Conservation agriculture affects the multitrophic interactions driving the efficacy of weed biological control.

B. Carbonne ${ }^{1,2,3}$, L. Muneret ${ }^{1}$, E. Laurent ${ }^{1}$, E. Felten ${ }^{1}$, C. Ducourtieux ${ }^{1}$, N. Henon ${ }^{1}$, A. Matejicek ${ }^{1}$, B. Chauvel ${ }^{1}$, S. Petit ${ }^{1}$
${ }^{1}$ Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, F21000 Dijon, France
${ }^{2}$ Univ Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)] - UMR 6553, F-35000 Rennes, France
${ }^{3}$ IGEPP, INRAE, Institut Agro, Univ Rennes, 49045 Angers, France

Figure S1: Location of the 15 sampling field pairs at the Bourgogne-Franche-Comté region scale. The map was generated using R version 4.0.5 (R Core Team, 2022) and the package "raster" (Hijmans et al., 2021).

		Conventional agriculture $(\mathrm{N}=14)$	Soil conservation agriculture $(\mathrm{N}=15)$	$\begin{aligned} & \begin{array}{c} \text { Total } \\ (N=29) \end{array} \end{aligned}$
Field surface (ha)	Mean (SD) [min; max]	$\begin{gathered} 12.18(9.74) \\ {[0.08 ; 31]} \end{gathered}$	$\begin{gathered} \hline 10.21(9.54) \\ {[0.08 ; 39.34]} \end{gathered}$	$\begin{gathered} \hline 11.16(9.51) \\ {[0.08 ; 39.34]} \\ \hline \end{gathered}$
Tillage				
Depth (cm)	Mean (SD) [min; max]	$\begin{gathered} 9.25(5.93) \\ {[0 ; 25]} \end{gathered}$	$\begin{gathered} 0(0) \\ {[0 ; 0]} \end{gathered}$	$\begin{gathered} 7.86 \text { (6.4) } \\ {[0 ; 25]} \end{gathered}$
Number of passages	Mean (SD) [min; max]	$\begin{gathered} 2.79(1.53) \\ {[1 ; 6]} \\ \hline \end{gathered}$	$\begin{gathered} 0.4(0.91) \\ {[0 ; 3]} \\ \hline \end{gathered}$	$\begin{gathered} 1.55(1.72) \\ {[0 ; 6]} \\ \hline \end{gathered}$
Sowing				
Density (seed/m²)	Mean (SD) [min; max]	$\begin{gathered} 369.43(42.64) \\ {[300 ; 444]} \end{gathered}$	$\begin{gathered} 340.26(41.15) \\ {[254 ; 400]} \end{gathered}$	$\begin{gathered} 354.34(43.71) \\ {[254 ; 444]} \end{gathered}$
Spacing (cm)	Mean (SD) [min; max]	$\begin{gathered} 14.58(3.72) \\ {[11 ; 25]} \\ \hline \end{gathered}$	$\begin{gathered} 18.43 \text { (3.04) } \\ {[15 ; 25]} \\ \hline \end{gathered}$	$\begin{gathered} 16.72 \text { (3.8) } \\ {[11 ; 25]} \\ \hline \end{gathered}$
Pesticide (number of passages)				
Fongicide	Mean (SD) [min; max]	$\begin{gathered} 3.29(1.44) \\ {[1 ; 6]} \end{gathered}$	$\begin{gathered} 2.8(1.42) \\ {[1 ; 6]} \end{gathered}$	$\begin{gathered} 3.03(1.43) \\ {[1 ; 6]} \end{gathered}$
Herbicide	Mean (SD) [min; max]	$\begin{gathered} 3.07(1.38) \\ {[1 ; 6]} \end{gathered}$	$\begin{gathered} 5.26(3.1) \\ {[2 ; 13]} \end{gathered}$	$\begin{gathered} 4.21(2.64) \\ {[1 ; 13]} \end{gathered}$
Insecticide	Mean (SD) [min; max]	$\begin{gathered} 0.64(0.63) \\ {[0 ; 2]} \end{gathered}$	$\begin{gathered} 1.06 \text { (1.03) } \\ {[0 ; 4]} \end{gathered}$	$\begin{gathered} 0.86(0.87) \\ {[0 ; 4]} \end{gathered}$
Fertilisation (number of passages)	Mean (SD) [min; max]	$\begin{gathered} 5.36(2.34) \\ {[3 ; 11]} \\ \hline \end{gathered}$	$\begin{gathered} 5.66(3.06) \\ {[2 ; 13]} \end{gathered}$	$\begin{gathered} 5.52(2.69) \\ {[2 ; 13]} \\ \hline \end{gathered}$
Yield (qx/ha)	Mean (SD) [min; max]	$\begin{gathered} \hline 69.43(12.06) \\ {[52 ; 87.8]} \end{gathered}$	$\begin{gathered} \hline 70.58(12.74) \\ {[48 ; 89]} \end{gathered}$	$\begin{gathered} \hline 70.02(12.20) \\ {[48 ; 89]} \end{gathered}$

Figure S2: Schematic representation of the sampling plan of a field with the location of the three sampling points with pitfall traps, seed cards (with and without cage) and suction samples.

Table S2: Spearman correlations between the percentage of different types of land use in a 1 km radius buffer around the sampled fields. For each correlation, we indicated the level of significance using: * $\mathrm{P}<0.05$; ${ }^{* *} \mathrm{P}<0.01$; ${ }^{* * *} \mathrm{P}<0.001$.

	Annual crop	Perennial crop	Permanent grassland	Temporary grassland	Woody habitats	Organic agriculture	Conventional agriculture	Soil conservation agriculture
Annual crop		0.08	-0.83***	-0.55**	-0.40*	-0.24	-0.08	-0.03
Perennial crop			-0.02	-0.18	-0.03	-0.27	0.2	0.00
Permanent grassland				0.16	0.09	0.09	0.04	0.02
Temporary grassland					0.21	0.45*	0.17	-0.09
Woody habitats						0.15	-0.08	0.14
Organic agriculture							0.54**	-0.16
Conventional agriculture								-0.02
Soil conservation agriculture		,	TV	, lala		lall	la	

$\left.\begin{array}{lcc}\hline & \begin{array}{c}\text { May session } \\ \mathbf{(N = 3 0)}\end{array} & \begin{array}{c}\text { June session } \\ (\mathbf{N}=\mathbf{3 0})\end{array} \\ \hline \text { Invertebrate seed predation (with cage) } & & \\ \text { Mean (SD) } & 0.472(0.261) & 0.488(0.219) \\ \text { Median [Min; Max] } & 0.489[0.0556 ; 0.950] & 0.456[0.0722 ; 0.911] \\ \hline \text { Total seed predation (without cage) } & & \\ \text { Mean (SD) } & 0.676(0.229) & 0.770(0.195) \\ \text { Median [Min; Max] } & & 0.647[0.161 ; 0.994]\end{array}\right)$

Table S3: Descriptive statistics (mean (standard deviation) and median [minimum, maximum]) of the variables measured per field according to the sampled session (May, June). We detailed invertebrate seed predation, total seed predation, granivorous and omnivorous activitydensity, rodent and shrew abundance, spider abundance, and animal and plant resource indexes.

		May session ($\mathrm{N}=30$)				June session ($\mathrm{N}=30$)			
Trophic group	Species	Field occurrence (nb and \%)	Total AD (\%)	Mean AD (SD)	Median AD [Min, Max]	Field occurrence (nb and \%)	Total AD (\%)	Mean AD (SD)	Median AD [Min, Max]
	Acupalpus meridianus	1 (3.33\%)	1 (0.04\%)	0.03 (0.18)	0 [0; 1]	2 (6.67\%)	3 (0.16\%)	0.1 (0.4)	0 [0; 2]
응	Agonum muelleri	4 (13.33\%)	24 (0.93\%)	0.8 (3.2)	0 [0;17]	4 (13.33\%)	28 (1.51\%)	0.93 (2.68)	0 [0; 10]
$\stackrel{0}{6}$	Calathus fuscipes	5 (16.67\%)	15 (0.58\%)	0.5 (1.61)	0 [0; 8]	1 (3.33\%)	2 (0.11\%)	0.07 (0.37)	0 [0; 2]
$\stackrel{\square}{0}$	Gynandromorphus etruscus	0 (0\%)	0 (0\%)	0 (0)	0 [0; 0]	3 (10\%)	5 (0.27\%)	0.17 (0.53)	0 [0; 2]
	Poecilus cupreus	30 (100\%)	1043 (40.52\%)	34.77 (49.66)	14 [1; 225]	26 (86.67\%)	505 (27.31\%)	16.83 (22.59)	7.5 [0; 87]
$\xrightarrow{\circ}$	Pterostichus melanarius	16 (53.33\%)	77 (2.99\%)	2.57 (4.2)	$1[0 ; 16]$	11 (36.67\%)	52 (2.81\%)	1.73 (3.96)	0 [0; 19]
	Trechus quadristriatus	11 (36.67\%)	44 (1.71\%)	1.47 (2.97)	0 [0; 13]	13 (43.33\%)	37 (2\%)	1.23 (2.36)	0 [0; 9]
	Total omnivorous carabids	30 (100\%)	1204 (46.78\%)	40.13 (51.34)	$21[1 ; 230]$	28 (93.33\%)	632 (34.18\%)	21.07 (25.69)	8.5 [0; 95]
	Amara aenea	1 (3.33\%)	1 (0.04\%)	0.03 (0.18)	0 [0; 1]	0 (0\%)	0 (0\%)	0 (0)	0 [0; 0]
	Amara consularis	0 (0\%)	0 (0\%)	0 (0)	0 [0; 0]	2 (6.67\%)	2 (0.11\%)	0.07 (0.25)	0 [0; 1]
	Amara familiaris	0 (0\%)	0 (0\%)	0 (0)	0 [0; 0]	1 (3.33\%)	1 (0.05\%)	0.03 (0.18)	0 [0; 1]
	Amara ovata	1 (3.33\%)	1 (0.04\%)	0.03 (0.18)	0 [0; 1]	0 (0\%)	0 (0\%)	0 (0)	0 [0; 0]
	Amara similata	4 (13.33\%)	5 (0.19\%)	0.17 (0.46)	0 [0; 2]	1 (3.33\%)	1 (0.05\%)	0.03 (0.18)	0 [0; 1]
	Anisodactylus signatus	2 (6.67\%)	41 (1.59\%)	1.37 (7.12)	0 [0; 39]	2 (6.67\%)	18 (0.97\%)	0.6 (3.1)	0 [0; 17]
	Harpalus affinis	29 (96.67\%)	442 (17.17\%)	14.73 (18.35)	7.5 [0; 72]	25 (83.33\%)	265 (14.33\%)	8.83 (13.51)	2.5 [0; 54]
융	Harpalus atratus	1 (3.33\%)	1 (0.04\%)	0.03 (0.18)	0 [0; 1]	0 (0\%)	0 (0\%)	0 (0)	0 [0; 0]
\%	Harpalus dimidiatus	19 (63.33\%)	346 (13.44\%)	11.53 (23.71)	3 [0; 94]	22 (73.33\%)	255 (13.79\%)	8.5 (15.86)	$2[0 ; 68]$
\%	Harpalus distinguendus	6 (20\%)	486 (18.88\%)	16.2 (53.91)	0 [0; 264]	8 (26.67\%)	565 (30.56\%)	18.83 (61.41)	0 [0; 296]
\bigcirc	Harpalus honestus	1 (3.33\%)	3 (0.12\%)	0.1 (0.55)	0 [0; 3]	0 (0\%)	0 (0\%)	0 (0)	0 [0; 0]
-	Harpalus latus	1 (3.33\%)	1 (0.04\%)	0.03 (0.18)	0 [0; 1]	0 (0\%)	0 (0\%)	0 (0)	0 [0; 0]
$\stackrel{\square}{\circ}$	Harpalus rubripes	1 (3.33\%)	1 (0.04\%)	0.03 (0.18)	0 [0; 1]	0 (0\%)	0 (0\%)	0 (0)	0 [0; 0]
	Pseudoophonus rufipes	10 (33.33\%)	35 (1.36\%)	1.17 (2.31)	0 [0; 8]	17 (56.67\%)	106 (5.73\%)	3.53 (6.89)	$1[0 ; 30]$
	Harpalus tardus	1 (3.33\%)	1 (0.04\%)	0.03 (0.18)	$0[0 ; 1]$	0 (0\%)	0 (0\%)	0 (0)	$0[0 ; 0]$
	Ophonus azureus	0 (0\%)	0 (0\%)	0 (0)	0 [0; 0]	2 (6.67\%)	2 (0.11\%)	0.07 (0.25)	0 [0; 1]
	Scybalicus oblongiusculus	1 (3.33\%)	1 (0.04\%)	0.03 (0.18)	0 [0; 1]	1 (3.33\%)	1 (0.05\%)	0.03 (0.18)	0 [0; 1]
	Semiophonus signaticornis	2 (6.67\%)	5 (0.19\%)	0.17 (0.75)	$0[0 ; 4]$	1 (3.33\%)	1 (0.05\%)	0.03 (0.18)	0 [0; 1]
	Total granivorous carabids	29 (96.67\%)	1370 (53.22\%)	45.67 (73.17)	12 [0; 351]	29 (96.67\%)	1217 (65.82\%)	40.57 (81.17)	13 [0; 395]

Figure S3: Photographs of INRA small mammal traps set between the cereal rows. For more details see: Le Quilliec \& Croci (2006).

Table S5. Description of the trapped micromammals (30 fields). We indicated the trophic group, the field occurrence (number of fields with presence and the corresponding percentage), total abundance (total number of individuals and the corresponding percentage) and the mean (standard deviation) and median [minimum, maximum] abundance per field.

Trophic group	Common name	Species	Field occurrence (number and $\%)$	Total abundance (\%)	Mean abundance (SD)	Median abundance [Min, Max]
	Field Vole	Microtus sp.	$15(50 \%)$	$84(59.57 \%)$	$3.23(5.72)$	$1[0,25]$
	Field Mice	Apodemus sp.	$13(43.3 \%)$	$39(27.67 \%)$	$1.5(1.98)$	$0.5[0,8]$
	Total rodents		$22(73.3 \%)$	$123(87,24 \%)$	$4.73(5.84)$	$3[0,27]$
Insectivore	Shrews	Crocidura sp.	$11(36.66 \%)$	$18(12.76 \%)$	$0.69(1.26)$	$0[0,6]$

Table S6. Description of the spiders trapped (30 fields) likely to consume carabids for the May and June sessions. We detailed field occurrence
(number of fields with presence and the corresponding percentage), total activity-density (AD) (total number of individuals and the corresponding percentage), the mean (standard deviation) and median [minimum, maximum] AD per field.

	May session ($\mathrm{N}=30$)				June session ($\mathrm{N}=30$)			
Species	Field occurrence (nb and \%)	Total AD (\%)	Mean AD (SD)	Median AD [Min, Max]	Field occurrence (nb and \%)	Total AD (\%)	Mean AD (SD)	Median AD [Min, Max]
Alopecosa accentuata	1 (3.33\%)	3 (0.51\%)	0.1 (0.55)	0 [0; 3]	0 (0\%)	0 (0\%)	0 (0)	0 [0; 0]
Alopecosa cuneata	1 (3.33\%)	1 (0.17\%)	0.03 (0.18)	0 [0; 1]	2 (6.67\%)	2 (0.49\%)	0.07 (0.25)	0 [0; 1]
Alopecosa farinosa	7 (23.33\%)	17 (2.9\%)	0.57 (1.36)	0 [0; 6]	2 (6.67\%)	4 (0.97\%)	0.13 (0.51)	0 [0; 2]
Alopecosa pulverulenta	2 (6.67\%)	3 (0.51\%)	0.1 (0.4)	0 [0; 2]	0 (0\%)	0 (0\%)	0 (0)	0 [0; 0]
Apostenus fuscus	1 (3.33\%)	1 (0.17\%)	0.03 (0.18)	0 [0; 1]	0 (0\%)	0 (0\%)	0 (0)	0 [0; 0]
Arctosa leopardus	0 (0\%)	0 (0\%)	0 (0)	0 [0; 0]	1 (3.33\%)	1 (0.24\%)	0.03 (0.18)	0 [0; 1]
Drassyllus lutetianus	2 (6.67\%)	3 (0.51\%)	0.1 (0.4)	0 [0; 2]	10 (33.33\%)	25 (6.08\%)	0.83 (1.82)	0 [0; 8]
Drassyllus pumilus	3 (10\%)	7 (1.19\%)	0.23 (0.77)	0 [0; 3]	3 (10\%)	5 (1.22\%)	0.17 (0.59)	0 [0; 3]
Drassyllus pusillus	19 (63.33\%)	71 (12.1\%)	2.37 (2.68)	1,5 [0; 9]	12 (40\%)	21 (5.11\%)	0.7 (1.09)	0 [0; 4]
Haplodrassus dalmatensis	4 (13.33\%)	17 (2.9\%)	0.57 (2.56)	$0[0 ; 14]$	8 (26.67\%)	33 (8.03\%)	1.1 (2.84)	$0[0 ; 14]$
Haplodrassus signifer	13 (43.33\%)	28 (4.77\%)	0.93 (1.28)	0 [0; 4]	8 (26.67\%)	9 (2.19\%)	0.3 (0.53)	0 [0; 2]
Pardosa agrestis	10 (33.33\%)	111 (18.91\%)	3.7 (10.22)	$0[0 ; 53]$	12 (40\%)	76 (18.49\%)	2.53 (6.88)	0 [0; 35]
Pardosa amentata	0 (0\%)	0 (0\%)	0 (0)	0 [0; 0]	1 (3.33\%)	2 (0.49\%)	0.07 (0.37)	0 [0; 2]
Pardosa hortensis	4 (13.33\%)	6 (1.02\%)	0.2 (0.55)	0 [0; 2]	1 (3.33\%)	1 (0.24\%)	0.03 (0.18)	0 [0; 1]
Pardosa palustris	12 (40\%)	21 (3.58\%)	0.7 (1.39)	0 [0; 7]	8 (26.67\%)	14 (3.41\%)	0.47 (0.97)	0 [0; 4]
Pardosa prativaga	18 (60\%)	70 (11.93\%)	2.33 (3.12)	$1[0 ; 12]$	19 (63.33\%)	102 (24.82\%)	3.4 (5.94)	$1[0 ; 28]$
Pardosa pullata	3 (10\%)	3 (0.51\%)	0.1 (0.31)	0 [0; 1]	0 (0\%)	0 (0\%)	0 (0)	0 [0; 0]
Pardosa saltans	4 (13.33\%)	4 (0.68\%)	0.13 (0.35)	0 [0; 1]	1 (3.33\%)	1 (0.24\%)	0.03 (0.18)	0 [0; 1]
Pardosa sp	20 (66.67\%)	39 (6.64\%)	1.3 (1.8)	1 [0; 9]	4 (13.33\%)	8 (1.95\%)	0.27 (0.83)	0 [0; 4]
Pardosa tenuipes	5 (16.67\%)	6 (1.02\%)	0.2 (0.48)	0 [0; 2]	1 (3.33\%)	1 (0.24\%)	0.03 (0.18)	0 [0; 1]
Trochosa ruricola	13 (43.33\%)	29 (4.94\%)	0.97 (1.4)	0 [0; 5]	12 (40\%)	37 (9\%)	1.23 (2.01)	0 [0; 7]
Trochosa sp	4 (13.33\%)	4 (0.68\%)	0.13 (0.35)	0 [0; 1]	4 (13.33\%)	5 (1.22\%)	0.17 (0.46)	0 [0; 2]
Trochosa spinipalpis	0 (0\%)	0 (0\%)	0 (0)	0 [0; 0]	1 (3.33\%)	2 (0.49\%)	0.07 (0.37)	0 [0; 2]
Trochosa terricola	2 (6.67\%)	2 (0.34\%)	0.07 (0.25)	0 [0; 1]	0 (0\%)	0 (0\%)	0 (0)	0 [0; 0]
Xerolycosa nemoralis	0 (0\%)	0 (0\%)	0 (0)	0 [0; 0]	1 (3.33\%)	1 (0.24\%)	0.03 (0.18)	0 [0; 1]
Xerolycosa sp	2 (6.67\%)	8 (1.36\%)	0.27 (1.01)	0 [0; 4]	1 (3.33\%)	1 (0.24\%)	0.03 (0.18)	0 [0; 1]
Xysticus acerbus	2 (6.67\%)	3 (0.51\%)	0.1 (0.4)	0 [0; 2]	0 (0\%)	0 (0\%)	0 (0)	0 [0; 0]
Xysticus cf.kochi	1 (3.33\%)	1 (0.17\%)	0.03 (0.18)	0 [0; 1]	0 (0\%)	0 (0\%)	0 (0)	0 [0; 0]
Xysticus cristatus	3 (10\%)	5 (0.85\%)	0.17 (0.59)	0 [0; 3]	0 (0\%)	0 (0\%)	0 (0)	0 [0; 0]
Xysticus kochi	20 (66.67\%)	114 (19.42\%)	3.8 (5.25)	$1[0 ; 19]$	9 (30\%)	60 (14.6\%)	2 (4.56)	$0[0 ; 17]$
Xysticus sp	8 (26.67\%)	10 (1.7\%)	0.33 (0.61)	0 [0; 2]	0 (0\%)	0 (0\%)	0 (0)	0 [0; 0]
Total	30 (100\%)	587 (100\%)	19.57 (17.64)	16.5 [3; 88]	29 (96.67\%)	411 (100\%)	13.7 (13.53)	10.5 [0; 62]

Table S7. Description of the trophic resources collected (30 fields) for the June sampling session. We indicated the field occurrence (number of fields with presence and the corresponding percentage), total abundance, mean (standard deviation) and median [minimum, maximum] abundance per field.

Resources	Taxa	Field occurrence number (\%)	Total abundance	\qquad	Median abundance [Min; Max]
Animal	Collembola	30 (100\%)	21047	702 (492)	583 [38.0; 2250]
	Aphididae	30 (100\%)	2376	79.2 (80.7)	65.0 [1.00; 391]
	Total earthworm	28 (93.3\%)	270	9 (8.22)	$7.5[0 ; 38]$
	strict-anecic	28 (93.3\%)	203	6.76 (6.40)	$5[0 ; 32]$
	epi-anecic	17 (56.6\%)	65	2.16 (3.04)	1 [0; 11]
	epigeneous	2 (6.6\%)	2	0.06 (0.25)	$0[0 ; 1]$
	Animal resource index	30 (100\%)	51.85	1.73 (0.48)	1.71 [0.44; 2.63]
Vegetal	Total weed seed	24 (80\%)	321	10.7 (32.55)	2.5 [0; 180]
	Alopecurus myosuroides	10 (33.33\%)	184	6.13 (31.7)	0 [0; 174]
	Amaranthus retroflexus	6 (20\%)	28	0.93 (2.50)	0 [0; 12.0]
	Chenopodium album	5 (16.67\%)	26	0.86 (2.91)	0 [0; 15.0]
	Other dicotyledonous	11 (36.67\%)	21	0.70 (1.32)	0 [0; 6.00]
	Poaceae	10 (33.33\%)	15	0.50 (0.82)	0 [0; 3.00]
	Fallopia convolvulus	3 (10\%)	10	0.33 (1.47)	0 [0; 8.00]
	Amaranthus sp.	5 (16.67\%)	7	0.23 (0.56)	0 [0; 2.00]
	Capsella bursa-pastoris	3 (10\%)	6	0.20 (0.76)	0 [0; 4.00]
	Fagopyrum esculentum	1 (3.33\%)	5	0.16 (0.91)	0 [0; 5.00]
	Polygonum aviculare	3 (10\%)	5	0.16 (0.59)	0 [0; 3.00]
	Geranium sp.	3 (10\%)	3	0.10 (0.30)	0 [0; 1.00]
	Polygonum sp.	3 (10\%)	3	0.10 (0.30)	0 [0; 1.00]
	Lysimachia arvensis	1 (3.33\%)	1	0.03 (0.183)	0 [0; 1.00]
	Asteraceae	1 (3.33\%)	1	0.03 (0.183)	0 [0; 1.00]
	Euphorbia sp.	1 (3.33\%)	1	0.03 (0.183)	0 [0; 1.00]
	Plantago lanceolata	1 (3.33\%)	1	0.03 (0.183)	0 [0; 1.00]
	Solanum nigrum	1 (3.33\%)	1	0.03 (0.183)	0 [0; 1.00]
	Stellaria media	1 (3.33\%)	1	0.03 (0.183)	0 [0; 1.00]
	Thlaspi arvense	1 (3.33\%)	1	0.03 (0.183)	0 [0; 1.00]
	Verbena officinalis	1 (3.33\%)	1	0.03 (0.183)	0 [0; 1.00]
	Total weeds (flowering. fructification)	21 (70\%)	74.25	2.47 (2.63)	1.5 [0; 10.7]
	Alopecurus myosuroides	14 (46.67\%)	34.75	1.16 (1.60)	0 [0; 5.00]
	Lolium perenne	8 (26.67\%)	16	0.53 (1.14)	0 [0; 5.00]
	Galium aparine	4 (13.33\%)	3.5	0.11 (0.31)	0 [0; 1.25]
	Anisantha sterilis	2 (6.67\%)	2.5	0.08 (0.31)	0 [0; 1.25]
	Avena fatua	2 (6.67\%)	2	0.06 (0.26)	0 [0; 1.25]
	Chaenorrhinum minus	1 (3.33\%)	1.25	0.04 (0.22)	0 [0; 1.25]
	Geranium dissectum	1 (3.33\%)	1.25	0.04 (0.22)	0 [0; 1.25]
	Papaver rhoeas	1 (3.33\%)	1.25	0.04 (0.22)	0 [0; 1.25]
	Poa annua	1 (3.33\%)	1.25	0.04 (0.22)	0 [0; 1.25]
	Poa trivialis	1 (3.33\%)	1.25	0.04 (0.22)	0 [0; 1.25]
	Veronica persica	1 (3.33\%)	1.25	0.04 (0.22)	0 [0; 1.25]
	Vicia cracca	1 (3.33\%)	1.25	0.04 (0.22)	0 [0; 1.25]
	Bromus hordeaceus	1 (3.33\%)	0.75	0.02 (0.13)	0 [0; 0.75]
	Fumaria officinalis	1 (3.33\%)	0.75	0.02 (0.13)	1 [0; 0.75]
	Matricaria chamomilla	1 (3.33\%)	0.75	0.02 (0.13)	2 [0; 0.75]
	Scandix pecten-veneris	1 (3.33\%)	0.75	0.02 (0.13)	3 [0; 0.75]
	Secale cereale	1 (3.33\%)	0.75	0.02 (0.13)	4 [0; 0.75]
	Silene Iatifolia subsp. Alba	1 (3.33\%)	0.75	0.02 (0.13)	5 [0; 0.75]
	Sinapis arvensis	1 (3.33\%)	0.75	0.02 (0.13)	6 [0; 0.75]
	Sinapis sp.	1 (3.33\%)	0.75	0.02 (0.13)	7 [0; 0.75]
	Veronica hederifolia	1 (3.33\%)	0.75	0.02 (0.13)	$8[0 ; 0.75]$
	Plant resource index	27 (90\%)	14.47	0.48 (0.43)	0.43 [0; 2]

Figure S4: SEMs for the May sampling session including cascading effects of 'Field management' (CVA: conventional and CSA: conservation agriculture) in interaction with the '\%CSA landscape' (the proportion of conservation agriculture in the landscape) on (A) invertebrate and (B) total weed seed predation. The black and red arrows denote significant positive and negative effects, respectively. The grey dotted arrows indicate non-significant effects. The bidirectional arrows show no causal correlations between variables. The black circles (\bullet) show two-way interactions. Standardised coefficients are shown for all paths. The numbers in parentheses show the interaction coefficients. The numbers of asterisks indicate the level of significance (. p<0.1, ${ }^{*} \mathrm{p}<0.05,{ }^{* *} \mathrm{p}<0.01,{ }^{* * *}$ p <0.001).

Table S8: Parameter estimates from SEMs for the May sampling session. The response variables were distinguished according to whether they were present in both SEMs or only one of the two SEMs. For each response variable, we reported marginal ($\mathrm{R}^{2} \mathrm{~m}$) and conditional $\left(R^{2} c\right) r$-squared. For each predictor with reported unscale estimate, standard error (SE), the critical ratio value (Crit. Value), the P-value and the standardized estimate (Stand. coefficient). The highlighted are predictors with $\mathrm{p} \leq 0.05$. Numbers of asterisks indicate the level of significance (. $\mathrm{p}<0.1,{ }^{*} \mathrm{p}<0.05,{ }^{* *} \mathrm{p}<0.01,{ }^{* * *} \mathrm{p}<0.001$). The SEM for invertebrate (Fisher's $C=19.33, P=0.153$) and total seed predation (Fisher's $C=13.97, P=0.731$) represented our data well.

SEM	Response	$\mathrm{R}^{\mathbf{2}} \mathrm{m} \quad \mathrm{R}^{2} \mathrm{C}$	Predictor	Unscale estimate	SE	DF	Crit. Value	p	Scaled estimate
Common to both SEMs	Shrews	0.180 .29	Field management	-2.572	1.396	30	-1.843	0.065	-1.138 .
			\%CSA landscape	-0.099	0.076	30	-1.3	0.194	-0.826
			Field management x \%CSA landscape	0.194	0.087	30	2.221	0.026	1.802 *
	Granivorous carabids	0.220 .99	Field management	0.876	0.474	30	1.849	0.064	0.295 .
			Shrews	-0.557	0.244	30	-2.281	0.023	-0.440 *
	\sim^{\sim} Granivorous carabids		${ }^{\sim}$ Omnivorous carabids	0.132		30	0.693	0.247	0.132
SEM A: Invertebrate seed predation (with cage)	Invertebrate seed predation	0.140 .99	Omnivorous carabids	0.009	0.004	30	2.382	0.017	0.214 *
SEM B: Total seed predation (without cage)	Rodent	0.430 .84	Field management	1.536	0.532	30	2.886	0.004	$0.695^{\text {** }}$
			\%CSA landscape	0.113	0.027	30	4.122	:0.001	0.962 ***
			Field management x \%CSA landscape	-0.069	0.021	30	-3.197	0.001	-0.6533 **
	Total seed predation	0.110 .99	Omnivorous carabids	0.010	0.005	30	1.895	0.058	0.214
	${ }^{\sim}$ Rodent		$\sim \sim S h r e w ~$	-0.398	-	- 30	-2.256	0.016	-0.398 *

Figure S5: Simplified SEMs of the June sampling session, with the removal of variables and paths that do not lead to direct or indirect effects on (A) invertebrate and (B) total weed seed predation. The black and red arrows denote significant positive and negative effects, respectively. The grey dotted arrows indicate non-significant effects. Bidirectional arrows show no causal correlations between variables. The black circles (\bullet) show two-way interactions. Standardised coefficients are shown for all paths. The numbers in parentheses show the interaction coefficients. The numbers of asterisks indicate the level of significance (. $p<0.1,{ }^{*} p<0.05,{ }^{* *} p<0.01,{ }^{* * *}$ p <0.001).

Table S9: Parameter estimates from the simplified SEMs of the June sampling session, with the removal of variables and paths that do not lead to direct or indirect effects on weed seed predation. The response variables were distinguished according to whether they were present in both SEMs or only one of the two SEMs. For each response variable we reported marginal ($R^{2} m$) and conditional ($R^{2} c$) r-squared. For each predictor with reported unscale estimate, standard error (SE), the critical ratio value (Crit. Value), the P-value and the standardized estimate (Stand. estimate). The highlighted are predictors with $\mathrm{p} \leq 0.05$. The numbers of asterisks indicate the level of significance (. p<0.1, ${ }^{*} \mathrm{p}<0.05,{ }^{* *} \mathrm{p}<0.01,{ }^{* * *} \mathrm{p}<0.001$). The SEM for invertebrate (Fisher's $C=12.43, \mathrm{P}=0.572$) and total seed predation (Fisher's $\mathrm{C}=1.22$, $P=0.875$) represented our data well.

SEM	Response	$\mathrm{R}^{2} \mathrm{~m}$	$\mathrm{R}^{2} \mathrm{c}$	Predictor	Unscale estimate	SE	DF	Crit. Value	p	Scaled estimate
Common to both SEMs	Animal resources	0.05	0.84	Field management	0.216	0.077	14	7.977	0.014	0.216 *
SEM A: Invertebrate seed predation (with cage)	Shrews	0.18	0.29	Field management	-2.572	1.396	30	-1.843	0.065	-1.138 .
				SCA\%	-0.099	0.076	30	-1.300	0.194	-0.826
				Field management x \%CSA landscape	0.194	0.087	30	2.221	0.026	1.802 *
	Granivorous carabids		0.99	Field management	1.321	0.552	30	2.395	0.017	0.420 *
				Shrews	-0.635	0.269	30	-2.36	0.018	-0.473 *
	Invertebrate seed	0.27	0.98	Granivorous carabids	0.065	0.02	30	3.300	0.001	$2.538^{* * *}$
				Animal resources	0.705	0.439	30	1.606	0.108	0.171
				Granivorous carabids x Animal resources	-0.025	0.008	30	-3.167	0.002	-2.450 **
SEM B: Total seed predation (without cage)	Rodents	0.43	0.84	Field management	1.536	0.532	30	2.886	0.004	0.695 **
				\%CSA landscape	0.113	0.027	30	4.122	<0.001	0.962 ***
				Field management x \%CSA landscape	-0.069	0.021	30	-3.197	0.001	-0.653 **
	Total seed predation (without cage)	0.59	0.98	Management	1.173	0.267	30	4.385	<0.001	$0.274^{* * *}$
				Animal resources	-1.603	0.343	30	-4.68	<0.001	-0.374 ***
				Rodent	0.076	0.028	30	2.679	0.007	0.197 **
	$\sim \sim$ Animal resources			$\sim \sim$ Rodent	0.271	-	30	1.465	0.077	0.271

Supplementary references

Hijmans, R. J., Jacob van Etten, Michael Sumner, Joe Cheng, Dan Baston, Andrew Bevan, Roger Bivand, Lorenzo Busetto, Mort Canty, Ben, F., David, F., Aniruddha, G., Duncan, G., Josh, G., Jonathan, A. G., Paul, H., Kassel, H., Alex, I., Institute for Mathematics Applied Geosciences, ... Wueest, R. (2021). raster: Geographic Data Analysis and Modeling. R package version 3.5-2. https://CRAN.R-project.org/package=raster

Homburg, K., Homburg, N., Schäfer, F., Schuldt, A., \& Assmann, T. (2014). Carabids.org - a dynamic online database of ground beetle species traits (Coleoptera, Carabidae). Insect Conservation and Diversity, 7(3), 195-205. https://doi.org/10.1111/icad.12045

Le Quilliec, P., Croci, S. (2006). Piégeage de micromammifères. Une nouvelle boîte-dortoir pour le piège non vulnérant INRA. Cahier des Techniques de l'INRA, 2006, pp.125-128. ffhal-02665413f

R Core Team. (2022). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.

