

scienc

Hybrid thermochemical cycle for cold and electricity cogeneration: experimental analysis of the process behavior and expander-reactor coupling

Hasan GHAZALE, Nathalie MAZET, Pierre NEVEU, Maxime PERIER-MUZET ThermHyVal project

36th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental impact of energy systems. *LAS PALMAS DE GRAN CANARIA - SPAIN* Laboratoire PROcedes, Materiaux et Energie Solaire

Table of contents

- 1. Introduction
- 2. Hybrid thermochemical process: concept and functionality
- 3. Experimental prototype: concept validation
- 4. Results & coupling analysis in different operating conditions
- 5. Numerical modeling
- 6. Conclusion

Introduction

Waste heat – Recovery technologies

Recovery technologies

- Recuperators
- Regenerators
- Absorption refrigeration systems...

Organic Rankine Cycle
Kalina cycle
Thermoelectric generators

Heat waste availability

- Experiencing a growth
- At low (< 100 °C), medium (< 600 °C) and high (> 600 °C) temperature
- Environmental damage contribution

Recovery technologies

Recuperators

Regenerators

Absorption refrigeration systems...

Organic Rankine Cycle
Kalina cycle
Thermoelectric generators

Heat waste availability

C

PROMES

As the industrial sector could operate in an intermittent behavior, processes involving the recovery and storage of heat waste to meet energy demands attract attention.

→ Hybrid thermochemical process: recovery – storage – production

Thermochemical cycles

Hybrid concept – functionality

Université Perpignan Via Domitia

Hybrid thermochemical cycle

Based on a reversible chemical reaction: decomposition & synthesis phases.

 $S' + \Delta h_r \rightleftharpoons S + \vartheta.G$

- The hybrid thermochemical process aims to:
 - Recover heat at low and medium temperatures (< 250 $^{\circ}\mathrm{C})$
 - Offer a storage at ambient conditions
 - Valorize the heat into cold
 - Valorize the mass (enthalpy) flow of gas into mechanical work
- Ammoniated salts, especially chlorides, are known solids that undergo thermochemical processes, since they are:
 - Stable with interesting thermodynamic properties
 - Abundant variety
 - Mono-variant equilibrium (P-T):

Concept validation

Developed prototype – Experimental proof of concept

Nominal experimental operating parameters

Sensitivity to electrical charge

Results – with the increase of R_{elec}

PROMES

Results – with the increase of R_{elec}

Université

Perpignan Via Domitia

CNrS

PROMES

No significant effect of the electrical charge on the cold power.

An optimum in the mechanical power of 6.4 W of the expander is noticed at 15 ohm.

Coupling analysis

1: Evaporator / 2: Expander inlet 3: Expander outlet / 4: Reactor

Expander's performance

For an isentropic expansion, with a volumetric ratio $R_v = 3.5$

 $R_{elec} = 0 \Omega$ $R_{elec} = 15 \Omega$ $R_{elec} = inf \Omega$ $P_{exh} = 1.98$
bar $P_{is} = 0.3 bar$ $P_{exh} = 2.08$
bar $P_{is} = 0.3 bar$ $P_{exh} = 2.26$
bar $P_{is} = 0.3 bar$

 $Maximum R_p \longleftarrow Minimum R_p$

→ An over expansion performance in the expander → Weak volumetric efficiency of the expander, around $\eta_v = 15$ % → The reactor's cooling is an important coupling key performance

Numerical analysis of the coupling

Evaporator – Expander – Generator – Reactor

Coupling equations

Hypotheses:

- Steady state
- Reaction's advancement: 50%

Homogeneous temperature & pressure in the reactor

- Constant isentropic efficiency of the expander
 - Constant adiabatic expansion coefficient

Variables	Equations
Supply pressure	$P_{su} = P_{sat}(T_{cold})$
Exhaust pressure	$P_{exh} = f_1(T_{htf,r}^{in}, \dot{m}_g, U_r)$
Mechanical power	$W_{mec} = f_2(\dot{m}_g, P_{su}, P_{exh})$
Rotational speed	$\omega = f_3(W_{mec}, k\varphi, R_{elec})$
Torque force	$ au_{mec} = f_4(W_{mec}, k\varphi, R_{elec})$

Numerical results validation

PROMES

Numerical parametric analysis

The increase in Ur leads to:

- Higher pressure ratio at the expander
 - Higher mechanical power

Conclusion

Conclusion

- The concept of hybridization of thermochemical cycles is proved experimentally.
- The cycle's behavior is analyzed in different operating conditions: sensitivity to electrical charge.
- The variation of $R_{\rm elec}$, fixing $T_{\rm cold}$, shows an optimum in the mechanical production.
- An important internal leakage in the expander is detected, where the reached volumetric efficiency is about 15%.
- A steady state numerical model is developed. Validations with the experimental results lead to parametric analysis of the coupling.
- A better heat transfer coefficient at the reactor's level enhances the mechanical production.

Thanks for your attention

