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Abstract

Renewable energy penetration in the energy mix has risen sharply in the last
decade, and brought with it an increased deployment of large-capacity storage
systems. The result is a need for optimised management strategies that inte-
grate and safely operate the whole energy production chain, including precise
models for each element that they control. This paper presents the results
of a study on detailed state-of-charge, thermal and degradation modelling
of Battery Energy Storage Systems for hybrid photovoltaic-battery power
plants. The objective is to quantify the error associated with not taking into
account a precise model for these parameters in industrial applications. The
use case of optimal battery scheduling in a capacity firming framework and
a low-voltage grid is considered to quantify the impact of these models. The
proposed models for these parameters were developed and then validated
against experimental measures from five hybrid power plants. The models
were then applied to calculate optimal battery schedules, and showed lower
than expected state-of-health loss values. The impact of including the ther-
mal modelling in the scheduling process was also observed to be weaker than
expected.

Keywords: Battery energy storage, Thermal modelling, State of health,
Degradation, Optimal scheduling, Capacity firming, Hybrid PV-battery
plant
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Nomenclature

λj Convection heat exchange
coefficient.

P k0→k1
i Power from resource k0 to

k1, where {k0, k1} ∈ k.

B Storage/Battery resource,
the aggregation of all bat-
teries j.

P k
i Power output from the en-

ergy resource k.

Cj
p Thermal capacity. P k

max Maximal power output from
the energy resource k.

ck Cost associated with each
energy source k.

P k
min Minimal power output from

the energy resource k.

Ej
0 Initial energy capacity. P S

i,in Solar power available.

G Electrical grid. Rj
int Internal resistance.

i Time instant i. S Solar resource.

j Unique battery identifier. S∗ Unexploited solar resource.

k Energy resource, where
k = G, S, S∗, B, j.

T j
i Internal temperature.

Li Local load. Tair Ambient air temperature.

1. Introduction

Battery Energy Storage Systems (BESS) represent a key factor to increase
weather-dependent variable Renewable Energy Sources (vRES) penetration
in the energy mix. The associated costs of the capacity reserve requirements
to meet peak loads and maintain grid stability for such scenarios have been
widely discussed over the years [1–4]. At the same time, continuous tech-
nological advances on lithium-based BESS and a nearly 90% price decrease
since 2010 [5] have propelled grid-scale storage integration [6–8].

Lithium-ion (Li-ion) BESS are particularly interesting for vRES appli-
cations thanks to their fast dynamic response, high energy density, high
efficiency and durability [9], which makes them a potential asset in new
markets using demand-response mechanisms, capacity firming frameworks
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and/or providing ancillary services [10, 11]. Schmidt et al. showed how
li-ion BESS could become the most flexible and cost-effective storage tech-
nology in a 10-year horizon [12], and it is expected that at least a total of 16
GWh will be installed by the end of 2050 in the US market alone[13].

It is this expansion into different applications and markets, particularly
for high capacity usages, that increases the need for a better understanding of
BESS and the behaviour of their components. Li-ion BESS are particularly
sensitive to thermal-related degradation, as operation in certain ranges of
temperature can impact the power output, capacity, self-discharge rate, and
the probability of thermal leakage [14, 15]. To reduce the occurrence of
these phenomena, Battery Management Systems (BMS) are implemented to
estimate the state of charge (SoC) and state of health (SoH), and to control
the BESS operation [16]. Different BMS approaches, either at cell, module
or system level, are used depending on the application[17], and new electrical
and control architectures are constantly being developed to improve BESS
performance and accuracy [18–20].

Regarding the numerical model used internally by BMS, several approaches
and techniques exist. Electrochemical and physical models are primarily
based on the Doyle-Fuller-Newman (DFN). Multiple approaches have been
reported in the literature [21] as these models often offer very high accuracy,
but their computational cost is high [21–24] and their implementation into
embedded solutions has been limited although it is slowly increasing [25–27].
Equivalent circuit models (ECM) [28, 29] and machine learning (ML) models
with state estimation algorithms [30–32] are more commonly used as they
offer faster implementation and lower computing requirements.

Another challenge that arises from BESS integration in new domains is
the unknown response the system can have in the short and long terms under
the load profiles and operation conditions [33]. The ensemble of advances in
BMS has allowed distributed systems operators (DSO) and vRES investors
to incorporate BESS under different grid-scale scenarios including storage
devices aggregation; however, the safety, optimal operation and profitability
of such systems over the lifespan of projects are ongoing subjects of interest
[34–38]. While multiple methods and objectives exist to achieve optimal
BESS operation for vRES systems, financial targets are generally expressed
in standard optimisation forms that are solved by search-based mathematical
solvers[39].

The analysis of the literature above shows that, although data related
to laboratory experiments on battery cell degradation are available, there is
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a lack of information about the actual behaviour of BESS in real operating
conditions. This makes it difficult to understand the impact of the thermal
component of the SoC estimation and the degradation of long-term battery
operation.

In this work, we present the development and impact of BESS state-of-
charge and temperature models on the operation of hybrid power plants com-
posed of a BESS system and a photovoltaic plant. The two operational use
cases of interest are: a PV capacity firming framework, which traditionally
receives less attention in the literature but which is essential in vulnerable
grids to increase the integration of large-scale PV systems [40, 41]; and a
battery aggregation scenario, a common target of battery energy manage-
ment systems [39]. In both, energy availability and expected revenues are
considered as a result of the optimal short-term scheduling process in the
light of the used BESS models. In previous research, the capacity firming
scenario has seen the application of stochastic and deterministic strategies
which aim to propose a solution to the PV uncertainty [40, 42, 43], but not
the behaviour of the BESS. The objective here is to showcase the impor-
tance of integrating advanced BESS models in short- and long-term revenue
projections for new hybrid vRES projects.

First, we recovered long series of measurements issued from operational
PV-BESS hybrid plants under a specific PV capacity firming framework. The
nature of these data is highly dependent on the different equipment manu-
facturers as well as the SCADA on site. Using the collected measurements, a
temperature predictor model was built and validated using the power profile
and recorded temperatures. A SoC model based on a power counter was
also parameterised, and an explicit integration of the battery temperature
was taken into account. Lastly, a SoH model was trained based on the total
throughput energy from the BESS.

The output predictions of the different battery models were then evalu-
ated and afterwards incorporated in two optimisation frameworks: the first
follows a specific PV capacity firming objective, and the second framework
aims to reduce the unmet load in a nodal point composed of several network-
attached storage systems and an RES plant, in this case a PV solar plant.
The resulting power profiles were then used to evaluate the expected battery
degradation, the financial profits, and the levelised cost of energy (LCOE)
while complying with the grid requirements. In these results, explicit inter-
est was given to the estimated internal temperatures, which are traditionally
ignored in such optimisation frameworks.

Preprint submitted to Journal of Energy Storage 4



In light of this, we can summarise the following three key contributions
provided by this paper:

• We provide experimental results on thermal behaviour and degradation
from several operational MW- grid-scale BESS under capacity firming
constraints. This contrasts with many studies in the literature that are
based on laboratory data on small-scale batteries.

• We define a framework of SoC, thermal and SoH models that are com-
patible with the data scarcity of industrial sites. Again, this is in con-
trast with most of the existing literature, which focuses on maximising
models’ accuracy in the presence of rich data sources.

• We assess how temperature and degradation consideration impacts
scheduling with and without flexibility requirements. As a result, we
can link the specific models to the value obtained at the end of the
model chain. Such inclusions have not been widely discussed in previ-
ous related studies.

This paper is structured as follows: after the introduction presented in Sec-
tion 1 above, the modelling is divided into two parts: models concerning
thermal behaviour and SoH degradation are presented in Section 2, with
a Section 2.1 establishing the data constraints imposed by industrial sites,
while the modelling for the two optimal scheduling scenarios used for the eval-
uation are presented in Sections 3 and 4. Finally, the results are presented
in Section 5 and conclusions are drawn in Section 6.

2. Battery Modelling

2.1. Observability of industrial BESS systems

This work focuses on industrial and grid-scale hybrid PV plants, and for
this reason we consider the limits and constraints featured in such installa-
tions. One particular constraint is the scarcity of in-depth operational data
from BESS and PV systems. In general, to maintain low costs and to avoid
warranty disputes due to equipment alteration, only the minimum required
sensors are installed, and most of the measurements come directly through
the different equipment communication interfaces. As a consequence, the
types of measurement available depend on the equipment and the data dis-
closure policy of the manufacturer. While efforts have been made to stan-
dardise the published data per kind of equipment [44, 45], manufacturers are
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not required to apply the standards nor to make all of the internally mea-
sured information available to the client, except for compulsory details when
adopting the standards. Furthermore, diagnostic procedures in both PV and
storage systems are not common due to the loss of revenue involved, and thus
the operational range of the data is restricted to the standard behaviour on
site.

As such, only a limited amount of measured variables can be consid-
ered to be constantly available independently from the equipment installed.
For solar inverters, these typically include the AC power measurements and
meteorological data (irradiation and ambient temperature), with the BESS
inverter offering in addition a state-of-charge (or equivalent) value. How-
ever, the state-of-health, DC and temperature measurements from the BESS
cannot be considered as always available. A general approach to industrial
in-situ BESS modelling must take into account these data availability lim-
itations, and primarily use the measurements that are or will be accessible
from the deployed system.

The models presented in the next sections reflect this application scenario.

2.2. Modelling battery temperature behaviour

When internal battery temperature measurements are available, the ther-
mal dynamic behaviour of the BESS can be modelled using the standard heat
equation in (1), in which the internal heat source is considered to be only
due to polarisation heat (2) and the external source considered is the con-
vection heat exchange with the ambient air (3)[46, 47]. Here, E and Vocv

represent respectively the operation voltage and the open circuit voltage. In
this approach, any heat exchange due to radiation is ignored given the fact
that, when located on the exterior, the BESS is protected from direct solar
radiation and often includes heat management systems.

mCp
dT

dt
=

dQint

dt
+

dQext

dt
(1)

dQint

dt
= I · (E − Vocv) (2)

dQext

dt
= λ · A · (Tair − TB) (3)

Using an equivalent circuit composed only of the internal resistance, the
polarisation heat can be written as the ohmic loss in (4) where I is the DC
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current in amperes. Incorporating this reformulation with the ambient heat
transfer, we obtain a generalised thermal expression as shown in (5) that
allows us to describe the intra-day behaviour of the battery by determining
the internal resistance Rint and the ambient heat exchange coefficient λ.
The heat capacity Cp could be obtained experimentally as it is not given by
the manufacturer, but in reality this is not feasible as the conditions and
tests would result in important unavailability periods for the BESS. Instead,
this value is incorporated directly into the internal resistance and the heat
exchange coefficients (R∗

int, λ
∗) as seen in (5).

Qpol = Rint · I2 (4)

dTB

dt
= R∗

int I
2 + λ∗

(
Tair(t)− TB(t)

)
(5)

To estimate the values of the parameters R∗
int, λ∗, we can distinguish

two scenarios: one with very low currents ( |I| << 1) – and thus we can
suppose a negligible internal heat generation in (6), and one with a high
current ( |I| >> 1)in which the internal resistance loss dominates over the
heat exchange with the environment (7).

dTB

dt
≈ λ∗

(
Tair(t)− TB(t)

)
∀I << 1.0 (6)

dTB

dt
≈ R∗

int I
2 ∀I >> 1.0 (7)

R∗
int =

∑
m

(
b+ ξm,+ SoCm + b− ξm,− SoCm

)
(8)

As the parameter λ∗ is solely dependent on the physical configuration and
location of the BESS, this value can be obtained directly by interpolation
from low current measurements.

For the internal resistance, given its dependency on the SoC and the
charge/discharge regime, the parameter can be expressed as the polynomial
R∗

int(SoC, b+, b−) seen in (8) to better reflect the battery’s behaviour. Here
the variables b+, b− represent binary values to indicate whether the power di-
rection goes to (-, charge) or from (+, discharge) the batteries. The procedure
shown in Algorithm 1 can be used to estimate the values of the parameters
ξm,{+,−} for R∗

int.
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Algorithm 1 Find R∗
int polynomial

1: procedure Rint(SoC,PB
+ ,PB

− )
2: Separate measurement datasets by regime: charge or discharge
3: For each dataset:
4: Separate continuous data by SoC range
5: Select continuous measurements with low I
6: Calculate average λ∗

SoC

7: Select continuous datapoints with high I
8: Calculate average R∗

int,SoC

9: Do a polynomial fit on R∗
int,SoC

2.2.1. Maximum temperature prediction

As the risks of thermal runaway and degradation increase with extreme
temperatures [14, 15, 48], it is important to predict the high or low temper-
atures that the battery cells can reach during operation. The focus in this
work was on the maximal temperature that can be reached since the minimal
temperature is practically limited by the ambient temperature.

The two approaches we propose for the prediction of the highest operating
temperature were as follows: the maximal temperature is obtained using 1)
an intra-day temperature estimation by eq. (5), and 2) a neural network that
uses the average discharge power, discharge duration, and ambient tempera-
ture as input features (accessible independently from the BESS). Thanks to
the regularity of the expected battery cycles in capacity firming frameworks,
more sophisticated techniques such as recursive neural networks were not
needed, although good results employing this method have been reported in
the literature [49].

2.3. The SoC model

The model used to estimate the SoC is based on determining the charge/discharge
efficiency ηI in the coulomb integrator shown in equation (9), but the AC
power is used instead of the DC current as it is a value that is always available
(observable) and independent from the BESS manufacturer. The initial bat-
tery capacity Ah0 is then represented as the capacity E0 in watt-hours. The
impact of the internal temperature was taken into account and incorporated
in the SoC estimator shown in (10) via the addition of parameter ηT . This
supplementary term can be seen as a temperature-dependant self-discharge
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rate which, in ECM terms, can be represented as a thermistor parallel to the
voltage source [50].

dSoC

dt
=

ηI
Ah0

I (9)

dSoC

dt
=

ηP P

E0

+ ηT TB (10)

As reported in the literature, the performance depends on the power flow
direction [51–53], and thus an approach similar to the one used for the inter-
nal resistance to estimate the battery’s operational temperature was used in
equation (11) to distinguish between the charge and discharge performances
(ηP,+,ηP,−).

dSoC

dt
=

ηP,+ P+ + ηP,− P−

E0

+ ηT TB (11)

The parametrisation can be done using standard operational data, re-
quiring only the AC power and the SoC published by the battery’s BMS. If
the internal temperature is available, then ηT can be also determined.

2.4. The SoH model

The ageing of battery cells can be separated into two different regimes:
cyclic and calendar ageing, both of which are consequences of solid electrolyte
interface (SEI) formation inside the cells [54]. Xu et al.in [55] expressed
these behaviours using two SEI growth parameters αsei, βsei and a unit cycle
deterioration function fd,1 in eq. (12), with N being the number of full
charge/discharge cycles the BESS has been subject to. This model is able to
reproduce the fast initial degradation due to SEI formation thanks to the first
term, and the continuous cycle-dependent degradation in the second. This
approach is also not exigent in operational data, as only a health indicator
and the AC power through the BESS is needed.

SoH = αseie
Nβseifd,1 + (1− αsei)e

−Nfd,1 (12)

In this formulation, the individual calendar ageing is not expressed ex-
plicitly as it is included in the cycle degradation fd,1 thanks to the regularity
and homogeneity of the cycle duration in the dataset used in this work. For
those cases where the case usage is not regular, it is possible to use expression
fd in eq. (13) to replace Nfd,1, where δi is the depth of discharge, σi is the
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average SoC, and Tc,i is the average temperature for the ith cycle. Tradi-
tional curve-fitting techniques can then be used to identify the parameters
in equation (12) when cycle-induced degradation experiments are available.

fd(t, δ, σ, Tc) = ft(t, σ̂, T̂c) +
N∑
i

nifc(δi, σi, Tc,i) (13)

A particular complication arises when working with operating hybrid sites
as the cost in production loss from BESS unavailability is not negligible
and degradation tests are rarely carried out. In addition, for large-scale
systems, the BESS manufacturer provides a long-term maintenance service
which includes regular repair and material replacement programs. Figure 1
shows the capacity retention (SoH) as reported by a BMS from the dataset
during the first year of operation after commissioning, clearly displaying the
off-line periods (SoH of zero), the malfunction of battery racks (decrease in
SoH down to 70%) as well as the introduction of fresh cells (steep increase in
SoH seen for instance in cycles 45 and 60). The fitting procedure implicitly
takes into account this human intervention, as only the absolute values and
their sequential evolution are used.

Figure 1: SoH and calculated loss in capacity as reported by the BMS used to
parameterise the SoH model.
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3. Optimisation of Hybrid PV Capacity Firming Sites

The PV capacity firming framework of interest in this study follows the
constraints established by the French Energy Regulatory Commission for
PV+Storage systems in insular French grids (AO CRE ZNI). The operation
and power injection of such power plants are subject to the following con-
straints: day-ahead and intra-day power engagements with slope constraints,
minimal and maximal power limits, and a remuneration scheme with penal-
ties when power injection deviates from the published engagement. The
evaluation time for these requirements is 1 minute, and the price per kWh is
defined by the constructor when answering the call for tenders. A bonus of
200 e/MWh is applied to all the energy provided during a period of 2 hours,
defined to be between 19:00 and 21h:00.

The possible power flow of such power plants can be visualised in figure
2. The injection into the grid PG

i aims to respect a previously declared en-
gagement Ei and is a direct response to the power injection from the solar
resource P S

i and storage P S
i . Two different optimisations can be made as

these power plants are subject to both day-ahead planning and real-time
operation. The first is the optimal engagement (schedule) given a PV pro-
duction forecast P S

i,in, and the second is the optimal production given the
real photovoltaic production and a previously defined schedule.

PG    B

PB    G

PS    G

G

S B

PS    B

Figure 2: Power flow in the PV + Storage capacity firming power plants featured in this
study.
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The problem of optimal engagement in this PV capacity firming frame-
work can be seen in equations (14). The constraints (14b-14c) establish the
contractual limits and change rates ∆+,− between consecutive engagement
values. The objective function aims to maximise the revenue given the de-
cision variable Ei and the penalty p dependent on the engagement and the
grid injection.

Because the engagement is equivalent to the expected grid injection, the
penalty p is expected to be zero as there is no deviation between the values.
However this may not always be the case, as the engagement could be con-
tractually obliged to produce a minimal value that is higher than what the
storage can physically deliver.

max
∑
n

cGi ∗
(
Ei − p

(
Ei, P

G
i

))
(14a)

s.t.

Ei,min ≤ Ei ≤ Ei,max ∀i (14b)

∆− ≤ Ei+1 − Ei ≤ ∆+ ∀i (14c)

Ei = P S,in
i + PB

i ∀i (14d)

PG
i = Ei ∀i (14e)

PB
i,min ≤ PB

i ≤ PB
i,max ∀i (14f)

PG
i,min ≤ PG

i ≤ PG
i,max ∀i (14g)

SoCi+1 = f(SoCi, P
B
i ) ∀i (14h)

0 ≤ SoCi ≤ 1 ∀i (14i)

In the case of optimal grid injection with a predefined engagement, the
driving decision variables are the solar and storage output power P S

i ,P
B
i . In

this case P S
i,in does not represent the expected solar production but rather

the real solar production that might need to be curtailed. This optimisation
problem, which also aims to maximise the revenue, can be seen in (15).
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max
∑
n

cGi ∗
(
Ei − p

(
Ei, P

G
i

))
(15a)

s.t.

PG
i = P S

i + PB
i ∀i (15b)

0.0 ≤ P S ≤ P S
i,in ∀i (15c)

PB
i,min ≤ PB

i ≤ PB
i,max ∀i (15d)

PG
i,min ≤ PG

i ≤ PG
i,max ∀i (15e)

SoCi+1 = f(SoCi, P
B
i ) ∀i (15f)

0 ≤ SoCi ≤ 1 ∀i (15g)

In both scenarios presented, the BESS SoC model plays a crucial role as
it determines the total output of energy and power available. By including
the thermal behaviour in (15f), the optimal engagement reduces the thermal
stress to maximise the total energy engagement. For the optimal operation,
thermal consideration would arbitrate between the penalty and the loss in
performance of the BESS.

4. Optimisation of an Ensemble of Grid-connected BESSs

To showcase the applicability of the BESS models developed under the
discussed PV capacity firming scenario, a different use case was also stud-
ied. The optimisation paradigm here aims to solve the problem of managing
multiple BESS connected to a low voltage (LV) network. The types of algo-
rithm that allow this operation have been referred to in the past as Network
Battery Aggregators (NBA) [56], and this name will be adopted in this work.

The scenario showcased in this NBA algorithm is one where, given a load
L at an instant i, we try to minimise the cost of energy by using the storage
systems and a vRES present in the network. In this case, the energy is
considered to come from a photovoltaic power plant P S,in

i , and it is expected
to be manageable to allow production curtailment if needed P S∗

i . Figure 3
summarises the possible power flows in the system.

The scenario here presented can recognise an arbitrary number j of batter-
ies, each with a unique thermal and SoC behaviour described by the functions
gj(T j

i , SoC
j, P j) , f j(T j, SoCj, P j) for which the parameters can be found
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L

G

S B

PG    BPB    G

PG    L
PS    G

PS    B

PS    L

PB    L

Figure 3: Power flow represented in the optimisation problem. The power superscripts
(source, destination) represent the direction of the power P , assumed to be always

positive or greater than zero.

as described in section 2. Furthermore, by repeating the optimisation with
an additional grid power requirement, the framework allows us to quantify
the cost of the local flexibility provided by the BESS. This is explained in
detail in section 3.1 below.

The inclusion of an estimation of the intra-day temperature in this frame-
work then results in the non-linear problem (NLP) seen in (16), which modern
solvers are able to solve. In this representation, PV curtailment is allowed
thanks to the constraint (16f), and BESS power is maintained between limits
by the constraint (16h). The temperature and SoC functions are defined by
their discrete versions, which can be seen in equation (5) for the former and
equation (11) for the latter.

min
n∑

i=1

(
cGi P

G
i + cSi P

S
i + cS∗i P S∗

i + cBPB
i

)
(16a)

s.t. PG
i = Li − P S

i − PB
i , ∀i, (16b)

P S
i = P S→G

i + P S→L
i ∀i, (16c)

PB
i =

∑
j

P j→L
i ∀i, ∀j, (16d)
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P S→B
i =

∑
j

P S→j
i ∀i, ∀j, (16e)

P S∗
i = P S

i,in −
(
P S→G
i + P S→B

i + P S→L
i

)
∀i, ∀j, (16f)

P j
i = P S→j

i − P j→L
i ∀i, ∀j, (16g)

P j
min ≤ P j

i ≤ P j
max ∀i, ∀j, (16h)

SoCj
i+1 = f(T j

i , SoC
j
i ) ∀i, ∀j, (16i)

T j
i+1 = g(T j

i , SoC
j
i ) ∀i, ∀j (16j)

However, when using the originally proposed SoC and temperature equa-
tions the non-linearity of the problem was too extreme and convergence was
found to be irregular and unreliable. A simplification of functions (16i), (16j)
was done to reduce non-linearity as follows: in the SoC equation the different
charge/discharge parameters were merged into a single round-trip efficiency
parameter in eq. (17), and for the thermal equation the internal resistance
was averaged over the SoC range of operation as in (18).

SoCj
i+1 = SoCj

i + ηTT
j
i + ηPP

j
i (17)

T j
i+1 = T j

i +R
∗,j
intI

j
i

2
+ λ

∗,j
(Text,i − T j

i ) (18)

4.1. Flexibility evaluation in the optimisation framework

As mentioned above, an effort is made to incorporate into the optimisation
problem and then evaluate the cost of flexibility offered by the storage, and
to measure the impact the thermal model would have on this scenario. To
accomplish this, the same structure as discussed in (16) was used, with the
addition of the constraint below:

PG
i = K ∀i ∈ te (19)

K = 0 ∀i /∈ te (20)

This last addition imposes the power injected into the grid at a value K
for each instant in the period of time te, which is equivalent to a request for
power injection or withdrawal from the grid. Respect of this constraint was
evaluated with the new objective function in (21)as the difference between
this value and the power flow from the grid, and thus in this period te the

Preprint submitted to Journal of Energy Storage 15



Table 1: Data availability for each of the BESS in the collection setups. Y indicates
available and N not available.

BESS Wh/Wc Ratio Thermal Model SoC Model SoH Data
#1 1.35 N Y Y
#2 1.43 N Y Y
#3 1.39 N Y Y
#4 1.36 N Y Y
#5 0.87 Y Y N
#6 0.87 Y Y N
#7 0.87 Y Y N

cost is associated with this unmet grid power request and the LCOE from
the resources engaged.

n∑
i=1

(
cGi |PG

i −K|+ cSi P
S
i + cS∗i P S∗

i + cBPB
i

)
(21)

5. Results

5.1. Experimental data collection setup

The BESS measurements were collected for the period between 2020 and
mid-2021 from 5 different hybrid photovoltaic power plants with different ra-
tios of installed capacity per installed PV power (Wh/Wc). These plants are
located on the island of Corsica and in continental France, and each one fol-
lows the PV capacity framework previously discussed in section 3. The data
are saved with a periodicity of one second by the local SCADA of each hybrid
plant developed on the platform Ignition, which itself recovers the informa-
tion through the protocol Modbus TCP/IP. All power-related measurements
were obtained directly from each production system’s communication inter-
face (BESS or PV plant), which results in datasets with different reliability
and refresh rates depending on the manufacturer. Table 1 summarises the
possible models and usages available per BESS.

The collected data were used both for model training/parameterisation
and validation, using a ratio of 2:1. For all the models, the data per second
were averaged to a timestep of 1 minute.

A detailed view of the information in such datasets can be seen in Ap-
pendix A; they were subject to filters to avoid aberrant days when the grid’s
point of common coupling (PCC) was unavailable.
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Table 2: Convection heat exchange coefficients

BESS #5 #6 #7

R∗
int 5.928x10−7 4.03x10−7 4.808x10−7

λ∗ 1.12x10−4 6.76x10−4 9.84x10−4

5.2. Thermal model error

The thermal parameters ξm,+, ξm,−, λ
∗ were calculated for those BESS

that provide internal temperature measurements by using the reported cur-
rent in DC. The convection heat exchange coefficient and average internal
resistance found for the batteries can be seen in Table 2.

The error resulting from using the parameters in the temperature model
was found to be less than 1 ◦C on average for a 1-day horizon. When using
the model to estimate 7 continuous days, the average error increased to ≈2
◦C. Figure 4 shows the estimated and measured temperatures for one of the
BESS. The general behaviour of the estimation follows the real measured
values, although the model is unable to reproduce more subtle changes as
the midday temperature increases.

Figure 4: Internal temperature prediction for one of the BESS.

5.2.1. Maximal Temperature Predictor

The intra-day temperature model in eq. 5 showed an average error of
2.31 ◦C for the maximal daily temperature. When using the trained neural
network maximal temperature predictor, these errors were reduced to an
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average of 0.9 ◦C. Figure 5 illustrates the results for both approaches and
displays the higher error of the intra-day temperature model.

(a) (b)

Figure 5: Maximal temperature prediction using intra-day estimation (a) and a neural
network technique (b).

5.3. SoC model

The improved SoC models showed a consistent upgrade in error reduction
when compared to a base model that uses the manufacturer base performance
value. The manufacturer’s reported round-trip efficiency fails to accurately
reflect the loss in performance in a charge regime, and thus generates a cu-
mulative error that tends to under-estimate the remaining capacity available
in the BESS. Table 3 shows the round-trip parameters found for the studied
BESS based on the procedure previously explained. In all scenarios, the real
round-trip efficiency was systematically lower than the manufacturer value.

Table 3: Round-trip efficiency found for each SoC trained model.

BESS #1 #2 #3 #4 #5 #6 #7

ηP 90.12% 88.52% 88.55% 87.85% 83.96% 80.95% 82.57%
Factory ηP 92.00% 92.00% 92.00% 92.00% 95.00% 95.00% 95.00%
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When considering a horizon of 7 continuous days, the error in SoC esti-
mation when using the factory-issued ηP can reach up to 30%. If the horizon
is constrained to a single day, this error is onaverage 12%. In both scenarios,
using the improved parameterised SoC model with no thermal dependence
reduced the average error by more than 60%, reducing the average daily mean
absolute error (MAE) to ≈3% for the 7-day period and ≈1% for a single day.
The error distributions for the 7-day periods can be seen in Figure 6.

Figure 6: RMSE distribution for 7-day continuous SoC estimation without thermal
consideration for each BESS.

5.3.1. SoC and thermal model coupling

As the SoC model in equation (10) uses the BESS temperature to deter-
mine a self-discharge component, any implementation in scheduling or control
processes would need to estimate the temperature component as well. This
was done using the model and parameters discussed in section 5.2 for the
relevant BESS. Nevertheless, the relationship between temperature and SoC
is not symmetrical: the temperature estimation was unaffected by the error
introduced by the SoC model, but the SoC did show an increase in accuracy
when using an estimated internal battery temperature. This change however
was very small (<1% in SoC error reduction), and opens the possibility of
explicitly ignoring the parameter if there is no need for a higher degree of
precision.
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5.4. SoH model

Figure 7: Predicted SoH for one BESS in a 2-year horizon. The blue dots represent the
training set, and the red dots the validation set.

Equation (12) was parameterised for BESS 1-4 since these systems provide
the data needed for the model. The results can be seen in Table 4, and they
describe the expected SoH evolution given the constant cycling behaviour
associated with the PV capacity firming framework that the sites follow. In
half of the cases, these values showed the strong expected initial degradation
linked to SEI formation, going up to 5% energy capacity loss in the first year
when considering an average of 1 cycle per day, as well as the subsequent
softer degradation.

The expected degradation over 10 years of cycles for one of the BESS can
be seen in Figure 7, where the broken green line indicates the maximal capac-
ity loss accepted by the manufacturer’s warranty. As previously mentioned
in section 5.1, the training data to determine the parameters presented here
came from the first year of operation. When reducing the amount of training
data to less than a year, the SoH model predicted behaviour similar to the
warranty loss because the SEI formation phase was still predominant.

5.5. Optimisation framework results

The development and programming of the different NLP problems pre-
sented above was done using Python’s Pyomo interface [57, 58], and the
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Table 4: Degradation parameters

BESS αsei βsei fd,1

#1 0.1440 148.85 6.02e-06

#2 0.002 0.961 1.2e-04

#3 0.4907 129.95 3.19e-06

#4 0.0490 149.99 1.93e-06

solver IPOPT was used to find the optimal solution [59]. The BESS mod-
els implemented were a simple perfect charge/discharge process (ηP = 1), a
factory SoC model (ηP =Factory-issued value), and an improved SoC model
(parameterised ηP ). This latter could be employed with or without explicit
thermal dependence by establishing the value of ηT .

The results from each framework and the specific constants taken into
account are shown below.

5.5.1. PV capacity firming with advanced BESS modelling

The BESS models studied in this scenario correspond to the improved
SoC model without thermal dependence. These values were compared to the
optimisation framework results when the factory SoC model is used. The
BESS used in this framework were systems #1-#4, as they offer both SoC
and SoH data to parameterise the models. For all sites, the initial SoH was
considered to be at 1 year of full cycles as estimated by its own SoH model.

The energy price cG was set to 100e/MWh, which is 50% of the bonus of
200e/MWh used in the AO CRE ZNI framework for any injection between
19:00 and 21:00. The timestep studied was set to one minute with a one-day
horizon as required by the framework. The PV production scenarios, as well
as a standard PV production forecast for the optimal engagement, can be
seen in Appendix B.
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Figure 8: Workflow used for the different optimisation scenarios.

The estimated remunerations were evaluated for the following scenarios:

1. The optimal engagement strategy given a PV production forecast.

2. The optimal operation given the previously determined engagement
and real PV production.

3. The optimal engagement and operation given the PV production.

The procedure can be seen in Figure 8. For all scenarios, the SoH loss
evolution between BESS models was evaluated.

5.5.2. Optimal engagement

The different expected revenues followed the charge/discharge perfor-
mance found in the improved SoC model. The change in expected revenue,
seen in Table 5, increased for the BESS, for which the discharge process is
more efficient than the value published by the manufacturer. Inversely, the
expected revenue decreased for those that exhibited a weaker performance in
the improved SoC.

Table 5: Revenue improvement by using the improved SoC model with an optimal
engagement given a PV production forecast.

BESS
#1 #2 #3 #4 #5 #6 #7

∆ Revenue 0.3% -0.7% -1.9% -1.9% -1.09% -1.47% -1.29%
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5.5.3. Optimal operation

Once an optimal engagement and revenue had been generated using the
PV production forecast, the expected maximal revenue based on this engage-
ment and an observed solar production was calculated. Figure 9 shows the
change in revenue observed per type of solar behaviour.

In all scenarios except for one BESS, the revenue decreased systemati-
cally when using the improved SoC model. This decrease in revenue due
to the BESS model was similar for both the cases of good and average solar
production, and the financial impact only surpassed 10% in the case in which
the solar variation was very high (bad case).

Good Average Bad
Solar Production Behavior

15.0%

10.0%

5.0%

0.0%

C
ha

ng
e 

in
 R

ev
en

ue

BESS
1 2 3 4 5 6 7

Figure 9: Expected change in optimal revenue given the improved SoC model under
different solar scenarios. The engagement was defined beforehand.

5.5.4. Optimal engagement and operation (known PV production)

In the case where the optimisation framework attempts to maximise the
revenue given a specific solar production, i.e. the maximal possible revenue
that a system could attain if given a perfect PV production forecast, the
improved SoC model decreased the revenue as in the previous cases (see
Figure 10). The average decrease in revenue for all sites and all weathers
employing the BESS model was 1.602%, which is 50% less impact than the
case in the precedent section 5.5.3.
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Figure 10: Expected change in optimal revenue employing the improved SoC model
under different solar scenarios. The engagement was defined given the solar scenario.

5.5.5. State of Health loss

In this optimisation framework, the loss of SoH was calculated for the four
BESS systems for which the SoH model in section 5.4 was parameterised. The
use of the improved SoC model instead of the factory-issued model increased
the expected capacity loss by >2.5%, and the increase per scenario and BESS
can be seen in Figure 11.

On a daily basis, the cost due to the SoH loss represented on average
0.0078% of the initial cost of the system. Using the improved SoC model
increased the cost to 0.0081%. For similar cycles during a 10-year period,
according to the behaviour expected from the AO CRE ZNI PV capacity
framework sites, the cumulative capacity loss would increase from 28.5% to
29.6%.

5.6. Battery aggregation optimisation

The developed BESS models shown in this work, although trained using
data from experimental sites that follow a very specific PV capacity firming
behaviour, were subjected to the battery aggregation scenario previously dis-
cussed in order to test applicability in other use-cases. For this scenario,three
distinct BESS models were tested when the coupled renewable energy source,
a PV power plant, has the different solar productions shown in Appendix B.
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Figure 11: Increased loss of SoH per BESS under the three different optimisation
objectives and with the improved SoC model. The base value is the SoH loss when using

the factory SoC model.

The evaluation timeframe was restricted to a 1-day horizon with a 10-
minute timestep, and the cost associated with each MWh per energy source
was set as follows: 400e for the grid, 70e for the photovoltaic plant, 140e for
unexploited photovoltaic energy, and 120e for the storage. The temporal
resolution was set to reflect the variable behaviour of the solar resource,
phenomena that are often softened when using longer timesteps. This is
important given that short-term power requirements from the BESS can be
masked in such timeframes and by consequence hide the thermal stress.

The BESS models used were the factory-issued SoC model (as a reference)
and the improved SoC model with and without temperature dependence.
They were implemented in the optimisation framework described in section
4 and results were analysed through the cost of energy to satisfy the local
load and the cumulative expected capacity loss from the BESS. Table 6
summarises the cumulative capacity loss for all attached BESS in the three
weather scenarios, and Figure 12 shows the specific SoH loss per BESS. The
initial temperature of such systems was similar (15.9, 17.1, 16.5 ◦C) and the
initial degradation state was considered to amount to 2 years of cycles (N =
720, an average of 1 cycle per day). The equation (22) was used to obtain
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Table 6: Cumulated SoH Loss change by weather model. Less is better.

Day Factory SoC Improved SoC Improved SoC + T

(Reference Value) (change %) (change %)

Good 0.0223% 5.01% 4.68%

Average 0.0217% 5.12% 4.75%

Bad 0.0221% 1.80% 1.79%

the results, with Ni being the cycles featured in BESS i in the resulting
optimisation.

Figure 12: SoH loss per BESS in the optimisation problem when using different SoC
models and in different weather.

In the three scenarios, the improved SoC model increased the estimated
degradation in the different BESS due to the higher energy throughput
needed to fully charge the batteries. As the efficiency is below the factory-
issued performance, this value was naturally higher than in the reference
SoC model. When integrating the temperature component in the SoC, the
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expected loss was lower than in the case were it is not included.

SoHLoss =
3∑

i=1

SoH(N)− SoH(N +Ni) (22)

5.6.1. Flexibility cost

The flexibility framework described in section 4.1 was only studied un-
der the good PV production scenario. The added flexibility requirement was
found to increase the energy price by up to 10% when the energy demand
constituted 40% of the installed PV capacity. Figure 13 shows the increase in
price when using the improved SoC model with intra-day temperature pre-
diction instead of the standard factory-issued SoC model. Both grid power
withdrawal and injection requirement have a similar impact on absolute cost,
the former being only slightly higher. As a result of requesting energy ab-
sorption capability, solar resources are necessarily wasted and the number of
cycles in the BESS increases.

The specific impact of the intra-day temperature on the optimisation
framework was however not significant enough. The energy cost difference
between the scenarios with and without temperature was small (< +0.1%),
and including the cost due to BESS degradation did not change this gap. As
the thermal degradation is not included in the objective function, the SoH
loss is not optimised and only the energy throughput is taken into account.

Figure 13: Increase (in %) of energy cost when imposing a flexibility constraint with
different storage models.
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6. Conclusion and Discussion

In this work, we dealt with the subject of battery modelling and parame-
terisation to determine the operational SoC, SoH and temperature of BESS
using only common, industrially available measurements. The models were
validated with in-situ data extracted from 5 different hybrid PV power plants
(7 BESS in total), and revealed a general improvement in SoC and SoH es-
timation. Given that BESS manufacturers do not provide thermal predictor
models, the temperature was compared to measured values only. This ther-
mal difference was found to be less than 2 ◦C, a difference small enough to
ensure that thermal management can avoid any overheating of the system by
integrating the developed model. The general simplicity of the models makes
them easy to integrate into more advanced applications, and then measure
the impact of temperature on battery degradation and management.

The state-of-charge model was trained using the available power and the
SoC values reported by the factory BMS. When temperature measurements
were available, the thermal impact was expressed as a temperature-dependent
self-discharge parameter. The inclusion of this parameter in SoC estimation
reduced the average error of the model by 2%.

Lastly, the state-of-health model was also parameterised with the avail-
able data and showed a degradation trend below the warranty provided by
the different BESS. When using a smaller set of data, as would be the case for
the early years of hybrid projects, the trend followed a similar pattern to the
constructor’s expected capacity. If data beyond the first year are included,
then the model better reflects the real behaviour.

By using both the warranty for capacity retention and the predicted SoH
loss from the model, hybrid power plant investors have a set of scenarios to
adhere to and perform further analysis. A pessimistic approach could use the
warranty values published by the BESS manufacturer, while an optimistic
one would follow the newly parameterised curve. A finer risk management
strategy can then by introduced by selecting a curve that falls between the
two.

An additional convenience of the models is also the low computational
load they require, taking between 5-10 seconds on an intel i7-7700HQ to pa-
rameterise. Coulomb counting, OCV approaches, and ECM require the least
amount of measurements and the lowest computational effort compared to
observers and KF [60]. This allows them to run on light industrial computers
on remote sites. Moreover, the results obtained by the models were coherent
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with the reported errors in the literature for similar estimation techniques.
For SoC, the average errors found throughout the literature range between
1% and 6% [61, 62] depending on the cell chemistry, while for SoH, the MAEs
found were less than 6% [60, 63]. It is important however to use data from
the BESS of interest. The SoH model in [64] applied to the batteries in
this work showed a MAE between 1-2%, contrasting with the less than 1%
from the model here presented. This similarity in results provides further
reasons to take similar modelling approaches in the considered industrial
use-case regardless of the cell thanks to the parameters which are estimated
from measurements. For this reason, the modelling is agnostic to the battery
chemistry.

After validation of the different models, two different optimisation frame-
works were built to analyse the impact the improved BESS modelling has
on financial results and on the life expectancy of batteries. These focused
on the problem of scheduling and optimal operation in hybrid PV capacity
firming plants and in a micro-grid scenario with multiple BESS and a vRES.

In the first framework, which follows the AO CRE ZNI PV capacity
firming constraints, the inclusion of the improved BESS model reduced the
daily maximal expected revenue by at least 2%. This financial impact grew
as the vRES behaviour became more erratic, reaching up to 15% for some
of the BESS studied. In all cases, the revenue change was proportional to
the BESS charge/discharge performance and, even when the operation was
optimal, the change in revenue was unavoidable. Investors and hybrid PV
power plant constructors could demand time-dependent charge and discharge
performance warranties from BESS manufacturers to constrain this risk of
revenue loss.

In the case of the micro-grid with battery aggregation, the SoC and the
thermal model were included to propose optimal BESS usage, and the cost
per energy source was chosen to promote the use of local resources. The
total cost to satisfy the local load increased when considering the improved
SoC alone, and increased again after explicitly adding the thermal behaviour
to the BESS models. When analysing the capacity loss, the degradation
was slightly less than when the improved SoC incorporated the temperature
dependence. These results suggest that not incorporating the thermal com-
ponent in scheduling optimisations can penalise life-time financial projections
by overly estimating the storage degradation. Nevertheless, this deviation is
estimated to be up to 0.5% of the capacity at the end of a 10-year cycle,
which has a relatively low financial impact for BESS of less than 1MWh.
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Using an SoH model such as the one developed in this work would be enough
to reduce degradation over-estimations.

The optimisation framework was also used to evaluate the cost of flexibil-
ity and the impact that thermal consideration has on it. The results showed
a higher cost when energy withdrawal is requested by the grid instead of
injection, as well as a low-changing zone that corresponds to energy that can
be given by the vRES or consumed by the local load. It did not however show
a strong response to the thermal component, and when thermal optimisation
was not taken into account the results were fairly similar.

Given the results obtained, explicit inclusion and calculation of intra-day
temperatures in scheduling does not seem necessary, as the error the model
introduces falls largely within the standard range of day-ahead forecast er-
rors. It could be of interest to explore loads in which an explicit thermal
component starts to have a stronger impact on energetic and financial per-
formance. This effect was not strongly observed in this work, probably due
to the relatively low power requirements of the load. More extreme scenarios
featuring the need for much higher instantaneous BESS power could benefit
from temperature optimisation.

Further studies will consider sizing BESS for mini-grid structures while
taking into account intra-day temperature behaviour. In addition, different
usage scenarios will be applied to determine the limits at which the intra-day
temperature starts to become crucial in scheduling frameworks.
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Appendix A. Collected Dataset

The structure of the daily datasets can be seen below:

1. s: second in the day (1 - 86,400).

2. tBoL: time in years since BOL

3. SoC: inst. SoC

4. SoCkWh: inst. SoC relative to nameplate capacity

5. PB: inst. AC power reported by BMS in kW

6. PCM : inst. AC power measured by power monitor

7. EkWh: inst. energy stored reported by BMS in kWh

8. Emax: inst. maximal capacity reported by BMS in kWh

9. Eout: accumulated output energy in kWh

10. VDC : inst. DC voltage reported by the BMS in V

11. IDC : inst. DC current reported by the BMS in A

12. I2DC : inst. squared DC current

13. Text,1: ambient temperature reported by sensor in ◦C

14. Text,2: ambient temperature reported by sensor in ◦C

15. TBESS: BESS temperature reported by BMS in ◦C

16. P+
B : inst. positive AC power reported by BMS in kW

17. P+
B : inst. negative AC power reported by BMS in kW

Of the seven different BESS, four BMS do not provide any low-level infor-
mation (DC voltage, DC current, internal temperature) and instead publish
values estimated from their own internal battery models.
Missing or unavailable values are marked as NaN and are the first criterion
to reject a day’s data from the model construction.
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Appendix B. Weather Models

The different PV production profiles used in the optimisation framework
can be seen in figure B.14. They represent the main three kinds of irradiation
a photovoltaic central experiences: A clear-sky day, a moderate cloudy day,
and an extremely cloudy day.

Figure B.14: PV production forecast (a) and three different behaviours of PV production
for good (b), average (c) and bad (d) weather.
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