
HAL Id: hal-04192246
https://hal.science/hal-04192246v1

Submitted on 31 Aug 2023 (v1), last revised 28 Jun 2024 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

The Simplest Possible Fully Correct Solution of the Clay
Millennium Problem about P vs. NP. A Simple Proof

That P ̸= NP = EXPTIME
Konstantinos E Kyritsis

To cite this version:
Konstantinos E Kyritsis. The Simplest Possible Fully Correct Solution of the Clay Millennium Problem
about P vs. NP. A Simple Proof That P ̸= NP = EXPTIME. Journal of Computer and Communica-
tions, 2023, 11 (8), pp.181-194. �10.4236/jcc.2023.118013�. �hal-04192246v1�

https://hal.science/hal-04192246v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Journal of Computer and Communications, 2023, 11, 181-194
https://www.scirp.org/journal/jcc

ISSN Online: 2327-5227
ISSN Print: 2327-5219

DOI: 10.4236/jcc.2023.118013 Aug. 31, 2023 181 Journal of Computer and Communications

The Simplest Possible Fully Correct Solution of
the Clay Millennium Problem about P vs. NP. A
Simple Proof That P ≠ NP = EXPTIME

Konstantinos E. Kyritsis

School of Economics, University of Ioannina, Ioannina, Greece

Abstract
In the current paper, I present probably the simplest possible abstract formal
proof that P ≠ NP, and NP = EXPTIME, in the context of the standard ma-
thematical set theory of computational complexity and deterministic Turing
machines. My previous publications about the solution of the P vs. NP with
the same result NP = EXPTIME, to be fully correct and understandable need
the Lemma 4.1 and its proof of the current paper. The arguments of the cur-
rent paper in order to prove NP = EXPTME are even simpler than in my pre-
vious publications. The strategy to solve the P vs. NP problem in the current
paper (and in my previous publications) is by starting with an EXPTIME-com-
plete language (problem) and proving that it has a re-formulation as an NP-class
language, thus NP = EXPTIME. The main reason that the scientific community
has missed so far such a simple proof, is because of two factors 1) It has been
tried extensively but in vain to simplify the solutions of NP-complete prob-
lems from exponential time algorithms to polynomial time algorithms (which
would be a good strategy only if P = NP) 2) It is believed that the complexity
class NP is strictly a subclass to the complexity class EXPTIME (in spite the
fact that any known solution to any of the NP-complete problems is not less
than exponential). The simplicity of the current solution would have been
missed if 2) was to be believed true. So far the majority of the relevant scien-
tific community has considered this famous problem not yet solved. The
present results definitely solve the 3rd Clay Millennium Problem about P
versus NP in a simple, abstract and transparent way that the general scientific
community, but also the experts of the area, can follow, understand and
therefore become able to accept.

Keywords
3rd Clay Millennium Problem, EXPTIME-Complete Problems,

How to cite this paper: Kyritsis, K.E.
(2023) The Simplest Possible Fully Correct
Solution of the Clay Millennium Problem
about P vs. NP. A Simple Proof That P ≠
NP = EXPTIME. Journal of Computer and
Communications, 11, 181-194.
https://doi.org/10.4236/jcc.2023.118013

Received: July 22, 2023
Accepted: August 28, 2023
Published: August 31, 2023

Copyright © 2023 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/jcc
https://doi.org/10.4236/jcc.2023.118013
https://www.scirp.org/
https://doi.org/10.4236/jcc.2023.118013
http://creativecommons.org/licenses/by/4.0/

K. E. Kyritsis

DOI: 10.4236/jcc.2023.118013 182 Journal of Computer and Communications

NP-Complexity, P-Complexity

1. Introduction

The P versus NP problem is generally considered not yet solved and by the more
careful expert researchers as not yet been known if it has been solved or not.
Many have claimed solutions from 2000 to 2016. G. J. Woeginger (see G. J.
Woeginger [1] and [2] Wikipedia) compiled a list of 62 purported proofs of P =
NP from 1986 to 2016, of which 50 were proofs of P ≠ NP, 2 were proofs the
problem is unprovable, and one was a proof that it is undecidable I myself read
some very few short solutions from this list which turned out to be incorrect. But
I did not analyse the long ones (some more than 70 pages). I do not know any
researcher who has gone through all the solutions in the list of G. J. Woeginger,
to find which, if any, of the 60 solutions is correct. Although for some solutions
in this list, it is easy to prove that are not correct, no-one has ever published any
proof that all of them are not correct. Probably this should be the task of the
Clay Mathematical Institute which sponsored the formulation of this problem as
one of the 7 Millennium problems, in other words to hire a group of experts to
do this task. Nevertheless, according to the rules about the millennium problems
of the Clay Mathematical Institute, the Institute is waiting for the community of
relevant experts and researchers to indicate by citations if there is a correct solu-
tion to the P vs. NP problem. Most of these 62 solutions are not in the main
journals of complexity theory and the reason is that the most widely read such
journals avoid refereeing any solution of the P vs. NP problem for obvious or
non-obvious reasons, except perhaps if it is from a very well-known and cele-
brated professor in the field of complexity. Therefore, there is an obvious social
barrier to publishing solutions to this problem in relevant Journals that are
widely read. Strangely enough, the monetary award for the solution to this
problem had two opposite effects. First an increased number of researchers from
all areas trying to solve it, and second an avoidance of the main Journals in the
specialization area, to consider solutions to this problem for refereeing which of
course would exclude correct solutions also.

For those that tried to solve it in the direction P = NP, there is a common
confusion and mistake, that has been pointed out by Yannakakis M [3]. Still, it is
better to have published results than non-published, and then let a large number
of readers try to find errors or flaws in the solutions if there are any.

So here comes the need for a more challenging problem: Not only to solve the
P versus NP problem, but also solve it in a simple, elegant and short way, so that
the researchers will know a decisive proof that they can understand and control
that P ≠ NP or not, so short that anyone familiar with the area, would discover
any flaw or error if it existed. I must say that I am not a dedicated researcher of
computational complexity but an interdisciplinary researcher, and I have also

https://doi.org/10.4236/jcc.2023.118013

K. E. Kyritsis

DOI: 10.4236/jcc.2023.118013 183 Journal of Computer and Communications

solved the 4th Clay Millennium problem in fluid dynamics (see [7]).
Two solution of the famous P versus NP problem in the direction P ≠ NP, and

NP = EXPTIME, have been published by me in [4] [5] [6] [8] Kyritsis K. and in
this paper, we present a very shorter simplification of the solution. Nevertheless,
the above previous publications about the solution of the P vs. NP with the same
result NP = EXPTIME, to be fully correct and understandable they need the
Lemma 4.1 and its short proof of the current paper.

The strategy to solve the P vs. NP problem in the current paper (and in my
previous publications) is by starting with an EXPTIME-complete language
(problem) and proving that it has a re-formulation as an NP-class language with
verifier relation and certificate, thus NP = EXPTIME.

The main reason that the scientific community has missed so far such a sim-
ple proof, is because of two factors.

1) It has been tried extensively but in vain to simplify the solutions of
NP-complete problems from exponential time algorithms to polynomial time
algorithms (which would be a good strategy only if P = NP).

2) It is believed that the complexity class NP is strictly a subclass to the com-
plexity class EXPTIME (in spite the fact that any known solution to any of the
NP-complete problems is not less than exponential).

The simplicity of the current solution would have been missed if 2) was to be
believed because the current solution is based on the strategy of STARTING
with an EXPTIME-complete language (problem) and proving that it can be
re-formulated as an NP-class language, thus NP = EXPTIME. The present pa-
per definitely solves the 3rd Clay Millennium Problem about P versus NP in
a simple and transparent away that the general scientific community, but
also the experts of the area, can follow, understand and therefore become
able to accept.

In the history of mathematics, it is known that difficult problems that have
troubled a lot the mathematicians turned out to have different proofs one simple
and one very complex. Such an example is if the general 5th-order polynomial
equation can be solved with addition, subtraction, multiplication, division and
extraction of radicals starting from the coefficients. The famous mathematician
Niels Henrik Abel gave a very simple proof, of not more than 5 pages. On the
other hand, the proof of the same, by the E. Galois theory, is a whole book of
dozens of pages!

And a famous mathematician once said that “Once a proof is known to a
mathematical problem, then immediately after it becomes trivial!”

It is important to mention, a statement, that is usually attributed to the fa-
mous mathematician Yuri Manin, that “A correct proof in mathematics is con-
sidered a proof only if it has passed the social barrier of being accepted and un-
derstood by the scientific community and published in accepted Journals”.

Passing the obstruction of the social barrier, sometimes is more difficult than
solving the mathematical problem itself!

It is similar to the solution of the P versus NP problem in this paper.

https://doi.org/10.4236/jcc.2023.118013

K. E. Kyritsis

DOI: 10.4236/jcc.2023.118013 184 Journal of Computer and Communications

We will utilize in our proofs, the key abstraction of the existence of an
EXPTIME complete language, (it is known that it exists) without specifying
which one, which will simplify much of the arguments. Then we prove that there
is a reformulation of it that fits the definition of a language being an NP-class
language.

The P vs. NP is not a problem that a computer experiment can decide, but
rather a problem that requires the correct arguments over the relevant con-
cepts.It is in theoretical computational complexity which utilizes concepts like,
“languages of infinite many words”, and the infinite is not existing in the com-
puter practice (on the contrary some computer practitioners may consider it a
computer worm!).So when I started studying the P vs. NP problem, the first that
I asked myself was, “from which axioms, should I start reasoning?” Soon I re-
alized that I should start reasoning from the axioms of the mathematical set the-
ory.

We must notice here that the P versus NP problem is in fact a set of different
problems when they are in the context of different axiomatic systems of set the-
ory. In the context of what axiomatic system is the Complexity Theory of Turing
machines? Since the complexity theory of Turing machines requires entities like
infinite sets of words etc. and classes of them, then it is in the context of some
standard axiomatic system of the mathematical set theory, which must include
the axiom of infinite. So we notice that the next are different versions of the P vs.
NP problem:

1) The P versus NP problem in a standard axiomatic system of set theory with
the axiom of infinite and without the axiom of choice and this axiomatic system
formulated e.g. in 1st order or 2nd order formal languages.

2) The P versus NP problem in an axiomatic system of set theory which in-
cludes the axiom of choice and the axiom of infinite and this axiomatic system
formulated in a 1st order or 2nd order formal languages.

3) Etc.
About this with references for different axiomatic systems of the mathematical

set theory, we will talk again in the paragraph 2.
We notice also the P versus NP problem.
1) It is a difficult problem, that has troubled the scientific community for

some decades.
2) It may have simple proofs of a few paragraphs, hopefully not longer than

the proof of the Time Hierarchy theorem, which seems to be a deeper result.
3) But it can also have very lengthily and complex proofs, that may take doz-

ens of pages.
What this proof is or is not:
1) It does not introduce new theoretical concepts in computational complexity

theory so as to solve the P versus NP.
2) It does not use relativization and oracles.
3) It does not use diagonalization arguments, although the main proof, utilizes

results from the time hierarchy theorem.

https://doi.org/10.4236/jcc.2023.118013

K. E. Kyritsis

DOI: 10.4236/jcc.2023.118013 185 Journal of Computer and Communications

4) It is not based on improvements of previous bounds of complexity on cir-
cuits.

5) It is proved with the method of counter-example. Thus it is transparent
short and “simple”. It takes any EXPTIME-complete language decided by a De-
terministic Turing machine (DTM), and it reformulates it, so that it is apparent
that it belongs in the NP complexity class while it does not belong to the P com-
plexity class of languages (For the definitions of the terms see the paragraph 2).

6) It seems a “simple” proof because it chooses the right context to make the
arguments with the key abstraction mentioned above. So it helps the scientific
community to accept that this 3rd Clay Millennium problem has already been
solved.

When we say “in the context of Deterministic Turing Machines” we mean that
we do not involve non-Deterministic Turing machines as was originally the
formulation of the complexity class NP. (For the definitions of the terms see
paragraph 2).

In paragraph 4, we give an advanced, full proof of short length that P ≠ NP =
EXPTIME, in the standard context of deterministic Turing machines, solving
thus the 3rd Clay Millennium problem.

2. Preliminary Concepts, and the Formulation of the 3rd Clay
Millennium Problem, P versus NP

The theory of computational complexity belongs to computer science also, but it
is using concepts like a set of words, infinite sets of words etc., therefore it is a
mathematical theory as well. It is not an independent mathematical axiomatic
system, but it belongs to the mathematical axiomatic system of set theory which
is used as the foundation of mathematics. The most popular axiomatic system
for the standard mathematical set theory is that of Zermelo-Frankel (see Frankel
A. A. [9] and Wikipedia [10]). This axiomatic system does not utilize classes
only sets. If we want to include classes (e.g. the class of all sets) then we should
use the Neumann-Bernays-Goedel axiomatic system for the set theory (see Jech
T. 1978 [11] or Wikipedia [12]). Since in complexity theory we refer freely to to-
talities of sets (languages assets) without always strict predicates or functions
over other sets, then the Neumann-Bernays-Goedel axiomatic system of set the-
ory that allows classes as well might be more convenient. Therefore, any stan-
dard solution of the P vs. NP problem should be considered to exist in the con-
text of the axiomatic system of Neumann-Bernays-Goedel for the mathematical
set theory. But also alternatively in the context of the axiomatic system of Zer-
melo-Frankel, of set theory. And if we want also a version of mathematical for-
mal logic where the arguments are written this could as well be the 2nd order
formal languages of Logic (see [13] Manin Y. I. 2010 or Wikipedia [14]).

In this paragraph, for the sake of the reader, we will mention only the basics to
understand the formulation of the 3rd Clay Millennium problem. The official
formulation is found in [15] (Cook, Stephen (April 2000), The P versus NP
Problem (PDF), Clay Mathematics Institute site). Together with an appendix

https://doi.org/10.4236/jcc.2023.118013

K. E. Kyritsis

DOI: 10.4236/jcc.2023.118013 186 Journal of Computer and Communications

where there is concise definition of what are the Deterministic Turing ma-
chines (in short DTM), that is considered that they formulate, in Computa-
tional Complexity theory, the notion and ontology of the software computer
programs that a computer can run, in other words, computer algorithms (see
also Wikipedia [16]).

There is also the concept of non-Deterministic Turing machine (NDTM or
NTM) (See also [17] John C. Martin (1997). and [18] Papadimitriou Christos
(1994) and [19] Wikipedia). Roughly speaking a non-Deterministic Turing Ma-
chine (NDTM) misses some automatic decisions (and requires possibly a user to
decide for it) thus after a step it may have more than one possible next step
without specifying in a deterministic way which one. This is essentially the case
with “wizards” and user-interactive on the screen computer algorithms. When
in the discussion and arguments we involve only Deterministic Turing machines
we say that we are in the context of Deterministic Turing machines.

In the same paper are also defined the computational complexity classes P
and NP.

In computer science, the computational complexity or simply complexity of
an algorithm is the amount of resources required to run it. We focus in particu-
lar on computation time or run-time (generally measured by the number of
needed elementary operations) and memory storage requirements. The com-
plexity of a language (problem) is the complexity of the best algorithms (least
complexity) that allow solving the problem (see [17] John C. Martin (1997). and
[18] Papadimitriou Christos (1994)). Because computational complexity as we
shall see below is defined with the big O notation of mathematical functions,
strictly speaking for general types of languages decided by a Turing machine, for
the definition of its least complexity, to be correct, a proof should be provided
for the existence of such a “least” complexity.

The run time complexity of a computer algorithm (Deterministic Turing
machine) is defined and symbolized as DTIME(f(n)) where f is a function of
the natural number n iff given initial data of size n, the algorithm (Determinis-
tic Turing machine) terminates (decides) within f(n) steps. (See also [17] John
C. Martin (1997). and [18] Papadimitriou Christos (1994) and [20] [21] Wiki-
pedia) This is also expressed by saying that the duration of the computation in
steps, is of the order O(f(n)). Where by O(f(n)) is meant (see Wikipedia [22])
that if T(n) is the time that the Turning machines terminate as a function of
the size n of the initial data, then T(n) ≤ M*f(n) for some positive constant M
not depending on n, for all n, thus as n → +∞. By DTIME(f(n)) is also denoted
the class of all languages that are decidable by a Determinsitic Turing machine
in O(f(n)) run time.

The computational complexity class P is defined as the class of languages that
are decided by deterministic Turing machines with run-time polynomial com-
plexity. In symbols P = PTIME is the class of languages decided by a determinis-
tic Turing machine that runs for some polynomial p in complexity DTIME(p(|n|)),
the polynomial depending on the language. (See also [23] Wikipedia). In other

https://doi.org/10.4236/jcc.2023.118013

K. E. Kyritsis

DOI: 10.4236/jcc.2023.118013 187 Journal of Computer and Communications

symbols.

P = Uk∈N DTIME(nk)

The elements of the classes P, NP, etc., strictly speaking are not only sets of
words denoted by L, that is not only languages, but also for each such set of
words or language L at least one Deterministic Turing machine (DTM), M that
decides it, in a specified complexity so they are pairs (L, M). Two such pairs (L1,
M1) (L2, M2) are also equidecidable in other words L1 = L2 although it may hap-
pen that M1 ≠ M2. The complexity of the language is considered the least com-
plexity, if it exists, that decides it. E.g. if the complexity of M1 is polynomial-time
while that of M2 is exponential-time choosing the first pair instead of the second
means that we have turned a high-complexity problem into a feasible low-com-
plexity problem.

The definition of other computational complexity classes like EXPTIME etc.
can be found in standard books like [17] [18] [24].

In computational complexity theory, the complexity class EXPTIME (some-
times called EXP or DEXPTIME) is the class of all languages that are decidable
by a deterministic Turing machine in exponential time, i.e., in O(2p(|n|)) time,
where p(|n|) is a polynomial function of |n|. In symbols.

EXPTIME = Uk∈N DTIME(2^(nk))

(See also Wikipedia [25]).
In the official formulation [3] there is also the definition of the concept of a

decision problem language in polynomial time reducible to another decision
problem language.

Based on this definition it is defined that an EXPTIME-complete decision
language of EXPTIME is EXPTIME-complete, when all other decision problem
languages of EXPTIME have a polynomial time reduction to it. Here is the exact
definition. We denote by Σ*all the words of analphabet Σ.

Definition 2.1. Suppose that Li is a language from words of Σ*i,i = 1, 2. Then
L1 ≤ pL2 or L1 ≤ polyL2 (L1 is polynomially p-reducible to L2) if and only if there
is a polynomial-time computable function-map (or total function) * *

1 2:f Σ → Σ
(in other words (x, f(x)) ∈ f is in polynomial time decidable) such that x ∈ L1 if
and only if f(x) ∈ L2, for all *

1x∈Σ .
Lemma 2.1. If L1 ≤ polyL2 by the polynomial time decidable function f, then

|f(x)| ≤ p(|x|) for some polynomial p.
In the same papers or books [15] [17] [24] [26] can be found the concepts and

definitions of NP-complete and EXPTIME-compete decision problems. See
also [27], [18] where it’s proved that specific decision problems are EXPTIME-
complete. E.g. in [15] in Definition 4, it is defined that a language of the com-
plexity class NP is NP-complete if and only if any other language of the class NP
has a polynomial reduction to it.

In particular, also it holds that,
Lemma 2.2. If the language Lc of the complexity class C (=P, NP, EXPTIME,

etc.) is a C-complete language, (C = P, NP, EXPTIME, etc.) then any other lan-

https://doi.org/10.4236/jcc.2023.118013

K. E. Kyritsis

DOI: 10.4236/jcc.2023.118013 188 Journal of Computer and Communications

guage L of C has a polynomial reduction onto the language Lc.
For simplicity, we will consider here only binary alphabets {0, 1} and sets of

binary words Σ.
Since we are obliged to take strictly the official formulation of the problem,

rather than textbooks about it, we make the next clarifications.
We will use the next conditions for a Language to be in the class NP, as stated

in the official formulation of the P versus NP problem (see [15] Cook, Stephen
(April 2000), The P versus NP Problem (PDF), Clay Mathematics Institute.).

We denote by Σ* all the words of an alphabet Σ.
Definition 2.2. A language L of binary words is in the class NP if and only if

the next conditions hold.
1) There is a deterministic Turing machine M that decides L. In other words

for any word x in L, when x is given as input to M, then M accepts it and if x
does not belong to L then M rejects it.

In symbols: ∃ a deterministic Turing machine M, such that *x∀ ∈Σ , x is
either accepted or rejected by M and if M accepts x → x ∈ L, and if M reject x → x
does not belong to L.

2) There is a polynomial-time checkable relation R(x, y) which as set of pairs
of words can also be considered a polynomial decidable language R, and a natu-
ral number k of N, so that for every word x, x belongs to L if and only if there is
a word y, with |y| ≤ |x|k, and R(x, y) holds or equivalently (x, y) belongs to R.

In symbols: ∃ relation (language) R which is polynomial-time checkable
(polynomial complexity decidable language R), and k N∃ ∈ , such that *x∀ ∈Σ ,
x ∈ L ↔ (* y∃ ∈Σ , |y| ≤ |x|k and (x, y) ∈ R). Or equivalently.

L = {x/x ∈ Σ* and * y∃ ∈Σ , |y| ≤ |x|k and (x, y) ∈ R}.

3) The complexity class NP is contained in the complexity class EXPTIME.
Remark 2.1. In the official statement of the P versus NP problem (see [15]

Cook, Stephen (April 2000), The P versus NP Problem (PDF), Clay Mathematics
Institute) condition 1) is not mentioned. But anyone that has studied complexity
theory, knows that it holds. The languages of NP cannot be semidecidable (or
undecidable). The NP class is also defined as NP = ⋃k∈N NTIME(nk), but this
definition is in the context of non-deterministic Turing Machines. This
means that we involve non-deterministic Turing machines.

Remark 2.2. Notice that in condition 2) the k depends on the relation R and is
not changing as the certificate y changes. In other words, k does not depend on y
and we did not state the next:

There is a polynomial-time checkable relation R(x, y), so that for every word
x, x belongs to L if and only if there is a word y, and k in N, with |y| ≤ |x|k, and
R(x, y) holds. In symbols: ∃ relation R which is polynomial-time checkable,
such that *x∀ ∈Σ , x ∈ L ↔ (* y∃ ∈Σ and k N∃ ∈ such that |y| ≤ |x|k and R(x,
y) holds).

In the official statement of the P versus NP problem (see [15] Cook, Stephen
(April 2000), The P versus NP Problem (PDF), Clay Mathematics Institute) this

https://doi.org/10.4236/jcc.2023.118013

K. E. Kyritsis

DOI: 10.4236/jcc.2023.118013 189 Journal of Computer and Communications

is not made clear, in the natural language that the definition is stated. But that k
does not depend on the certificate, but on the polynomial checkable relation be-
comes clear, when we look at the proof in any good textbook about complexity
theory, of how a non-deterministic Turing machine which runs in polynomial
time, can define a deterministic Turing machine with a polynomial time check-
able relation, which is considered that replaces it.

More generally modern formulations of the definition 2.2 instead of in-
teger k such that |y| ≤ |x| krequire a polynomial p(|x|) so that |y| ≤ p(|x|).

Remark 2.3. Usually, condition 3) in definition 2.2 is not stated. But if for each
word x of L, we take all possible worlds y of Σ*, of length ≤ |x|k and check in poly-
nomial time complexity if R(x, y) holds or not, we result in the worst case scenario
to an exponential time complexity algorithm that decides the language L.

3. Well-Known Results That Will Be Used

We will not use too many results from the computational complexity theory for
our proof that P ≠ NP.

A very deep theorem in the Computational Complexity is the Time Hierar-
chy Theorem (see e.g. [17] [18] [24] [26] [28]. This theorem gives the existence
of decision problems that cannot be decided by any other deterministic Turing
machine in less complexity than a specified.

Based on this theorem, it is proved that:
Proposition 3.1. There is at least one EXPTIME-complete decision language

(problem), that cannot be decided in polynomial time, thus P ≠ EXPTIME.
The next two propositions indicate what is necessary to prove in order to give

the solution to the P versus NP problem.
Proposition 3.2. If the class NP contains a language L which cannot be de-

cided with a polynomial time algorithm, then P ≠ NP.
Proposition 3.3. If the class NP contains a language L which is EXPTIME

complete, then NP = EXPTIME.

4. The Solution: P ≠ NP = EXPTIME in the Context of
Deterministic Turing Machines (DTM)

We will prove in this paragraph that P ≠ NP in the context of second order for-
mal language of mathematical set theory.

The strategy to solve the P vs. NP problem in the current paper (and in my
previous publications) is by starting with an EXPTIME-complete language
(problem), that proposition 3.1 guarantees that it exists, and proving that it has a
re-formulation as an NP-class language with verifier relation and certificate, thus
NP = EXPTIME. Of course in order to proceed like this we must not share the
belief that the complexity class NP is a strict subclass of the complexity class
EXPTIME otherwise we would not think to start like this.

There is a hidden similarity or affiliation between Definition 2.2 of the NP
complexity class with polynomial complexity verifier relations and the definition
of polynomial complexity reduction of a language to another language Defini-

https://doi.org/10.4236/jcc.2023.118013

K. E. Kyritsis

DOI: 10.4236/jcc.2023.118013 190 Journal of Computer and Communications

tion 2.1. Part of this similarity or affiliation is revealed in the next lemma.
Lemma 4.1. Polynomial reduction of languages and the complexity class

NP.
Let a Turing-machine decidable Language L over the alphabet Σ. in the com-

plexity class EXPTIME.
If there is polynomial reduction of the full language Σ* on L, Σ* ≤ poly L then

the language L is in the complexity class NP.
Proof: From the definition 2.1 since Σ* ≤ poly L there is a polynomial time

computable function-map R: Σ* → Σ*, such that y belongs to Σ* if and only if R(y)
belongs to L. Furthermore from the Lemma 2.1 |R(x)|≤ p(|x|) for some polyno-
mialp. Or to rephrase it, (y,R(y))∈R is polynomial time decidable |y|≤ p(|x|)and
y belongs to Σ*if and only if and x = R(y) belongs to L. Reversing the logically
equivalence relation: x = R(y) belongs to L if and only if y belongs to Σ* (that is it
is a word over the alphabet Σ). (and R and |y|≤ p(|x|) as above).
Again rephrasing it: (y, x) ∈ R is polynomial time decidable, |y| ≤ p(|x|) for some
polynomial p (depending or R and not on x), and x belongs to L if and only if
there is a word y of Σ* such that (y, x) ∈ R. Or in symbols, ∃ relation (lan-
guage) R which is polynomial complexity decidable language, and ∃ polyno-
mial p such that, x∈L↔(* y∃ ∈Σ , with|y|≤p(|x|)and(x,y)∈R). But this is just the
condition 2) of the definition 2.2 of the complexity class NP, where the relation,
|y| ≤ |x|k has been substituted by the |y| ≤ p(|x|) as at the end of Remark 2.2. The
language L is furthermore decidable by a Turing machine and at most of
EXPTIME complexity, thus conditions 1) and 3) of Definition 2.2 are also satisfied,
consequently the language L is of the type of NP-complexity class. QED.

We could explore further the similarity and affiliation of the concepts of
polynomial complexity verifier relation with certificates of a language L in the
NP-class, by proving that if the verifier relation R is also a function map from
the language of certificates C(L) to L, then there is also polynomial complexity
reduction of the language of certificates C(L) to the original language L: C(L) ≤
poly L. But we do not need to do so for the purpose of solving the P vs. NP
problem.

The Lemma 4.1 may seem simple to many and certainly, for me it was obvi-
ous, that is why I did not include in my previous publications of the solution of
the P vs. problem [4] [5] [6] [8] [29] Kyritsis K. But strictly speaking without
Lemma 4.1, the previously published solutions by me of the P vs. NP are not
fully and in a very detailed way understandable. Lemma 4.1 requires lucky ab-
stract thinking and it’s a key abstraction for the solution of the P vs. NP prob-
lem.

We proceed to solve the P vs. NP problem not only with the claim P ≠ NP, but
with the much stronger and surprising for many researchers claim NP =
EXTIME. Actually, this stronger and “unexpected” claim makes the solution
dramatically simple (but not easy to think of it as it involves substantial abstract
thinking inside the Lemma 4.1!)

Proposition 4.1. (Simplest possible fully correct solution of the 3rd Clay

https://doi.org/10.4236/jcc.2023.118013

K. E. Kyritsis

DOI: 10.4236/jcc.2023.118013 191 Journal of Computer and Communications

Millennium problem P vs. NP) There is at least one (decision problem) lan-
guage of the class NP which is not also in the class P. Therefore, P ≠ NP. It holds
furthermore that NP = EXTIME.

Proof: As we stated already from the beginning, our strategy to solve the P vs.
NP problem is to START with a EXPTIME-complete language L! Thus we know
in advance that this language cannot be decided in polynomial time complexity.

Then we proceed to realize that the language L can be reformulated in such a
way, that is definable with polynomial complexity verifier relation and certifi-
cates, thus it is a language of the NP-class. Proving this for the language L it
automatically concludes that NP = EXPTIME, because we know that NP ≤
EXPTIME, and that L is an EXPTIME-complete language.

We do know from Proposition 3.1 that there exists such an EXPTIME- com-
plete language L. We do not need to specify which one, as the arguments are
simple as long as they are abstract. But since L is EXPTIME-complete from the
Lemma 2.2 any other language of the EXPTIME-complexity class has a polyno-
mial reduction on it! And certainly, the complexity class EXPTIME contains the
polynomial complexity class P ≤ EXPTIME. Therefore the language Σ* of all
words over the alphabet Σ, which is polynomial time complexity decidable also
belongs to EXPTIME, Σ* ∈ EXPTIME. Thus Σ* ≤ poly L. We do not even need to
know which polynomial complexity function R makes this polynomial complexity
reduction. But then from the previous Lemma 4.1, we conclude that L ∈ NP-class!
Therefore NP = EXPTIME. The hierarchy theorem concludes that P ≠ NP.Q.E.D.

5. Conclusions

The literature on the complexity theory has an abundance of problems or lan-
guages that are proven to be NP-complete, but a scarcity of languages or prob-
lems that are proven to be EXPTIME-complete.

The fact that none of the languages or problems that are known to be
NP-complete have so far known algorithms to solve-decide them that in the
general case are never less than exponential time, should ring a bell to the re-
searchers!

Could it hold that all these NP-complete problems are also EXPTIME-complete
problems? The current solution of the P vs. NP problem proves exactly this! The
next proposition answers it in the affirmative and thus we have now an abun-
dance of well-studied problems that turn out to be also EXPTIME-complete.
This is a significant contribution to the theory of EXPTIME-complete languages
or problems

Proposition 5.1. All the NP-complete languages are also EXPTIME-complete
languages.

Proof: Direct from the equality NP = EXPTIME in proposition 4.1 QED.
There are many more consequences of the equality NP = EXPTIME that the

specialist of complexity theory can derive without too much effort. For example,
in [30] Mathoverflow it is discussed that if NP = EXPTIME then every Determi-

https://doi.org/10.4236/jcc.2023.118013

K. E. Kyritsis

DOI: 10.4236/jcc.2023.118013 192 Journal of Computer and Communications

nistic Turing Machine has a succinct “execution proof”.
Sometimes great problems have relatively short and elegant solutions pro-

vided we find the key-abstractions and convenient context, symbols and se-
mantics to solve them. It requires also a certain power of thinking (especially
when there are biased beliefs prohibiting thinking) rather than a complexity of
thinking, in areas where traditionally and collectively it may not exist before be-
cause of false dominating beliefs. Here the key-abstraction was to start from the
class EXPTIME and an EXPTIME-complete language of it, without specifying
which one instead of starting from the class NP. Then prove that it can be re-
formulated as an NP-class language. Since in my opinion, the Hierarchy Theo-
rem is a deeper result than the P versus NP problem, in principle, there should
exist a not much more complicated proof of the P versus NP problem, compared
to the proof of the Hierarchy Theorem. Intuitively since the Non-deterministic
Turing machines are like user-interactive algorithms which involve the free
human will, it is expected that the non-deterministic polynomial-time algo-
rithms cannot be computed with less than exponential time complexity. This in-
cludes encryption and the password setting problems.

The proof of the P versus NP problem in the direction P ≠ NP, also means
that the standard practice of password setting in the internet, is safe when
the encryptions is not corrupted and the publicly available hardware com-
putational power is the same for all.

There are many students who are surprised by the “difficulty” of the P vs. NP
problem and ask why the P vs. NP problem was not solved long ago, by proving
that the password-breaking cannot be done in polynomial time but only in ex-
ponential time. Actually, this is exactly what we proved! Only that the theoretical
formulation of encryption of finite many of passwords is essentially similar to
the presentation of an infinite many words, languages in abstract way without
specifying it, except of general requirements like being EXPTIME-complete as
we did in the arguments of the current paper.

Conflicts of Interest

The author declares no conflicts of interest regarding the publication of this pa-
per.

References
[1] Woeginger, G.J. (2016) The P versus NP Page.

https://www.win.tue.nl/~gwoegi/P-versus-NP.htm

[2] Wikipedia, “P versus NP Problem”.
https://en.wikipedia.org/wiki/P_versus_NP_problem

[3] Yannakakis, M. (1998) Expressing Combinatorial Optimization Problems by Linear
Programs. Proceedings of STOC, Chicago, 2-4 May 1988, 223-228.
https://doi.org/10.1145/62212.62232

[4] Kyritsis, C. (2017) On the Solution of the 3rd Clay Millennium Problem. A Short
and Elegant Proof That P ≠ NP in the Context of Deterministic Turing Machines

https://doi.org/10.4236/jcc.2023.118013
https://www.win.tue.nl/%7Egwoegi/P-versus-NP.htm
https://en.wikipedia.org/wiki/P_versus_NP_problem
https://doi.org/10.1145/62212.62232

K. E. Kyritsis

DOI: 10.4236/jcc.2023.118013 193 Journal of Computer and Communications

and Zermelo-Frankel Set Theory. Proceedings of the 1st ICQSBEI 2017 Conference,
Athens, Greece, 170-181.

[5] Kyritsis, K. (2018) The Solution of the 3rd Clay Millennium Problem. A Short Proof
That P ≠ NP = Exptime in the Context of Zermelo Frankel Set Theory. International
Journal of Pure and Applied Mathematics, 120, 497-510. http://www.ijpam.eu

[6] Kyritsis, K. (2021) Study on the Solution of the Clay Millennium Problem about the
P vs. NP: A Short Proof that P not equal NP = EXPTIME in the Context of Deter-
ministic Turing Machines. In: New Visions in Science and Technology, Vol. 6, BP
International, India, 60-69. https://doi.org/10.9734/bpi/nvst/v6/5176F
https://stm.bookpi.org/NVST-V6/article/view/4135

[7] Kyritsis, K. (2022) A Short and Simple Solution of the Millennium Problem about
the Navier-Stokes Equations and Similarly for the Euler Equations. Journal of Ap-
plied Mathematics and Physics, 10, 2538-2560
https://www.lap-publishing.com/catalog/details//store/gb/book/978-620-4-72562-8/
the-solutions-of-the-3rd-and-4th-millennium-mathematical-problems

[8] Kyritsis, K. (2023) A 3rd Shorter Solution of the Clay Millennium Problem about P
≠ NP = EXPTIME. Conference: 6th International Conference on Quantitative, So-
cial, Biomedical and Economic Issues, Athens, 1 July 2022, 81-89.
https://icqsbei2022.blogspot.com/2022/06/blog-post.html
http://books.google.com/books/about?id=xZnCEAAAQBAJ

[9] Frankel, A.A. (1976) Abstract Set Theory. North Holland Publishing Company,
Amsterdam.

[10] Wikipedia, “Zermelo Frankel Set Theory”.
https://en.wikipedia.org/wiki/Zermelo%E2%80%93Fraenkel_set_theory

[11] Thomas, J. (1978) Set Theory. Academic Press, Cambridge.

[12] Wikipedia “Von Neumann-Bernays-Gödel set theory”
https://en.wikipedia.org/wiki/Von_Neumann%E2%80%93Bernays%E2%80%93G%
C3%B6del_set_theory

[13] Manin, Y.I. (2010) A Course in Mathematical Logic for Mathematicians. Springer,
Berlin. https://doi.org/10.1007/978-1-4419-0615-1

[14] Wikipedia, “Second-Order Logic”.
https://en.wikipedia.org/wiki/Second-order_logic

[15] Cook, S. (2000) The P versus NP Problem (PDF), Clay Mathematics Institute Site.

[16] Wikipedia, “Turing Machine”. https://en.wikipedia.org/wiki/Turing_machine

[17] Martin, J.C. (1997) Introduction to Languages and the Theory of Computation. 2nd
Edition, McGraw-Hill, London.

[18] Papadimitriou, C. (1994) Computational Complexity. Addison-Wesley, Boston.

[19] Wikipedia, “Nondeterministic Turing Machine”.
https://en.wikipedia.org/wiki/Nondeterministic_Turing_machine

[20] Wikipedia, “DTIME”. https://en.wikipedia.org/wiki/DTIME

[21] Wikipedia, “Time Complexity”.
https://en.wikipedia.org/wiki/Time_complexity#Polynomial_time

[22] Wikipedia “Big O Notation”. https://en.wikipedia.org/wiki/Big_O_notation

[23] Wikipedia, “P (Complexity)”. https://en.wikipedia.org/wiki/P_(complexity)

[24] Lewis, H.R. and Papadimitriou, C.H. (1981) Elements of the Theory of Computa-
tion. Prentice-Hall, Englewood Cliffs.

[25] Wikipedia, “EXPTIME”. https://en.wikipedia.org/wiki/EXPTIME

https://doi.org/10.4236/jcc.2023.118013
http://www.ijpam.eu/
https://doi.org/10.9734/bpi/nvst/v6/5176F
https://stm.bookpi.org/NVST-V6/article/view/4135
https://www.lap-publishing.com/catalog/details/store/gb/book/978-620-4-72562-8/the-solutions-of-the-3rd-and-4th-millennium-mathematical-problems
https://www.lap-publishing.com/catalog/details/store/gb/book/978-620-4-72562-8/the-solutions-of-the-3rd-and-4th-millennium-mathematical-problems
https://icqsbei2022.blogspot.com/2022/06/blog-post.html
http://books.google.com/books/about?id=xZnCEAAAQBAJ
https://en.wikipedia.org/wiki/Zermelo%E2%80%93Fraenkel_set_theory
https://en.wikipedia.org/wiki/Von_Neumann%E2%80%93Bernays%E2%80%93G%C3%B6del_set_theory
https://en.wikipedia.org/wiki/Von_Neumann%E2%80%93Bernays%E2%80%93G%C3%B6del_set_theory
https://doi.org/10.1007/978-1-4419-0615-1
https://en.wikipedia.org/wiki/Second-order_logic
https://en.wikipedia.org/wiki/Turing_machine
https://en.wikipedia.org/wiki/Nondeterministic_Turing_machine
https://en.wikipedia.org/wiki/DTIME
https://en.wikipedia.org/wiki/Time_complexity#Polynomial_time
https://en.wikipedia.org/wiki/Big_O_notation
https://en.wikipedia.org/wiki/P_(complexity)
https://en.wikipedia.org/wiki/EXPTIME

K. E. Kyritsis

DOI: 10.4236/jcc.2023.118013 194 Journal of Computer and Communications

[26] Trevisan, L. (2009) Notes on Hierarchy Theorems. University of California, Berke-
ley.

[27] Hartmanis, J. and Stearns, R.E. (1965) On the Computational Complexity of Algo-
rithms. Transactions of the American Mathematical Society, 117, 285-306.
https://doi.org/10.1090/S0002-9947-1965-0170805-7

[28] Stanislav, Ž. (1983) A Turing Machine Time Hierarchy. Theoretical Computer Sci-
ence, 26, 327-333. https://doi.org/10.1016/0304-3975(83)90015-4

[29] Kyritsis, K. (2021) Review of the Solutions of the Clay Millennium Problem about P
≠ NP = EXPTIME. World Journal of Research and Review, 13, 21-26.
https://www.wjrr.org/vol-13issue-3
https://doi.org/10.31871/WJRR.13.3.8

[30] Mathoverflow. If NP = EXPTIME, Does Every DTM Have a Succinct “Execution
Proof”?
https://mathoverflow.net/questions/114887/if-np-exptime-does-every-dtm-have-a-s
uccinct-execution-proof

https://doi.org/10.4236/jcc.2023.118013
https://doi.org/10.1090/S0002-9947-1965-0170805-7
https://doi.org/10.1016/0304-3975(83)90015-4
https://www.wjrr.org/vol-13issue-3
https://doi.org/10.31871/WJRR.13.3.8
https://mathoverflow.net/questions/114887/if-np-exptime-does-every-dtm-have-a-succinct-execution-proof
https://mathoverflow.net/questions/114887/if-np-exptime-does-every-dtm-have-a-succinct-execution-proof

	The Simplest Possible Fully Correct Solution of the Clay Millennium Problem about P vs. NP. A Simple Proof That P ≠ NP = EXPTIME
	Abstract
	Keywords
	1. Introduction
	2. Preliminary Concepts, and the Formulation of the 3rd Clay Millennium Problem, P versus NP
	3. Well-Known Results That Will Be Used
	4. The Solution: P ≠ NP = EXPTIME in the Context of Deterministic Turing Machines (DTM)
	5. Conclusions
	Conflicts of Interest
	References

