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COLLABVP: STRUCTURE-ENHANCED VP DETECTOR

Abdelkarim Elassam Gilles Simon Marie-Odile Berger

INRIA, Université de Lorraine, LORIA, FR-54600

ABSTRACT

We introduce in this paper a novel structure-enhanced VP
detector, CollabVP, which uses a multi-task learning frame-
work to estimate multiple horizontal vanishing points (VPs)
from a single RGB image. CollabVP exploits contextual
information and scene structures through masks of vertical
structures to accurately estimate the horizon line and VP po-
sitions. The proposed approach is not limited to Manhattan
worlds and can detect any number of VPs.

Index Terms— Vanishing points detection, Horizon line
estimation, Scene structure segmentation, Multi-task learning

1. INTRODUCTION AND RELATED WORKS

With a pinhole camera, a vanishing point (VP) is a point in
the image where parallel lines in 3D space appear to con-
verge. Traditional VP detection methods start by extracting
line segments from the image [1], then try to group them by
using an algorithm such as RANSAC [2], J-linkage [3], the
Hough transform [4] or more recently CONSAC, a learning-
based robust estimator [5]. Recent papers [6, 7] dealing with
man-made environments have shown that detecting first the
horizon line, with a CNN approach in Zhai’s paper [6], al-
lows constraining the search of horizontal VPs on this line
and greatly improve the accuracy of the VPs detected with
line segments. In order that any set of lines that meet acciden-
tally on the HL can generate a false positive, a robust method
based on the a-contrario methodology [8] was proposed by
Simon in [7], which leads to far fewer false positive and du-
plicate VPs than the optimization method proposed in [6].

Following the trend of learning-based methods, several
CNN-based approaches for VP detection have been proposed,
often with constraints on the number of detected VPs or on the
environment. In [9, 10], only a dominant VP is detected inside
a grid map of the image. Other works [3, 11, 12, 13] operate
under the assumption of a Manhattan World, assuming three
mutually orthogonal VPs, among which is the zenith. For
example, [13] introduced TLC, a transformer-based line seg-
ment classifier designed to classify a line segment into one of
the three Manhattan directions. A less strict hypothesis is the
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assumption of an Atlanta world where the zenith and an un-
known number of horizontal VPs are assumed. Several works
[6, 14, 15], including ours, rely on this assumption.

Other methods operate on the bounded Gaussian sphere
instead of the unbounded image plane as in Kluger et al. [16]
where VP detection is formulated as a multi-label classifica-
tion task on the sphere. Zhou et al. [14] presented NeurVPS, a
CNN with geometry-inspired convolutional operators for de-
tecting VPs. Using an image and a candidate point on the unit
sphere as input, their network predicts the probability of the
point being near a ground-truth (GT) VP. To exploit the geo-
metric properties of VPs as the intersection of parallel lines,
the authors developed an operator named conic convolution,
which explicitly enforces feature extractions and aggregations
along the structural lines. However, this approach relies heav-
ily on the initial random sampling on the sphere. Recently,
Liu et al. introduced VaPiD [15], a more efficient version
of NeurVPS that uses learned optimizers and a computation-
sharing scheme to process VP anchors efficiently. VaPiD [15]
performs better than all previous state-of-the-art VP detection
approaches. However, this network and NeurVPS have been
only evaluated against precision but not against recall on the
Holicity dataset [17], which prevents evaluating the number
of VPs found among those expected.

This paper proposes Collab-VP, a horizon-first VP detec-
tion method that exploits contextual information and struc-
tural VPs through a multi-task CNN. As in [14, 15], we con-
sider a CNN supervised by couples < image, V P >. We ad-
ditionally exploit the fact that man-made environments con-
tain structural VPs which correspond to the intersection of
vertical planes –whose orientations can be roughly inferred
with learning-based techniques– with the horizontal plane.
We thus propose a flexible two-branch framework (see Fig.
1) that outputs the horizon line, the distribution of VPs along
the HL and the masks of discretized orientations of vertical
structures. We finally propose a robust method for VP extrac-
tion inspired from [7] that jointly processes these outputs.

2. METHOD

2.1. Network architecture

The two-branch CollabVP architecture is shown in Fig. 1.
The DirectVP branch uses the ResNet50 architecture [18]



Fig. 1. Overview of CollabVP (better seen when zooming).

as a backbone, with the convolutional layers left unchanged.
Three separate softmax classifiers replace the original classi-
fier with 100 outputs each. The first two branches of DirectVP
estimate the distribution of the slope and offset of the HL, re-
spectively, while the third branch predicts the distribution of
the VPs along the HL. The HL is parameterized by its slope
angle θ ∈ [-π/2, π/2] and offset r ∈ [-∞, +∞], where θ is
the angle between the HL and the x-axis of the image and
r is the y-intercept of the HL with the y-axis of the image.
The x-coordinates of the VPs are sufficient to locate them on
the HL. The infinite space is squashed to the interval [-π/2,
π/2], using the inverse of the tangent function, to deal with
infinite VPs and span the entire parameters spaces of the off-
set and the x-coordinates of VPs. HL and VP detection are
considered a classification problem: the slope, squashed off-
set, and squashed x-coordinates of the VPs are converted into
independent categorical classes by dividing their respective
domains uniformly into N = 100 bins. A classification ap-
proach enables us to estimate a probability distribution over
possible HL and VPs. Though training is done with only one
VP for each image, several peaks can be obtained at the test
stage in the output scores, corresponding to multiple VPs.

Though the DirectVP branch may be used alone, it may
have difficulty detecting VPs associated with planar struc-
tures, such as facades, especially when they occupy a small
portion of the image (see section 3.4). Therefore, we intro-
duced a second branch, MaskVP, which is more specifically
dedicated to detecting VPs from vertical planar structures.
This problem is closely related to extracting the normal map
from an image. Still, the clustering of normals turns out to
be a particularly unstable task. For increased robustness, we
have therefore chosen to learn a U-net classifier that only de-
tects vertical structures and classifies their orientations into
N = 9 classes, with N − 1 orientation bins spread between
-π/2 and π/2, and one class for the rest. The masks with less
than 500 px are discarded. Finally, the two-branch CNN has
four outputs: the mask segmentation, the HL parameter dis-
tribution and the VP distribution.

2.2. Loss functions

To train the DirectVP branch, we use the cross-entropy
loss of the distributions of the HL and VP parameters:
Lparameter = − 1

N

∑N
i=1 yi.log(ŷi), where yi and ŷi are

discretized in N = 100 bins for each parameter. Mask seg-
mentation is also treated as a classification problem. For
each pixel i, the cross-entropy loss is calculated between the
predicted and GT masks and the final loss can be written as
LMask = − 1

M

∑M
i=1 yi.log(ŷi), where M is the number of

pixels in the input image. The overall losses are defined as:

LDirectV P = LSlope + LOffset + LV P (1)
LCollabV P = LDirectV P + LMask (2)

Most multitask CNNs are designed with branches shar-
ing a common encoder. However, our experiments with a
common encoder have proved disappointing. The network
appeared to rely heavily on vertical structures while ignor-
ing line cues useful for VP detection. For this reason, we
opted for an alternative strategy described below that explic-
itly leverages both tasks during inference and improves the
performance of each branch when compared to training them
separately (see fig.2).

2.3. VP detection and collaboration strategy

The HL is computed from the slope and offset corresponding
to the best scores of the related output distributions. VPs are
detected as local maxima of the third distribution provided by
DirectVP (Fig. 1). The probabilistic a-contrario (AC) frame-
work [8] is used for this purpose, which has proven relevant
to reliably detect modes of a histogram based on a parameter-
free multi-scale approach. It is robust to irrelevant peaks and
can detect peaks made of several consecutive bins. However,
it can happen that VPs obtain low scores, judged as not mean-
ingful by the AC method, mainly when they are associated
with small or very low-textured structures. These scores are,
in fact, judged not meaningful because other VPs obtain much
higher ones. But isolated from the others, i.e. considered
within an orientation interval provided by MaskVP, such VPs
can be recovered.

Therefore, our collaboration strategy adds VPs in inter-
vals found by MaskVP only if no VP was detected by the
AC method in these intervals. In that case, the value with
the highest score inside the mask is retained as VP (Fig. 1).
This procedure is illustrated in Fig. 2. The input image is
shown in Fig. 2a, with the three VPs finally detected in bold
stars. The output scores of DirectVP are shown in Fig. 2b,
with crosses showing the peaks detected by the AC method:
two VPs were found. By contrast, MaskVP predicts three VP
intervals (2c): two of them (blue and orange) contain a pre-
viously detected VP, but the third one (maroon) allows the
detection of an additional VP whose score was too low to be
detected by the AC method. This interval corresponds to the



(a) Input image with detected VPs. (b) Output of CollabVP. (c) Output of MaskVP. (d) Output of DirectVP (TA).

Fig. 2. Collaboration between DirectVP and MaskVP. GT HL and VPs (with circles) are in green. The detected VPs are marked
with a star whose colour corresponds to that of the mask. A square indicates that the VP was only detected by MaskVP.

small facade in the middle of the left building (2c). In com-
parison, Fig. 2d shows the VP distribution obtained with Di-
rectVP trained alone (TA). It can be seen that the third VP is
not detected, whereas a small peak is obtained when DirectVP
is trained together with MaskVP (fig.2.b).

3. EXPERIMENTAL RESULTS

3.1. Datasets and evaluation criteria

To conduct our experiments, we used the recently published
Holicity dataset [17] both for training and for testing, and we
also evaluated our model on the YU dataset [19], which pro-
vides GT VPs but lacks normal maps. The Holicity Dataset
consists of 54354 real-world images covering downtown
London. It provides labels for different 3D structures in ur-
ban environments, such as surface normal maps and VPs.
We adopted the split the authors proposed, containing 45032
training samples and 2504 validation samples. We applied
several data augmentation techniques to increase the training
dataset’s variety and quality. Firstly, we rotated the original
images to different angles that follow a normal distribution
with σ = 10◦ to simulate variations in the camera’s roll.
We also utilized homography transformations to introduce
changes in the camera’s pitch. Using these techniques, we
generated more diverse training samples, resulting in better
performance and improved generalization to new, unseen
images. The York Urban dataset (YU) [19] consists of 102
indoor and outdoor scene images, each with provided camera
parameters and GT VPs that satisfy the Manhattan world
assumption.

Our method was evaluated using the mean and median an-
gle errors. Also, the angle accuracy (AA) defined in [14] is
used to quantify the quality of VP detections. We compute
the angle difference between each predicted VP and the clos-
est GT VP. The AAθ value is defined as the area under the
angle accuracy curve between [0, θ] divided by θ. We calcu-
late AAθ using various precision levels θ as in [14, 15]. A
second metric called AA-R (in reference to the recall term) is
introduced to quantify the ratio of GT VPs detected with the
different methods. We compute the angle difference between
each GT VP and the closest predicted VP. The AA-Rθ indi-

cates the percentage of GT VPs detected at a certain precision
level θ and shows the method’s ability to detect multiple VPs.

3.2. Results on Holicity

Our method was compared on Holicity to state-of-the-art
line-based methods such as [7] and to recent learning-based
methods such as NeurVps [14] and VaPid [15], which are
the closest to our work since working on non-Manhattan
scenes. Since the source code of VaPid [15] is unavailable,
we conducted a comparison on Holicity by referring to the
tables provided in [15] and utilizing the same angular pa-
rameters (1, 2, and 10 degrees). The results presented in
Tab. 1 show that CollabVP outperforms other baselines re-
garding the precision of detected VPs, as indicated by the
AA and AA-R values. CollabVP achieves an AA1 of 30.9%
(AA2 of 42.8% and AA10 of 79.5%), surpassing the previ-
ous best performance of VaPiD by a relative improvement
(AAnew − AAold)/(1 − AAold) of 11.3% (14.5%, 16.6%).
Although the precision of NeurVPs [14] and VaPiD [15]
methods on Holicity is reported, they do not provide the
number of detected GT VPs (their method detects a fixed
number of VPs). In contrast, we report the AA-R metrics:
in the test set, there are 4973 GT VPs, and CollabVP detects
AA-R10 = 86.1% of them with a precision of less than 10°
(AA-R1 = 48.3%, AA-R2 = 65.1%). In comparison, Simon
et al.’s method [7] only detects 80.5% of them with such
precision (AA-R1 = 41.3%, AA-R2 = 56.6%). This demon-
strates the advantage of extracting structures with similar
normal vectors, as it enables the detection of a more compre-
hensive set of structural VPs. It is worth noting that although
our method’s mean error is slightly higher than VaPiD’s, it
detects additional points that are correct but not present in
the ground truth. These additional points can significantly
impact the mean error metric, as the angle difference be-
tween the predicted VP and the closest GT VP will be large,
inflating this average.

3.3. Results on York Urban

We also compared CollabVP to several state-of-the-art meth-
ods, namely J-Linkage [3], Simon et al. [7], Li et al. [20],
Wu et al. [21], Lu et al. [22], CONSAC [5], and NeurVPS



Method AUC - HL AA1 AA2 AA10 Mean Median
Simon et al. [7] 72.9 22.0 35.0 62.1 19.17° 1.61°
NeurVPS [14] - 18.2 31.7 62.1 8.32° 1.78

VaPiD [15] - 22.1 39.6 75.4 3.00° 1.19°
CollabVP 93.1 30.9 48.4 79.5 4.23° 0.84°

Table 1. Comparisons with baseline methods on HoliCity.

Method AA3 AA5 AA10

J-linkage [3] 40.2 50.5 64.1
Simon et al. [7] 40.1 58.2 77.5
Wu el al. [21] 44.3 61.4 77.4
Li et al. [20] 51.1 66.1 80.5
Lu et al. [22] 58.0 73.2 86.2
CONSAC [5] 62.1 73.7 84.1
NeurVPS [14] 39.9 50.3 65.0
Tong et al. [13] 65.5 77.1 87.4

CollabVP - trained on Holicity [17] 57.6 73.2 83.3
CollabVP - trained on NYU [23] + Holicity [17] 66.8 77.8 86.6

Table 2. Comparisons with baseline methods on YU [19].

[14], using the YU dataset [19]. The results are shown in
Tab. 2 with the same accuracy parameters (3, 5, and 10 de-
grees) as in [13]. When trained solely on outdoor scenes, our
method performs less than the current best performance [13],
but still better than previous state-of-the-art methods. How-
ever, training our method on a combination of indoor [23] and
outdoor scenes1 resulted in better generalization capabilities
(Fig. 3) and a relative improvement of 3.7% for AA3 (3.1%
for AA5) compared to the previous best performance [13].
Additionally, CollabVP detects 98.2% of the GT VPs with a
precision of less than 10° (81.5% with a precision of less than
2°). Notably, our method does not impose any constraints
on the number VPs or their orthogonality, yet it outperforms
methods that explicitly consider such constraints. It is impor-
tant to note that the Holicity dataset has a lower recall metric
(86.1% for 10°) compared to the YU (98.2%) due to the fact
that the GT VPs in Holicity are generated from 3D CAO mod-
els, which results in some VPs that cannot be perceived in the
images. In contrast, all images in YU were hand-labelled,
resulting in a higher recall metric.

3.4. Origin of the detected vanishing points

Our experiments on the Holicity dataset reveal that out of
the total detected VPs, 2573 were detected by both AC and
masks, achieving a precision of 82.0% for 5 degrees. When
relying on AC alone, 1039 VPs were detected, with an ac-
curacy of 79.2% for 5 degrees. Similarly, when using masks
alone, 1089 VPs were detected with an accuracy of 72.2%
for 5 degrees. These findings emphasize that points detected
using only masks are meaningful, even if their score in the

1The NYU dataset [23] contains 1449 images of indoor scenes with GT
surface normal maps and hand-labelled VPs. Following [5], we partitioned
the dataset into 1000 training samples, 224 validation samples, and 225 test-
ing samples. To increase the size of the dataset and to enhance the diversity
of the training dataset, we used data augmentation techniques similar to those
used with Holicity. We froze the pre-trained model’s weights (from Holicity)
and only retrained the output layers on NYU using a very low learning rate.

(a)

(b)

Fig. 3. Comparison of CollabVP (bold stars) with CONSAC
[5] (+) and Simon [7] (x). Green circles indicate the GT VPs.

VP distribution is low and were not directly extracted using
the AC framework. Points exclusively detected by AC typi-
cally correspond to VPs from buildings located far away or
behind occlusions, such as trees, while points solely detected
by masks generally correspond to small or elongated surfaces
without texture.

3.5. A sample result

Finally, Fig. 3a shows sample VPs obtained in an indoor
scene, compared with CONSAC [5] (black crosses +) and
Simon et al.’s [7] (black cross x) results. CONSAC [5] and
CollabVP outperform the line-based method of Simon et al.
[7] regarding prediction accuracy. Simon et al.’s performance
is affected by brightness and shadows, which are not han-
dled well by their method despite the scenes containing long
lines. Notably, two GT VPs were identified, but Simon et
al. [7] only detected one, while CONSAC [5] detected both.
In contrast, CollabVP detected all VPs with better precision
and accurately segmented the associated vertical structures
(Fig. 3b).

4. CONCLUSION

CollabVP accurately estimates the HL and VP positions by
leveraging contextual information and scene structures, out-
performing traditional line-based and learning-based meth-
ods. Our approach does not impose constraints on the num-
ber or orthogonality of VPs, yet outperforms methods that
do. This provides a more robust and flexible solution for VP
detection in various environments. Although the generated
masks are by-products, they could benefit robotics tasks such
as semantic SLAM. We plan to explore this direction in our
future work.
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