wide range of science and air quality policy models. Today, chamber-derived data
remains a key component in the development and evaluation of future atmospheric
chemical mechanisms (Kaduwela et al. 2015; Stockwell et al. 2020).

In the past few decades, chamber facilities have been increasingly used to investi-
gate processes leading to secondary organic aerosol (SOA), an important component
of atmospheric aerosol (Finlayson-Pitts and Pitts 1986; Dodge 2000; Finlayson-
Pitts and Pitts 2000; Kanakidou et al. 2005; Barnes and Rudzinski 2006; Hallquist
etal. 2009). The general methodology which has been (and still is) useful for gaseous
pollutants is now providing valuable data related to SOA formation (e.g. Hatakeyama
et al. 2002; Pankow 1994; Odum et al. 1996; Cocker et al. 2001; Pun et al. 2003;
Takekawa et al. 2003; Martin-Reviejo and Wirtz 2005; Baltensperger et al. 2005;
Donahue et al. 2005; Pathak et al. 2007; McFiggans et al. 2019; Zhao et al. 2018,
Ciarelli et al. 2017) as well as the physico-chemical properties of aerosols and their
changes during atmospheric transport and processing (De Haan et al. 1999; Kalberer
et al. 2006; Field et al. 2006; Linke et al. 2006; Meyer et al. 2009; D’ Ambro et al.
2017; Huang et al. 2018; Zhao et al. 2017).

Furthermore, due to the wide range of experimental requirements, simulation
chamber designs vary considerably. As pointed out by Finlayson-Pitts and Pitts
(2000), although the general aims of all chamber studies are similar—i.e. to simu-
late processes in ambient air under controlled conditions—the chamber designs and
capabilities to meet these goals vary widely. This in turn means that chambers and
their associated measurement technologies are being adapted to a growing number
of applications.
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This chapter provides a short history of atmospheric simulation chambers
Sect. 1.1, investigations of atmospheric processes Sect. 1.2, approaches for bridging
the gap between laboratory and field studies Sect. 1.3, emerging new applications
Sect. 1.4, and considerations on the design and instrumentation of atmospheric simu-
lation chambers Sect. 1.5. Respective references to the more detailed discussion in
Chaps. 2-8 are provided in each of the subsections.

1.1 A Short History of Atmospheric Simulation Chambers

Atmospheric simulation chambers have been used for more than 80 years. As early
as the 1930s, Findeisen performed studies on cloud droplet size distributions and
conducted cloud chamber experiments, which was a highly novel approach at the
time. Findeisen’s cloud chamber was approximately 2 m® in volume and connected to
a vacuum pump, which allowed the process of adiabatic expansion and atmospheric
cloud formation to be mimicked in the chamber (Storelvmo and Tan 2015).

Photochemical smog formation, first observed in the Los Angeles area in the 1940s
and 1950s stimulated study in large chambers to simulate plant damage and health
effects such as eye and lung irritation (Haagen-Smit 1952). Europe followed suit in
chamber construction and application to atmospheric processes and through a range
of national and European Union funding streams, Europe now leads the world in the
use of large, highly instrumented chambers for atmospheric model development and
evaluation. These large facilities are complemented by a range of smaller chambers
that have been designed for specific purposes.

The first large European chamber was the “Grofle Bonner Kugel” (Groth et al.
1972), constructed at the University of Bonn and completed in 1968. The programme
led by Groth and Harteck initially focused on air glow reactions at the low pressures
pertaining to the upper atmosphere. However, studies of tropospheric interest were
also undertaken, but at a very basic level and without the use of photolytic sources.
Radicals were generated by discharge flow techniques, and this limited the range of
conditions that could be used.

The facility, which was operated by Becker, Fink, Kley and Schurath for several
years (Groth et al. 1972), had the following properties as indicated in Table 1.1.

At that time dark OH radical sources and the importance of OH reactions were
not known. Figures 1.1 and 1.2 show the facility installed at the Institute of Physical
Chemistry, Bonn University. The chamber has not been used since the mid-1980s
because of its enormous operational cost and has since been completely dismantled.

In the mid-1970s, as our understanding of the basics of tropospheric chem-
istry increased and particularly the role of photolysis, the Pitts group at Riverside
(Finlayson-Pitts and Pitts 1986, 2000) started to construct an indoor chamber with
the objective of exploring photochemical smog formation. Advances in the under-
standing of photochemical processes had been slow because appropriate analytical
techniques still had to be developed at that time. However, activity soon increased
with the construction of a similar chamber in Japan (Akimoto et al. 1979a, b), while
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Table. 1.1 Key properties of the “Bonner Kugel”

Volume 221 m?

Surface 177 m?

Inner diameter 7.5m

Heatable T max = 350 °C with 233 kW power, cooling of baffles between pumps and

chamber with liquid hydrogen

Material Stainless steel, 10 mm wall thickness

Pumping speed | 240 000 I/s with 8 diffusion pumps

Lowest pressure | 10712 bar

Atome-Inlet

Photomultiplier

Fig. 1.1 The housing of the “Grofie Bonner Kugel” (left) and cross-section through the spherical
reaction chamber “Grofle Bonner Kugel” (right). Courtesy of K.H. Becker, Bonn, Germany

Atkinson in the Pitts group started to successfully investigate the kinetics of the
initiation reactions of OH, O3 and NOj3 with volatile organic compounds (VOC).
Concurrently, other groups used Teflon bags to study smog-forming reactions under
irradiation by natural sunlight, but their results were limited to the Los Angeles
conditions.

The importance of the OH radical in atmospheric chemistry had been promoted
by Weinstock (1969), working at the Ford Motor Company research laboratories at
Dearborn. In this laboratory, Niki used a relatively small photoreactor to develop
the application of FTIR spectroscopy for quantitative investigation of atmospheric
reactions (Niki et al. 1972, 1981; Wu et al. 1976). IR absorption spectroscopy had
been used for a number of years to study atmospherically relevant chemical reactions
(Stephens 1958; Hanst 1971), based mainly on mirror systems which allowed long
path light absorption (White 1942, 1976; Herriott et al. 1964; Herriott and Schulte
1965). However, it was the use of FTIR methods by Niki et al. (1981) and additional
work in the Pitts’ group to quantitatively measure rate coefficients and products in
photoreactors by long path FTIR absorption spectroscopy that really accelerated and
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Fig. 1.2 The pipe system by which the chamber could be heated to 300 °C (left), enormous pumping
capacity needed to reach the vacuum of 10-9 Torr (middle), the platform at which the experiments
were prepared and carried out (right). Courtesy of K.H. Becker, Bonn, Germany

promoted the use of the technique and FTIR has been one of the work-horses of
chemical simulation chambers ever since.

In the 1960s and ‘70s, the understanding of atmospheric reactions developed as
first the key role of the OH radical was recognised as the dominant oxidizing agent
in the troposphere, based on the analysis of the CO budget (Heicklen et al. 1969;
Weinstock 1969; Stedman et al. 1970; Levy 1971), and the measurement of the OH
+ CO rate coefficient two years earlier (Greiner 1967). The propagation of an OH
radical chain was understood 10 years later when the rate coefficient of the fast
reaction HO, + NO — OH + NO; was measured by several groups (Howard and
Evenson 1977; Leu 1979; Howard 1979, 1980; Glaschick-Schimpf et al. 1979; Hack
et al. 1980; Thrush and Wilkinson 1981), initiated by studies of Crutzen and Howard
(1978) that showed the importance of this reaction in stratospheric ozone chemistry.

In Europe in the 1970s, several groups e.g., Becker and co-workers in Bonn and
Cox and co-workers in Harwell, started studies on tropospheric chemistry based
on either the technique of long path FTIR absorption spectroscopy in simulation
chambers by Becker and co-workers in Wuppertal or molecular modulation studies
focusing more on elementary reactions by Cox. Becker and co-workers constructed
a multiple reflection mirror system in a 420 L photoreactor, which could be operated
between 223 and 323 K to determine the OH reaction rate coefficients in combination
with product analyses in the ppm range. Subsequent developments involved the
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construction of a 6 m long quartz glass reactor of 1000 L volume, the QUAREC
chamber, which enabled measurements to be extended down to the ppbV level. Over
the years, other European laboratories started to use indoor chambers of larger volume
irradiated by a range of photolysis sources (Baltensperger et al., in Villigen/Ziirich,
Carlier and Doussin in Paris, Hjorth et al., in Ispra, Herrmann et al., in Leipzig, Le
Bras et al., in Orléans, Treacy et al., in Dublin, Wenger et al., in Cork). Tables 1.2
and 1.3 lists the larger indoor and outdoor reactors, respectively, that have been built
up to 2000.

Large outdoor simulation chambers have many advantages in terms of photochem-
ical smog simulation and several large outdoor chambers have been built in the US,
with support from the EPA. A major objective of these studies was to determine ozone
formation isopleths under chemical conditions representative of conditions observed
in major US cities. These chambers were made from FEP Teflon foil, with volumes
up to 25 m>. Whilst they lead to improvements in the empirical understanding of
smog formation, the results could not be generalised because of the limited range of
conditions requested by the US EPA. In Riverside, Carter and co-workers developed
amethod to define the ozone formation potential of VOCs by determining maximum
incremental reactivity (MIR) factors using chamber data and chemical modelling
(Carter 1994). A similar method was introduced by Jeffries in Chapel Hill, who also
used an outdoor chamber (Fox et al. 1975).

Other approaches involved the injection of real engine exhaust directly into a smog
chamber and studying the formation of ozone. However, the data were still very US
specific in terms of the VOC/NOx ratios and so could not be generalised and applied in
other countries. In parallel, with the simulation studies mentioned above, Atkinson
and co-workers refined their method to determine the OH reactivity from relative
rate measurements in chambers and developed structure reactivity relationships to
calculate rate coefficients for OH radical reactions with VOCs (Atkinson 1986, 1987,
Kwok and Atkinson 1995). Further developments in simulation work included work
by Seinfeld and co-workers in the mid-1980s, to study secondary organic aerosol
formation from the oxidation of aromatic and biogenic hydrocarbons via the use of
a 65 m® outdoor chamber made of FEP Teflon (Pandis et al. 1991).

In Europe, the first development of a large, highly instrumented chamber was
led in the mid-1990s, by Becker, Milldn and co-workers who built the EUPHORE
(European Photoreactor) outdoor chamber in Valencia, Spain. In fact, EUPHORE
consists of two chambers made of FEP Teflon foil, each of which has a volume of
200 m? (Becker 1996). This facility became a centre for European laboratories to
work co-operatively on mechanistic, kinetic and ozone formation studies using either
controlled starting materials or real exhaust gases from gasoline and Diesel engines.
The EUPHORE chambers were equipped with a comprehensive suite of analytical
instrumentation, including in situ detection of the key radicals HO, and OH using
laser-induced fluorescence measurements.

In 2000, the group of Wahner at Forschungszentrum Jiilich, Germany, built a new
double walled outdoor chamber called SAPHIR (Brauers et al. 2003), which has
a volume of 280 m?, see Fig. 1.3. The double wall made of FEP Teflon foil allows
studies of oxidation processes at low NOy concentrations (below 1 ppbV). The Jiilich
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Table 1.2 Indoor chambers without light sources or irradiated by black lamps or solar simulators

up to the year 2000
Year References and location Description Application
1968 Groth et al. (1972) Bonn Dark chamber 220 m?, Without light sources, for
stainless steel (high low pressure studies
vacuum)
1972 Niki et al. (1972), Dearborn | 150 I Pyrex Kinetic and mechanistic
studies
1975 e.g. Doyle et al. (1975), 6 m3, evacuable, Photooxidant and kinetic
Riverside thermostated, FEP? coated | studies
aluminium
1979 Akimoto et al. (1979a), 6 m> evacuable, Photooxidant studies
Tsukuba thermostated, FEP coated
aluminium
1980 Winer et al. (1980), Los 6 m> evacuable, Photooxidant studies
Angeles thermostated, FEP coated
aluminium
1981 Barnes et al. (1979), 420 1 Duran glass, Gas phase studies
Wuppertal evacuable, thermostated —
50 to + 50°C
1982 Joshi et al. (EPA), Research | 440 glass reactor Photooxidant studies
Triangle Park
1986 Barnes et al., Wuppertal Quartz glass 1100 1, Gas phase and aerosol
evacuable, thermostated O | kinetic and mechanistic
to + 25 °C studies
1986 Evans et al. (1986), 4 x 200 1 FEP bags Photooxidants studies
Australia
1988 Behnke et al. (1988), ca. 3000 1, Duran glass, Aerosol studies
Germany, Hannover, now thermostated —25 °C to
Bayreuth ambient temperature
1997 Mohler et al. (2001), 84 m?, thermostated —90 For trace gas, aerosol and
Karlsruhe to + 60 °C, AIDA cloud studies
1996 Wahner et al. (1998), Jiilich | 256 m?3, FEP wall cover of | Without light source,
a lab room for NOy chemistry
1997 Doussin et al. (1997), Paris | 977 1, glass Gas phase mechanistic
studies
1998 Cocker et al. (2001), 2 x 28 m?, 1040 °C Aerosol studies
Pasadena
2000 Carter et al. (2005), FEP, double wall Low NOy studies
Riverside

2 FEP fluorinated ethylene propylene
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Table 1.3 Outdoor chambers irradiated by sunlight up to the year 2000

Year References and location ‘Volume, wall material

1976 Jeffries et al. (2013), Chapel Hill 25 m3, FEP

1981 Fitz et al. (1981) 40 m3, FEP

1983 Spicer (1983) 17.3 m3, FEP

1985 Kelly (1982) 450-2000 1, FEP bags

1985 Jeffries et al. (1976), Chapel Hill 25 m3, FEP

1985 Leone et al. (1985), Pasadena 65 m3, FEP

1995 Becker (1996), Valencia 2 x 200 m?, FEP, EUPHORE
2000 ‘Wahner (2002), Jiilich 270 m3, FEP, double wall, SAPHIR

group did pioneering work in field measurements of OH and HO, concentrations
(Hofzumahaus et al. 2009), so SAPHIR is fully equipped with the most advanced
in situ radical measurement techniques (Fuchs et al. 2012a, b). A smaller double
wall indoor chamber was recently built by Carter in Riverside, to study tropospheric
oxidation processes at low NOy concentrations.

Two other chambers were built in Germany, at the same time, for the study of
aerosol processes. In 1986, Zetzsch and co-workers built a 3000 1 Duran glass indoor
chamber in Hannover, covered inside with FEP, and irradiated by solar simulators.
This facility has been moved to Bayreuth. In 1987, Schurath and co-workers started to

Fig. 1.3 The double wall outdoor chamber SAPHIR in Jiilich, Germany (© “Forschungszentrum
Jiilich/Sascha Kreklau™)
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operate the 84 m? aluminium chamber AIDA (Aerosol Interaction and Dynamics in
the Atmosphere) in Karlsruhe, which has homogeneous temperature control between
+ 60 °C and —90 °C for trace gas, aerosol and cloud process studies. Other groups
also now operate medium sized chambers.

A milestone for the European landscape of atmospheric simulation chambers
was the implementation of the EUROCHAMP initiative, which started in May 2004
with the goal of joining together the existing European facilities into one integrated
infrastructure of atmospheric simulation chambers.

The integration of all these chamber facilities within the framework of
EUROCHAMP, followed by the EUROCHAMP-2 and EUROCHAMP-2020
projects, promoted the retention of Europe’s international position of excellence in
this area and it is unique in its kind worldwide. The mobilization of a large number
of stakeholders dealing with environmental chamber techniques provided an infras-
tructure to the research community at a European level, which offers maximum
support for a broad community of researchers from different disciplines. Overall,
the EUROCHAMP projects fostered the structuring effect of atmospheric chemistry
activities performed in European chambers and initiated wider international collab-
orations by supporting transnational access activities. Nowadays these facilities are
fully available for the whole European scientific community and are exploratory
platforms within the new Aerosol, Clouds and Trace Gases Research Infrastruc-
ture (ACTRIS). The following tables summarize current chambers across the world
(Table 1.4) starting with the chambers of the EUROCHAMP consortium.

1.2 Investigations of Atmospheric Processes

1.2.1 Reaction Kinetics and Product Studies

Being the building blocks of the general atmospheric chemical mechanism, the study
of the kinetics of elementary steps and the related product distribution has been the
main application of simulation chambers. Involving pure gas phase conditions this
has been—and is still-often carried out in small photoreactors of a few hundred litres
or in small indoor simulation chambers. In the case of kinetics studies, Teflon bags of
several litres to a few cubic-meters working under atmospheric pressure and ambient
temperature under artificial irradiation (generally UV fluorescent tube) were often
used to apply relative rate methods (Brauers and Finlayson-Pitts 1997). Nevertheless,
the atmospheric fate of hundreds of various volatile organic compounds (VOC) was
also studied—and is still-in rigid chambers such as the one displayed in Fig. 1.4
(Barnes et al. 1987; Doussin et al. 1997; Etzkorn et al. 1999; Picquet-Varrault et al.
2001; Atkinson 2000). This systematic kinetic and mechanistic work has produced
over time a comprehensive database that has established the foundations of most
chemical schemes used in numerical models.
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Fig. 1.4 Example of a 1 m® indoor quartz chamber irradiated with UV fluorescent tube—the
QUAREC chamber from the Bergische Universitidt Wuppertal-Germany. (© Bergische Universitét
‘Wuppertal)

1.2.2 Simulating Gas Phase Mechanism, Radical Cycles
and Secondary Pollutant Formation

Studies on the formation of secondary pollutants are generally conducted in large
outdoor chambers to avoid potential artefacts linked to a lack of realism in the irra-
diation and to minimize radical losses or conversion on the walls. Tropospheric
ozone production studies were hence the first to benefit from chamber application.
Nevertheless, for those studies to be of use for general modelling it is necessary to
disentangle chamber effects from directly applicable results. Such an approach has
led as early as the late 1970s to the first ozone isopleth diagrams, linking precursor
levels to ozone production (Dodge 1977; Jeffries et al. 2013). Interestingly, because
of the focus on photooxidants which is mostly driven by air quality legislation, oper-
ational model evaluation is often conducted by comparison with the results arising
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Fig. 1.5 Example of a large outdoor Teflon® chamber: the EUPHORE chamber—Valencia, Spain.
(© EUPHORE)

from experiments conducted in these types of large chambers (Carter et al. 1979;
Wagner et al. 2003; Bloss et al. 2005a, b; Carter 2008; Parikh et al. 2013).

Such chambers are made of FEP Teflon film, generally, several hundreds of cubic-
meters in volume and are often installed on the roof of a dedicated laboratory (e.g.
EUPHORE in Valencia, Spain Fig. 1.4 or Helios in Orleans, France) or in dedi-
cated shelter structures (e.g. SAPHIR in Jiilich, Germany Fig. 1.9 or UNC in North
Carolina, USA). Because of their size and their outdoor installation, these facilities
generally involve through-wall connections and inlets to connect the chamber with
a measurement laboratory often located below. They also include devices such as a
retractable roof to protect them from rain and wind. Temperature control cannot be
achieved in such chambers and air inside the chamber may be heated by metal plates
underneath the chamber when they are exposed to sunlight during the experiment.
This effect is reduced if there is no direct contact of the metal plate with the chamber
film and can be further reduced if the metal plate is cooled. Interestingly, even if their
size is a significant advantage to minimize wall effects (on both gas phase and partic-
ulate phase), wind induced movements of the Teflon film lead to charge build-up that
has the tendency to strongly reduce the physical lifetime of particle by drawing them
to the wall (McMurry and Grosjean 1985) (Figs. 1.5 and 1.6).

1.2.3 Aerosol Processes

Originally considered as a technical problem during early smog simulation exper-
iments, secondary organic aerosol (SOA) formation has since attracted very large
interest from the scientific community. The availability of instruments such as Scan-
ning Mobility Particle Sizers (SMPS), for the determination of particle number and
size distribution with a time resolution of minutes, helped to promote the rapid devel-
opment of experimental studies of SOA formation. This trend was further increased
when mathematical formalisms were proposed to extrapolate the SOA yield from the
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Fig. 1.6 Left: Example of a medium size indoor Teflon® chamber irradiated with UV fluorescent
tubes/Right: Typical SOA production from terpene ozonolysis experiment (adapted from Kristensen
et al. 2017)

high precursor concentrations used in chamber experiments to atmospheric condi-
tions (Odum et al. 1996). The volatility basis set (VBS) formalism proposed by
Donahue et al. (2006) was especially successful in providing a parameterization that
could be inserted in models (3D included) and has triggered a renewed interest for
chamber experiments from the modelling community. Both medium size and large
chambers, as well as indoor and outdoor facilities, are regularly used for SOA exper-
iments. Due to the multiphase nature of the processes studied and their even greater
non-linearity, there is a general effort to reduce the starting concentration of the
precursor to the ppb range (and sometimes below) in order to perform experiments
at atmospherically relevant chemical conditions. These low concentrations make the
results of these experiments very sensitive to wall effects on the gaseous species,
such as wall loss of compounds that could normally participate in the aerosol mass
or, on the other hand, the release of semi-volatile species. Further, physical wall
losses of particles can also be significant. The quantitative characterization of these
wall effects is still an open topic that requires a widely applicable formulation (see
Chap. 2). It also depends highly on the properties of the wall (conductivity, perme-
ability, reactivity, porosity...) in a context where the mechanisms involved are not
yet well understood. Consequently, the combined use of several types of chambers,
different in size but also made from different materials (Teflon film, glass, steel,
aluminium...), is highly desirable for SOA experiments conducted at more realistic
atmospheric concentrations of precursor gases. In parallel, a significant quantity of
work has been conducted to better represent semi-volatile wall losses in this diversity
of chambers (La et al. 2016; Krechmer et al. 2017; Lamkaddam 2017).

The contribution of simulation chambers to the understanding and quantification
of SOA and related impacts is not limited to yield measurements. A wide body of
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work has focused on both online and offline chemical characterization with the aim
of understanding the chemical composition of the SOA fraction but also the chemical
processes that govern the formation and aging of organic aerosol. As a result of the
amount of work carried out in medium size chambers, important breakthroughs have
been made in these topics such as the identification of oligomerization processes in
the aerosol phase (Kalberer et al. 2006), the chemical trends followed by oxidation
during SOA aging (Jimenez et al. 2009; Ng et al. 2011a, b; Kourtchev et al. 2016),
or the importance of auto-oxidation processes for the formation of SOA precursors
(Ehn et al. 2014).

New particle formation was long considered as a barely controllable step in
the formation of SOA during simulation chamber experiments. For reproducibility
purposes, in most of the studies focusing on aerosol yield, it is hence recommended
to use seed aerosol as a condensation medium in order to avoid nucleation. Neverthe-
less, dedicated chambers—often exhibiting a very low level of electrostatic charges
on the wall-have been used to investigate this important process that is possibly
controlling the number of cloud condensation nuclei in some parts of the atmosphere
(Bonn et al. 2002; Kiendler-Scharr et al. 2009a, b; Kirkby et al. 2011, Boulon et al.
2012). One of the challenges in studying the early steps of nucleation in simulation
chambers is, on the one hand, the ability to measure clusters and particles in the range
of 1 to 3 nm and, on the other hand, the reduced lifetime of particles smaller than
20 nm in enclosed vessels (see Sect. 2.5 for particle wall losses analysis). Indeed,
simulation chambers easily allow for aerosol lifetimes of several hours to a few days
for particles in the range of a few hundreds of nanometers but due to their very high
diffusivity, particles in the range of a few nanometer exhibit lifetimes in the range of
a few minutes only.

Because of the importance of nucleation related processes, a dedicated facility was
set-up at CERN: the CLOUD (Cosmics Leaving OUtdoor Droplets) experiment. The
CLOUD chamber is a stainless steel atmospheric simulation chamber of 26.1 m?
(Duplissy et al. 2010; Voightldander et al. 2012) operating under drastically clean
conditions and installed in the T11 beamline at the CERN Proton Synchrotron. In
order to study the effect of cosmic rays on nucleation, the chamber can be exposed to
a 3.5 GeV/c positively-charged pion (7+) beam from a secondary target. The results
from this atmospheric simulation chamber have led to significant advances in the
understanding of nucleation including the elimination of the role of sulfuric acid
alone as a nucleating agent, some insight on the effect of cosmic rays and the role of
low volatility products from biogenic oxidation in initial cluster formation.

As aerosols refer to the particulate and gas phase, the investigation of aerosol
processes in atmospheric simulation chambers also includes studies of heterogeneous
processes. Prominent examples of systems studied include the chemical aging of
aerosols and formation of brown carbon (e.g. Laskin et al. 2015) and the uptake of
ozone on organic aerosol such as SOA formed from limonene ozonolysis (Leungsakul
etal. 2005; Zhang et al. 2006). The N, Os uptake coefficient on different particle types
and the influence on gas phase oxidant levels were excessively studied in the Jiilich
indoor aerosol chamber (Mentel et al. 1996; Folkers et al. 2003; Anttila et al. 2006).
More recently it was shown in atmospheric simulation chambers that levoglucosan,
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traditionally utilized as a source tracer for biomass burning aerosol, is reactive in
the atmosphere (Hennigan et al. 2010, 2011; Sang et al. 2016; Bertrand et al. 2018;
Pratap et al. 2019).

1.2.4 Cloud Processes

While “cloud chambers” have existed for a very long time, mostly to study the
microphysics of fog and clouds, the past few decades have seen emerging chamber
facilities which can generate clouds and fog under sufficiently clean conditions that
multiphase chemistry, transformation at the droplet interface and cloud microphysical
processes can be studied (Stehle et al. for the DRI chamber 1981; Hoppel et al. for the
CALSPAN chamber 1994; Mohler et al. 2001 for the AIDA chamber; Duplissy et al.
2010 for the CLOUD chamber; Wang et al. 2011 for the CESAM chamber; Chang
et al. 2016 for the Pi Chamber). All of these chambers are made of metal-mostly
stainless steel (except for AIDA where the walls are made of aluminium)—because
one of the most common protocols to generate a cloud is to perform a quasi-adiabatic
expansion through a relatively fast decrease of the total pressure (from a few second
to a few minutes) with or without controlling the wall temperature. For instance, the
AIDA chamber allows for generating liquid droplets, mixed-phase (droplet and ice)
and pure ice clouds. Further details can be found in Sect. 8.1 (Fig. 1.7).

These facilities have opened the door for realistic studies of cloud microphysics
in the laboratory. The studies, which have been enabled due to careful control of
the initial and boundary conditions, include investigations into the cloud condensa-
tion nuclei (CCN) and ice nucleation activity of various aerosol particles (Wagner
etal. 2011; Henning et al. 2012; Hoose and Mohler 2012), homogeneous freezing of
supercooled solution droplets (Mohler et al. 2003), scattering properties of ice crys-
tals (Jarvinen et al. 2014; Schnaiter et al. 2016), and the effects of non-precipitating
water clouds on aerosol size distributions (Hoppel et al. 1994).

In parallel, a whole field of activity has been opened with the ability to study chem-
ical transformations at the interface of droplets or even in the suspended aqueous
phase. Using this approach, sulfate formation from the multiphase oxidation of SO,
has clearly attracted the most attention (Stehle et al.1981; Miller et al. 1987; Lamb
et al. 1987; Hoyle et al. 2016), but more recently, aqueous SOA formation from
isoprene oxidation products (Brégonzio-Rozier et al. 2016) and brown carbon forma-
tion from fog processes of functionalized organics (De Haan et al. 2018) have also
been investigated.
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Fig. 1.7 Left: The AIDA facility at the Karlsruhe Institute of Technology with an 84 m? aluminium
chamber. Trace gas, aerosol and cloud experiments can be performed in a wide range of atmospheric
temperatures (+60 °C to —90 °C), pressure (1-1000 hPa) and humidity (sub- and supersaturated
with respect to liquid water and ice) conditions). Right: Typical evolution of pressure, temperature,
relative humidity, and cloud droplet diameter for an adiabatic expansion experiment in AIDA

1.2.5 Characterization and Processing of Real-World
Emissions

The development of atmospheric chemical mechanisms has been based on chamber
studies of atmospheric oxidation of individual compounds. Hundreds of species have
been studied following this approach and have contributed to the building of detailed
chemical schemes, such as the Master Chemical Mechanism MCM (website: mcm.
york.ac.uk). This effort is still ongoing to take into account new emissions and refine
the chemical module of large-scale models. Nevertheless, in parallel, chamber studies
that represent more realistic and more complex conditions are required to close the
gap between well controlled but simplified laboratory experiments and observations
in the real atmosphere.

Chamber studies, previously described here, have focused on chemical processes
occurring in the gas and aerosol phases and have usually been limited to the simplified
oxidation conditions and systems of selected precursors. More recent studies on
real emissions from combustion sources such as engines and wood-burning stoves,
or from natural emission sources such as plants or mineral dust, raise interesting
possibilities for more relevant investigations of atmospheric processes.

In these studies, chambers are coupled to real emission sources (plant chambers,
engines, wood burners, cooking stoves...) to study systems of real-world complexity.
As much as one loses the ability to fully understand processes because of the
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complexity of the starting mixtures, one gains in the realism of the impact and the
enhanced comparison with field measurements.

Experiments using real-world emissions involve complex sources that are either
so intense that they need to be diluted before being added to chambers (e.g. engines,
wood burners, cooking stoves) or do not require dilution (e.g. plants, sea spray,
air fresheners and other household products). Approaches to ensure the quantita-
tive transfer of all compounds of such complex emission blends into atmospheric
chambers are described in detail in Chap. 5.

Concerning the first category, these experiments involve primary pollution sources
whose aging is studied because of a potential formation of secondary pollution
worsening their primary effect. The experimental challenges here are to

a. reproduce the atmospheric dilution of primary emission (both gaseous and partic-
ulate matter) while remaining in measurable concentrations: generally, a dilution
factor ranging between 100 and 1000 are used (Platt et al. 2013, 2017; Gentner
et al. 2017; Pereira et al. 2018)

b. establish a chemical system mimicking atmospheric aging over a few days.

Large and medium size chambers can be used for these studies. For example,
Geiger et al. (2002) have connected a diesel engine fuelled with various diesel fuel
formulations and mounted on a motor test bed directly to the EUPHORE chamber.
In the dual outdoor simulation chambers, VOC mixtures containing a fixed ratio
of n-butane, ethene and toluene were irradiated by natural sunlight in the presence
and the absence of diesel exhaust. In this case, the large volume of the EUPHORE
chamber (ca. 200 m?) removed the need for a dilution system. For smaller simulation
chambers (Chirico et al. 2010; Pereira et al. 2018; Platt et al. 2013) a conservative
dilution system is needed to reduce the concentrations while keeping constant the
various ratios between gaseous and particulate species, volatile and semi-volatile
species. To do so, a specific aerosol diluter and heated lines are used. To preserve
the efficiency of the atmospheric processes, prescribed VOC-to-NOy ratios are used
which often require the addition of a VOC such as ethene, which is chosen for its
ability not to add to the particulate mass during its oxidation. Aging is, for example,
evaluated using the OH exposure index, defined as the cumulative OH concentration
over the course of the experiment. The calculation of OH exposure requires the use
of an OH tracer such as deuterated butanol-dg (Barmet et al. 2011) or the direct
measurement of OH (e.g. Zhao et al. 2018) (Fig. 1.8).

These studies have demonstrated that, when considering car emission related fine
particles, secondary pollution was as important as primary pollution and sometimes
larger (Geiger et al. 2003; Bahreini et al. 2012; Platt et al. 2013, 2017; Gentner
et al. 2017). In particular, the content of intermediate volatility organic compounds
(IVOC) has been identified as critical in the ability to produce SOA (Pereira et al.
2018). The work in simulation chambers has allowed testing of the various types of
vehicles, engines or fuel formulations that were already available on the market but,
the interest that this methodology has raised among car manufacturers, allows one to
hope for testing of future technology before its widespread deployment in vehicles.
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Fig. 1.8 Use of the PSI 27 m® Teflon chamber for investigating various real-world emissions
transformation in the atmosphere. (Figure reused with permission from Heringa et al. (2012) Open
access under a CC BY 3.0 license, https://creativecommons.org/licenses/by/3.0/)

Fig. 1.9 SAPHIR-PLUS the combination of one of the largest outdoor simulation chamber
(SAPHIR—Forschungszentrum Jiilich, volume: ca. 270 m>) with a controlled plant growing unit

A similar methodology can be applied to biomass combustion emissions. Consid-
ering the importance of this family of emissions, sources such as in-house open
fires, agricultural burning, modern stoves or even barbecue emissions have been
injected in a simulation chamber and aged in order to better quantify the extent
of secondary pollution relatively to primary emission (Tiitta et al. 2016; Bertrand
et al. 2017; Bhattu et al. 2019). Not only do these studies allow evaluation of the
environmental impacts of combustion of various fuels (e.g. logwood, pellet, straw),
types of combustion technology (e.g. stoves) and the various burning regimes (such
as flaming or smouldering), but they also allow identification of molecular tracers
and mass spectral signatures that can be monitored in the field to improve emissions
inventories.
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For experiments involving the atmospheric processing of plant emissions, the
key challenge is not the dilution as these emissions are diffuse enough, but rather
the preservation of their representativeness. Indeed, as living organisms, plants are
sensitive to their environmental condition and any unwanted factors such as water
stress, mechanical stress, biotic stress, oxidative stress or other abiotic stress from air
composition may affect the composition and amount of their emissions (e.g. Kleist
et al. 2012; Mentel et al. 2013; Wu et al. 2015; Yli-Pirila et al. 2016; Zhao et al.
2017). Consequently, for studies involving plants, the plant growing facility as well
as the emission transfer system have to be the subject of extreme care.

In SAPHIR-PLUS for example (see Fig. 1.9, Hohaus et al. 2016), the photo-
oxidation of Pinus sylvestris L. (Scots pine) emissions were reacted and aged by
ozonolysis in the presence of sunlight (Gkatzelis et al. 2018) which has allowed
parameterization of the SOA production from these real plant emissions following
the volatility basis set (VBS) formalism (Donahue et al. 2006). In a9 m? temperature
controlled Teflon simulation chamber, run in batch mode at the University of Eastern
Finland, Failo et al. (2019) studied SOA formation from healthy Scots pine emissions
and from the same plants infected with aphids. The aphid stressed pine were shown to
emit more linear sesquiterpenes than healthy ones with significant effects on the SOA
yields. Wyche et al. (2014) investigated in the Manchester Aerosol Chamber (MAC),
the differences in SOA formed from predominantly terpene versus predominantly
isoprene emitters. So far only very few studies have examined SOA production
from the full range of VOCs made by plants. Since it was shown that the individual
contributions of VOC in mixtures interact in non-linear ways in SOA formation
mechanisms (Kiendler-Scharr et al. 2009a, b; McFiggans et al. 2019), there is a
strong need for more studies exploring plant emissions.

1.2.6 Mineral Dust

aerosols are another key player in the atmospheric system. These particles contribute
to the aerosol radiative effect and can act as cloud condensation nuclei (CCN) as
well as ice nucleating particles (INPs). Mineral dust particles can deliver soluble
elements needed for the development of oceanic life and eventually modify the CO,
content of the atmosphere. Altogether, these kinds of aerosol particles affect Earth’s
weather and climate. Desert dust also affects human health, as an irritating agent
at high concentrations causing respiratory diseases, as well as a vector for bacteria,
viruses and possibly for severe infections like meningitis.

During transport, mineral dust can mix with air pollution and undergo chemical
transformations that may affect their basic properties (composition, optical prop-
erties, CCN/IN activities, solubility...) and therefore their atmospheric impacts.
Further, the multiphase chemistry occurring at their surface may also affect air
composition. All these reasons have recently led a small number of research groups
in the chamber community to apply the experimental simulation methodology to this
science topic. This application implies solving various issues.
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The first issue is the representativeness of the generated dust aerosol with respect
to the atmosphere. Airborne mineral dust is a mixture of several minerals whose
proportions change depending on the properties of the parent soil and wind speed.
It forms an aerosol of an extended size distribution (extending from hundreds of
nanometers to tenths of micrometers) that does not necessarily reflect the miner-
alogy of the soil due to the size-dependence fractionation between the soil and the
aerosol phases that occurs at emission. There is hence a technological challenge in
reproducing the dust generation from the soil process so that both the mineralogical
composition and the size distribution are realistic (see Sect. 5.2). The global diver-
sity of the mineralogical composition of natural parent soil is not reproduced by the
commercially available minerals or standard mixtures. As much as possible, research
tries to face this diversity by generating dust from natural soil collected across the
world (Linke et al. 2006; Mohler et al. 2008a; Connolly et al. 2009; Wagner et al.
2012; Di Biagio et al. 2014, 2017a, b, 2019; Caponi et al. 2017), complementing and
augmenting the many studies with model mineral dust such as Arizona Test Dust
(Mohler et al. 2006, 2008a, b; Connolly et al. 2009; Vlasenko et al. 2006) or pure
minerals such as illitte (Mohler et al. 2008a, b) kaolinite (Tobo et al. 2012), hematite
(Hiranuma et al. 2014) or Feldspar (Mogili et al. 2006, 2007; Atkinson et al. 2013).

Another critical issue for the study of mineral dust in simulation chambers is
the reduced lifetime of these aerosols. Indeed, simulation chambers easily allow
for aerosol lifetimes of several hours to a few days for particles in the range of
a few hundreds of nanometers, but particles in the range of several micrometers
undergo rapid sedimentation. As a consequence, in the absence of active resuspension
processes, their lifetime in enclosed vessels is reduced to a few minutes only. This
makes it difficult to study chemistry at the surface of the coarse fraction of mineral
dust, but it is an advantage when one tries to reproduce the physical aging of dust
plumes in the atmosphere. In fact, chamber experiments of a couple of hours duration
can reproduce modifications to the size distribution of airborne dust that takes place
over 2-3 days of transport (Di Biagio et al. 2017a, b). Chambers are therefore an
emerging tool of choice to study the hygroscopicity and optical properties of mineral
dust or the chemistry in the presence of the fine fraction only.

To date, most of the published results from chamber studies involving mineral
dust have focused on their direct and indirect radiative effect. A large number of ice
nucleation studies have been carried out at the AIDA chamber and LACIS (Leipzig
Aerosol Cloud Interaction Simulator) on surrogate dust left bare (Mohler et al. 2006,
2008a, b; Tobo et al. 2012; Hiranuma et al. 2014; DeMott et al. 2015; Niedermeier
etal. 2011, 2015; Hartmann et al. 2016) or covered with inorganic (Augustin-Bauditz
et al. 2014; Niedermeier et al. 2011; Wex et al. 2014) and organic layers (Mohler
et al. 2008a, b). In the CESAM chamber, most of the research to date has focused on
optical properties and the derivation of complex refractive indexes in the long wave
spectral ranges (Di Biagio et al. 2014, 2017a, b) and in the UV-visible (Di Biagio
et al. 2019, Caponi et al. 2017).
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To date, the number of studies of chemical reactivity at the surface of mineral dust
in simulation chambers is rather limited due to the above-mentioned difficulties. They
mostly involved ozone loss on the particles (Mogili et al. 2006) or SO, uptake and
reactivity (Zhou et al. 2014).

1.3 Bridging the Gap Between Laboratory and Field
Studies

Simulation chambers have been also used for the benefit of field experiments and
long-term atmospheric monitoring (Kourtchev et al. 2016). These cross-community
activities have first concerned instrumental development with a number of high
technology new techniques being developed or tested at simulation chambers
(see also 1.5). Prominent among these types of studies is the development of
new techniques dedicated to atmospheric radical measurement (Schlosser et al.
2007; Onel et al. 2017), new techniques involving advanced optical setups such as
optical cavities (Varma et al. 2009, 2013), the development of new advanced mass
spectrometry instruments (Docherty et al. 2013) and chromatographic procedures
for the elucidation of the aerosol organic fraction (Rossignol et al. 2012a, b).

1.3.1 Tracers and Sources of Fingerprint Studies

The use of simulation chambers for the benefit of field studies also includes the
identification of specific signatures for emission sources (especially for aerosol mass
spectrometry—see Aiken et al. 2008; Mohr et al. 2009; Kiendler-Scharr et al. 2009a,
b; Zhang et al. 2011a, b; Schwartz et al. 2010). It also involves the identification
of molecular tracers characteristic of specific processes. In this case, the ability
of chambers to study specific processes is valuably used to separate the effect of
the various potential oxidants or conditions. When well characterized, and found
to be sufficiently unreactive in the atmosphere, these tracers are then searched for
in the field to apply advanced apportionment procedures with the aims of not only
elucidating the extent of primary sources but also of secondary processes (Jaoui et al.
2007; Kleindienst et al. 2007, 2012; Zhang et al. 2012).

In addition, important work has been carried out in characterizing the atmospheric
tracers of primary sources such as levoglucosan or guaiacol (Hennigan et al. 2010;
Bertrand et al. 2018; Pratap et al. 2019) that were initially thought fairly unreactive.
This includes the use of stable isotopes as tracers for the extent of chemical processing
(Sang et al. 2016; Gensch et al. 2014).
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1.3.2 Instrument Comparison Campaigns

In addition to activities which involve generally one or only a few groups, large
instrument comparison campaigns gather the wider atmospheric science community
around chambers to characterize both established and emerging techniques using
the ability of simulation chambers to precisely control the environmental conditions,
while allowing different instruments to simultaneously sample from the same air
mass. Suspected artefacts can hence be intentionally amplified and the sensitivity of
the related techniques can be investigated and quantified. High precision water vapor
measurement (Fahey et al. 2014), NOy and NOy measurements (Fuchs et al. 2010),
oxygenated species measurements (Wisthaler et al. 2008; Apel et al. 2008; Thalman
et al. 2015; Munoz et al. 2019), radical measurements (Schlosser et al. 2007; Fuchs
et al. 2010; Fuchs et al. 2012a, b; Rddenas et al. 2013; Onel et al. 2017) or radical
reactivity measurements (Fuchs et al. 2017) have been compared in large campaigns
at chambers during the last 15 years.

1.3.3 Field Deployable Chamber

Recently a very innovative approach which combines the use of a simulation chamber
with field studies has been developed both in Patras (Greece) and in Carnegie Mellon
Institute (USA). It involves the use of portable simulation chambers directly in
the field. This strategy is based upon a concept experiment: use ambient air as
a starting point and allow the study of the evolution of atmospheric particulate
matter at timescales longer than those achieved by traditional laboratory experiments
(Kaltsonoudis et al. 2019).

This type of study can take place under more realistic environmental conditions
but they could appear as being contrary to the whole simulation chamber experiment
concept i.e. simplify and control the chemical system to better understand it. To
solve this apparent contradiction, the group that is developing this new approach has
developed a dual chamber strategy: after careful characterization of both chambers
and so after verifying that they are producing comparable results, both are filled with
the ambient being studied but one is “perturbed”. The perturbation can consist of an
additional oxidant injection such as ozone, addition of OH sources such as HONO
or H, O, or the addition of a compound potentially modifying the aerosol formation
scheme such as a-pinene (Kaltsonoudis et al. 2019). The information on the chemical
state of the sampled air is then deduced from the differential analysis of the results
from the perturbed and control chambers (Fig. 1.10).
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Fig. 1.10 Results from the operation of a dual field deployable simulation chamber during a
campaign in Pittsburg (USA). One chamber is perturbed with the addition of HONO as an addition
OH sources a submicronic aerosol mass b Sulfate content of sampled aerosol in both chambers
as measured by an AMS c Nitrate aerosol content d Ammonium aerosol content e submicronic
particle number concentration f Oxygen-to-carbon ratio in the organic fraction of the aerosol as
measured by an AMS. (Reused with permission from Kaltsonoudis et al. 2019, open access under
a CC BY 4.0 license, https://creativecommons.org/licenses/by/4.0/)

1.4 Emerging Applications

1.4.1 Air-Sea/lce Sheet Interaction

Recently, even more specific installations have been developed across the simulation
chamber community: a chambers dedicated to the elucidation of processes occurring
at the air-sea interface. It consists of chambers that include a reservoir at their bottom
where artificial or real sea water is kept under controlled conditions and in exchange
with the atmosphere above. In Lyon (France) such a chamber has been developed and
used to study the processes occurring in an organic film deposited at the water surface
and potentially affecting the simulated atmosphere composition. From a modelled
sea water containing, humic acid (1—10 mg L") as a proxy for dissolved organic
matter, and nonanoic acid (0.1 —10 mM), a fatty acid proxy which formed an organic
film at the air—water interface, this work has shown that a photosensitized production
of marine secondary organic aerosol could occur (Bernard et al. 2016). These new
results suggest that in addition to biogenic emissions, abiotic processes could be
of importance for the marine boundary layer. In East Anglia (UK), the Roland von
Glasgow Air-Sea-Ice Chamber (RvG-ASIC), named in honour of its late founder,
allows users to simulate sea ice growth and decay in a controlled environment.
The tank can be filled with artificial or natural seawater and can be capped with a
Teflon sheet to reproduce an experimental atmosphere. Here the main challenge is to
produce a realistic sea-ice from the cooling of the seawater tank (the whole facility
can be temperature controlled from +30 to —55 °C). This new facility has allowed
investigating the mechanisms governing the fate of persistent organic contaminants
in sea ice. It has shown that sea ice formation results in the entrainment of chemicals
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from seawater, and concentration profiles in bulk ice generally showed the highest
levels in both the upper (ice—atmosphere interface) and lower (ice—ocean interface)
ice layers making them available from transit toward other compartments or interface
reactivity.

1.4.2 Health Impacts

Even though the need to understand atmospheric chemistry has always been signifi-
cantly motivated by public health issues and solving these issues has been part of the
rationale for building many simulation chambers, until very recently, studies directly
focused on health were rather scarce. In early investigations, the carcinogenicity
and mutagenicity of chamber products were mostly evaluated after sampling of the
contents and applying rather targeted offline in-vitro tests such as the Salmonella
typhimurium plate-incorporation test (Claxton and Barnes 1981; Pitts 1983). In the
past ten years, important progress has been made with the rise of surrogate indi-
cators to qualify and quantify the potential health impact of particles such as the
Reactive Oxygen Species content (ROS) (Fuller et al. 2014). The development of the
corresponding instrumentation (Campbell et al. 2019) operating at high time reso-
lution (on-line) now opens the way to building links between these indicators and
the detailed chemical analysis often performed in the chamber. The goal is a better
chemical characterization of the actual molecules or molecular functions involved
in the oxidative stress.

In parallel, many groups have connected their simulation chambers with online
samplers to expose living organisms such as lung cells or epithelial cells to the
secondary pollutants produced in chambers (Savi et al. 2008; Mertes et al. 2013) in
an attempt to understand the mechanisms that link cell toxicity with smog chemical
and physical composition. This approach has led to important advances, especially
when coupled with chamber experiments involving real world emissions (Kiinzi et al.
2013,2015; Nordin et al. 2015). New directions have been explored by a few groups
(Coll et al. 2018) which involve the use of simulation chambers for the long-term
exposure (several days to several weeks) of living organisms such as murine models
while complying with ethical standards. This new development requires overcoming
substantial technical issues such as the stable and controlled production of secondary
pollution over several days in a chamber. Their methodological research is pointing
toward the use of indoor simulation chambers operated in batch mode. Development
of such platforms in full cooperation with colleagues in the toxicology and medical
communities may bring this health-related research to a better integration of the
living body’s functioning in the understanding of its response to air pollution.
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1.4.3 Bioaerosols

Bioaerosols have been studied for over a decade in cloud chambers to investigate their
potential ice nuclei activity (Mohler et al. 2008b). Given the public health problems
associated with bioaerosol contamination and the many unknowns about the survival
and transformation of bioaerosols, such as bacteria, in the atmospheric environment,
innovative chamber work has recently started to address these issues (Amato et al.
2015; Brotto et al. 2015). These studies have led to the development of an indoor
simulation chamber at the University of Genoa (Italy) where viable bioaerosol can be
directly collected using Petri dishes without perturbing the course of the experiments
while, in parallel, being online monitored by more classical techniques such as WIBS
(Massabo et al. 2018). The goal is to derive parameterization of survival and activity
of bioaerosols to eventually model the geographical extent of their contamination
area.

1.4.4 Cultural Heritage

Works of art, with highly sensitive colours and materials, may be exposed to harmful
levels of particulate matter in both indoor and ambient (i.e. outdoor) environments.
Over time, these particles can deposit onto the surface of the artwork, which may
influence the perceived colour. Reports over the concern of colour degradation to
paintings, buildings, and other pieces of cultural heritage due to exposure to air
pollution, acid rain, and other environmental factors have existed since at least the
late 1800s due to London smog events (Brommelle 1964). However, the physical
processes that connect exposure to particulate matter and the corresponding change
in perceived colour are unknown, and first attempts to experimentally quantify the
impact of particulate matter on painted works of art are only now emerging. The
FORTH art exposure facility makes such an approach by developing protocols for
the exposure of artwork to known levels of air pollutants and quantifying the effects of
exposure using a portable colourimeter model WR-10 (FRU). Further developments
in this emerging field will benefit from combining the expertise of exposure chamber
approaches and atmospheric simulation chambers.

1.5 Considerations on the Design of an Atmospheric
Simulation Chamber

The main objective of the guide is to serve as a reference for both new and current
users of atmospheric simulation chambers. However, some readers may be consid-
ering the construction of a new chamber and this section is aimed at them. Addition-
ally, it will provide to the new user, some insights into the design rationale of the
chambers they will be working with.
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This section mainly deals with the scientific issues and objectives that drive a
particular chamber construction, but of course, practical limitations such as space,
personnel and money will also influence chamber design. A particular focus is put
on the requirements for the design of chambers dedicated to the exploration of
atmospheric chemistry processes.

Atmospheric simulation chambers have several uses; firstly, they may be used to
provide a controlled and realistic environment to simulate aspects of the real atmo-
sphere or to test and compare field instrumentation. Secondly, chambers can be used
as extended laboratory apparatus. For example, several hundreds of elementary reac-
tions are involved in the complete oxidation of complex volatile organic compounds
(VOC) such as isoprene (CsHg) or aromatic hydrocarbons. Some of these processes,
particularly those occurring in the initial stages, can be studied individually by tech-
niques such as laser flash photolysis or discharge flow, but many cannot. Atmospheric
simulation chambers equipped with a wider range of instrumentation may either be
able to directly measure rate coefficients, provide information on the yields of stable
first-generation products, test entire chemical mechanisms or investigate aerosol
chemistry. The main purpose of the experiments also strongly influences the design
of the chamber.

1.5.1 Chemical Regime of Simulation Experiments

Whatever the objective of the chamber, the primary applications are to processes in
the Earth’s troposphere (extending from surface to the tropopause, where tropopause
height varies with latitude from ~10 km in polar regions to ~18 km in the tropics).
In the troposphere temperatures range from ~220-320 K and pressures of ~100—
1000 mbar are found. In addition, we are often interested in the interactions of
emissions (biogenic or anthropogenic) with the atmosphere and the interactions of
atmospheric pollutants with humans, animals, plants and the ocean. Most of these
interactions take place within the boundary layer, typically the first kilometre or
so of the troposphere and therefore for many applications, operation at pressures
close to 1000 mbar is appropriate. However, there is obviously still a wide range of
temperature variation within the boundary layer and so temperature variation may
be an important goal in chamber design. Relative humidity also varies over a wide
range in the troposphere and affects many physical and chemical processes in the
atmosphere. Therefore, depending on the application of the chamber, precise control
of humidity is also vital.

Besides variations in physical parameters, there are also significant variations in
the chemical composition desired in the simulation experiments that will influence the
chamber design. Most studies focus on regions of the atmosphere with significant
VOC emissions. The chemical oxidation of VOCs often includes the same initial
reaction steps; the reaction of a radical species, X, (where X = OH, NOs, Cl etc.)
leads via abstraction or addition of the oxidant to an organic radical, R, which then
rapidly adds O; to lead to an organic peroxy radical RO,.
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e.g.OH + RH — H,0 +R (R1)

R + O, — RO, (R2)

The atmospheric fate of the organic peroxy radicals depends on the relative abun-
dance of concentrations of reaction partners such as nitric oxide ([NO]) and other
peroxy radicals ([RO,/HO;]). In regions with high NOy concentrations, the loss of
RO; is typically dominated by the reaction with NO, generating an alkoxy radical
(RO). The exact fate of the RO depends on its structure, but most often products are a
carbonyl compound and hydroperoxyl radicals (HO,). Further reaction of HO, with
NO regenerates OH completing a reaction cycle (Fig. 1.10)

RO; + NO — RO + NO, (R3)
e.g.RO + O, — Carbonyl + HO, (R4)
HO, + NO — OH + NO, RS)

The by-product of the NO to NO, conversion in reactions (R3) and (R5) is ozone,
a significant secondary pollutant. This radical reaction chain is the only relevant
chemical source for ozone in the troposphere.

However, in environments with low NOy concentrations (typically [NO] < 50
pptv) such as the marine boundary layer or remote tropical or boreal forests, radical
recombination reactions become the dominant RO, loss channel.

RO, + RO; — ROH + R'CHO + O, or 2RO (R6)

RO, + HO; — ROOH + O; orRO + OH + O, R7)

These reactions terminate the radical chain. For specific RO, radicals, isomer-
ization reactions can be competitive. Products can be again RO, radicals that may
decompose and thereby form other radical species such as HO, or highly oxygenated
molecules could be eventually formed. For example, significantly enhanced OH
concentrations are observed in high isoprene and low NOy environments that can
be explained by radical production from isomerization reactions of isoprene derived
RO, (Peeters et al. 2014; Novelli et al. 2020).

Due to the importance of the fate of RO, radicals for the chemical reaction system
that should be investigated in the simulation experiments, considerations about the
NOy concentration that can be achieved in the chamber is important and can have
implications on the chamber design (Fig. 1.11).

The chemical composition of the troposphere is also impacted by surface inter-
actions such as bulk and aerosol surfaces. The interaction with bulk solid surfaces
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can be easily replicated in many chambers. Some chambers (e.g. ISAC) are specif-
ically designed to investigate interactions with liquid surfaces and sea-ice like the
Roland Van Glasow Air-Sea-Ice Chamber at the University of East Anglia. Aerosols,
primary or secondary, organic or inorganic, are the other main surfaces in the tropo-
sphere and studies involving aerosols and gas/aerosol/cloud interactions may require
specific design criteria and instrumentation.

1.5.2 Chamber Size

Whilst there may be specialized chambers for the investigation of interactions with
bulk surfaces, often bulk surfaces and their associated heterogeneous chemistry are
minimized to avoid that experiments are impacted by chamber wall effects. Mini-
mizing the surface to volume ratio (S/V) helps and might be the only way to suppress
chamber wall effects, if experiments are performed at atmospheric concentrations
of trace gases. For example, the large chambers EUPHORE (200 m?) and SAPHIR
(270 m*) have spherical and cylindrical shapes, respectively, to minimize the surface
to volume ratio and are advantageous compared to cuboid structures. Cuboid shapes
are commonly used for Teflon chambers as they can be easily mounted, illuminated
and physically accessed.

Most chambers have capabilities to inject reagents and maintain a homogeneous
mixture by operating fans. Clearly, the specifications of fans need to match the
chamber size to ensure efficient operation. The practical issues concerning logistics
are beyond the scope of this chapter, but it is worth highlighting that large cham-
bers such as AIDA, EUPHORE and SAPHIR have significant numbers of dedicated
personnel and additional infrastructure facilities for example for clean air generation
and power requirements.
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As well as providing a more realistic environment for simulations, large chambers
are ideal tools for field instrument comparisons. The volumes of gas sampled by some
instruments make comparisons in small chambers impossible and generally there is
more space for instruments. In situ comparisons in the real atmosphere have their
advantages, but instrument comparisons in large chambers ensure, that all instruments
sample the same chemical composition in a controlled environment and conditions
can be systematically varied (e.g. Dorn et al. 2013; Fuchs et al. 2010, 2017; Fuchs
et al. 2012a, b).

Whilst a small surface to volume ratio helps in ensuring that the chemical processes
studied are indeed dominated by gas phase chemistry and ensures the best represen-
tation of atmospheric processes, this may not be required for other purposes of
environmental chambers. For mechanistic or relative rate reaction kinetic studies,
the rapid turnaround time of smaller chambers, where several experiments can be
run per day, is far more efficient than performing such experiments in large cham-
bers where studies may only be possible for good weather conditions in the case of
outdoor chambers and may be limited to one experiment per day. Smaller chambers
(particularly if made from glass or metal) can be rapidly evacuated (and in some
cases heated) to clean the surfaces or can be even physically cleaned. Surfaces can
be coated to minimize wall effects. Furthermore, many small chambers are operated
in steady state conditions contrary to the batch mode operation of large chambers.

1.5.3 Materials

In general, there are three types of materials used in chambers: Teflon (or equiva-
lent), borosilicate glass, quartz, or stainless steel (see Table 1.4). All materials have
their advantages and disadvantages with respect to surface properties and physical
parameters (e.g. 7, p) that can be regulated in the chamber. Depending on the purpose
of the chamber, the possibility to simulate e.g. pseudo-adiabatic cloud expansion,
ultra-clean air conditions, or photolytic conditions representative of the troposphere
is a key driver of choices of material used.

Teflon (or equivalent). Due to their large size, all large (> ~80 m?) chambers are
constructed from fluoro-polymer plastics mounted on a metal frame. Such structures
are light but fragile and need to be protected. Outdoor chambers like SAPHIR and
EUPHORE have retractable protection, protecting the film from bad weather condi-
tions, but also allow for experiments in the dark. The Helios chamber (~90 m?) at
CNRS-Orleans can be rapidly moved in and out of a permanent shelter. All of these
chambers have a solid metal floor that can be used to place equipment such as FTIR
mirrors and fans. In EUPHORE this forms part of the chamber surface and is cooled
to prevent significant heating from solar radiation. In SAPHIR it is covered with
Teflon and can be lowered for experiments such that the Teflon film does not have
contact with the metal to avoid radiative transfer heating.



1 Introduction to Atmospheric Simulation Chambers and Their Applications 37

Teflon is also used in the construction of smaller chambers where glass or metal
would be alternatives. Teflon has significant advantages in terms of cost. Addition-
ally, as it is transparent, it is easy to fully illuminate the entire chamber with either
solar or artificial light. Although Teflon is chemically inert, it is commonly observed
that compounds can adhere to the wall and released in later experiments even if the
chamber had been cleaned in between. For example, nitrous acid (HONO) is released,
if humidified air is illuminated in Teflon chambers. The photolysis of HONO serves
as a source of OH radicals, but also leads to an increase of nitrogen oxide species over
the course of an experiment (Rohrer et al. 2005). The radical production from the
chamber HONO source can be sufficiently high for performing OH oxidation exper-
iments in large chambers as EUPHORE and SAPHIR (Fuchs et al. 2013). Smaller
chambers can be manually cleaned, but this is not possible for larger chambers.
As non-rigid structures, Teflon type chambers cannot be evacuated and are limited
to operation at ambient pressures. Rather than evacuation, residual trace gases are
removed by flowing clean gas through the chamber. For large chambers, this is typi-
cally done overnight. Smaller chambers can be enclosed in air-conditioned rooms to
provide some degree of temperature control and variation.

Pyrex/Quartz Pyrex or quartz chambers are used for volumes of ~1 m? or less.
Within EUROCHAMP, the chambers at Wuppertal and Iasi are of cylindrical shape
(~0.5 m diameter) and have a volume of approximately 1 m?®. The end flanges of
both chambers are metal allowing for easy access to instrumentation and provide a
fixed framework for mounting FTIR mirrors (similar structures are also used in some
Teflon type chambers too). Due to the fragility of glass, the chambers are mounted
on a vibration resistant framework. The advantage of quartz is that it allows for the
transmission of shorter wavelength UV radiation compared to Teflon (e.g. radiation
from mercury lamps emitting at 254 nm) which can be useful for specific radical
generation methods.

Whilst pyrex/quartz chambers are limited in size, their small size allows to
uniformly distribute artificial light sources around the chamber. The rigid construc-
tion also allows to evacuate the chambers, so that the chamber can be cleaned within
a short time between experiments and it can be operated at sub-ambient pressure.
Smaller chambers such as those at the National Centre for Atmospheric Research
(NCAR) in Boulder, US, are surrounded with air-conditioned liquid baths to perform
studies in which the temperature is varied. Quartz and pyrex are well characterized
and reasonably inert surfaces. Evacuation (in combination with heating if available),
provides rapid and efficient cleaning, in extremis, the end flanges of large chambers
can be removed to allow for physical cleaning.

Metal Chambers are typically of cylindrical shapes and have volumes of the order of
1-6 m?, with the exception of the 84 m* large AIDA chamber at Karlsruhe Institute of
Technology. Metal chambers are typically constructed from stainless steel and have
significant advantages in their robustness compared to other materials allowing for
rapid evacuation/operation at reduced pressure. Several systems are also equipped
with a temperature control system. Temperature control can be useful for two main
purposes; firstly, simulating the temperature variation both within the boundary
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layer at various latitudes/seasons and across the vertical extend of the troposphere;
Secondly, elucidating the temperature dependence of chemical mechanisms.

For metal chambers, flanges with inlets for instruments are easy to install either
in the main end flanges or elsewhere at the chamber. Although the end flanges of
chambers can be large, they typically bow slightly if the chamber is operated at
reduced pressure and therefore thought needs to be given on how to mount equipment
requiring high spatial precision (e.g. multi-pass mirror) onto the end flanges.

The two significant disadvantages of metal as the construction material (besides
the high S/V associated with the relatively small volume of most chambers) is the
potential reactivity of the surface and the difficulty in generating a uniform light
field. Surface effects can be accounted for (see Sects. 2.4 and 2.5) and efficient evac-
uation combined with overnight heating and/or oxidant exposure (e.g. O3) ensures
that the surface remains uniform over the course of an experimental campaign
(see Chap. 3). Illumination issues are discussed in the next section.

1.5.4 Light Sources

Photochemistry is one of the main driving forces for atmospheric processes, so that
whilst there are important dark reactions such as ozonolysis or nitrate radical (NO3)
initiated chemistry, light is required for most experiments.

The most obvious source, particularly if atmosphere-like conditions are simulated,
is solar radiation and for large chambers such as Helios, EUPHORE and SAPHIR
it is the only feasible option. Certain small/medium sized Teflon type chambers can
be operated with either solar or artificial radiation.

The transmission of solar radiation by Teflon is good over the entire solar spectrum.
Spectral radiometers inside the chamber can be used to measure the actinic flux (see
also Sect. 2.3), both of the incoming solar radiation and of light reflected/emitted
by the chamber floor. The disadvantage of outdoor chambers using sunlight is that
experiments are dependent on the weather, because large chambers made of Teflon
cannot be operated in windy conditions. Like in the atmosphere, the radiation field
in the chamber changes over the course of a day-long experiment, both due to the
change of the solar zenith angle and also due to short-term, transient variations caused
by clouds.

Artificial radiation is used for a majority of smaller Teflon chambers and all glass
and metal chambers. Depending on the main purpose of the chamber, light with
a broad radiation distribution, including simulation of the solar spectrum, can be
used or alternatively lamps with narrow outputs for example in the UV region (e.g.
mercury lamps with emission lines at 254, 308, 365 nm) can be used. For many
chambers it is possible to swap between different types of lamps.

For Teflon chambers lamps are often mounted on one side and the bank of lamps
is directed into the chamber. The often cuboid nature of such chambers makes it easy
to establish a uniform radiation field across the chamber. For glass chambers banks
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Fig. 1.12 QUAREC
chamber, Wuppertal, the
lights are mounted outside
the chamber providing a
uniform radiation field in the
actual chamber

of tubular lamps surround the cylindrical chamber. Carefully arranged, the radiation
field inside the chamber can be very uniform.

The chamber construction determines the UV cut-off wavelength for example
quartz is transmissive for wavelengths higher than ~200 nm. Arranging lamps around
the chamber such that a uniform radiation field is obtained is clearly not possible for
a metal chamber. Two approaches are typically used. For example in the CESAM
chamber, radiations from xenon arc lamps are directed into the chamber through
windows, whereas in the HIRAC chamber quartz tubes mounted inside the chamber
are used as a light source (Figs. 1.12, 1.13, 1.14, and 1.15). Radiation fields in these
chambers are less uniform; variations can be measured with a spectral radiometer
(Sect. 2.3) and instruments can be designed to sample from various locations to test
for significant spatial variations of trace gas and radical concentrations.

1.5.5 Instrumentation

The type of instruments installed at the chamber depends on the primary purpose
of the individual study, for example, aerosol and gas phase experiments will require
different measurements. Table 1.5 summarizes typical instrumentation and measure-
ment approaches utilized in chambers. Table 1.5 is structured into groups of instru-
ments according to measurement parameters. Specialized and custom-built instru-
mentation may require significant technical support to ensure their operation. In some
cases, high costs for commercial systems can balance low, long-term running costs.

It is important to consider what instrumentation is going to be applied to the
chamber in advance of the construction, e.g. to allow for sufficient space and air condi-
tioning. Although most commercial instruments and equipment that take samples for
later offline analysis can be easily placed at the chamber, some components that are
directly attached to the chamber (e.g. mirrors used for FTIR spectroscopy or special
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Fig. 1.13 CESAM
Chamber, LISA, the chamber
is illuminated from above

Fig. 1.14 FORTH chamber,
a Teflon chamber with side
wall illumination

Fig. 1.15 HIRAC chamber
showing internal
illumination and modelling
of resultant radiation field
across the chamber.
Reproduced from Seakins
(2010)

cavity ring-down systems) have to be considered in the early planning of the chamber
construction. Mirrors need to be mounted where they are unaffected by vibrations
from fans or pumps and the mounting needs to be rigid with respect to changes in
pressure or they need to be easily adjustable. Purge gas flows may be needed for
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optical systems to keep mirrors clean. Access to important equipment that may need
regular cleaning or service must be assured. Some instruments will extract significant
volumes of gas posing requirements on the chamber volume to ensure that dilution
does not become a major loss term. A mechanism of regulating the replenishment
flow to maintain a certain pressure or volume may be required.

There is a very strong synergy between chamber and field communities in terms of
instrumentation, with chambers being used to design, develop, validate and compare
field instruments. In general, instruments that work well in the field will be suitably
sensitive and robust to ensure efficient use within chambers.

Homogeneous mixing within the chamber has to be ensured. This can be tested
through a comparison of measurements that derive average concentrations across
the pathlength of the system and point measurements at a single location, as well as
through sampling from different locations. In addition, careful design of sampling
systems (material, residence time, heating) and location of the instrumentation to
minimize transfer distance limits the effect of sampling losses or transformation of
reactive or instable species during the sampling process.

Making sensitive measurements of complex systems is a challenging task and
even if carefully operated, systematic errors or inferences can occur. Having multiple,
complementary methods (or regularly participating in inter-comparisons) can help
identify these problems.

The above discussion focused on how scientific objectives and considerations
influence the chamber design, construction and instrumentation. This section can
only give a brief outline on considerations. This section can be used as an overall
introduction, but details can be found in technical papers and reports. There is no
perfect chamber design; each system has its own advantages in meeting particular
objectives, but also disadvantages. In fact, having a variety of chamber designs and
performing comparisons (i.e. reference experiments as detailed in Sects. 2.4 and 2.5,
Donahue et al. 2012) highlights issues that would easily be missed in standardized
approaches.

1.6 Conclusion

The original use of “smog chambers” for investigating chemical transformations in
the atmosphere, for quantification of the rate, extent and relevance of the various
possible pathways, for the identification of secondary pollutants remains just as
relevant today as it did many decades ago. Indeed, the models that utilise chamber-
derived data are still far from explicit, i.e. they do not include all of the processes that
are required to represent and forecast the actual atmospheric composition, and there is
still room for improvement, as well as the possibility of incorporating new chemistry
to address future challenges. At the same time, the field of experimental atmospheric
simulations has been extremely active over the past 15 years and considering the
number of new facilities around the world, there is little doubt about its vitality over
the next 15 years. A number of new methodologies and applications have risen,
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and they will bring the operational capacity of simulation chambers to a new level.
This community effort will allow a much broader range of scientific and societal
needs to be addressed, including the direct and indirect climate effect of atmospheric
pollutants, the impact of air composition on health and cultural heritage, as well
as on the various compartments of the Earth system. The application of simulation
chambers in some of these areas is still in the early stages, but rapid progress is being
made and already producing data that will help to open new ways of considering the
complex interplays between atmospheric transformation and impacts.
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