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Development and validation of an interpretable machine learning-based calculator for predicting 5-year weight trajectories after bariatric surgery: a multinational retrospective cohort SOPHIA study

ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Introduction

The prevalence of obesity has increased globally over the past two decades. [START_REF] Afshin | Health effects of overweight and obesity in 195 countries over 25 years[END_REF] Obesity is a heterogeneous condition associated with several complications and metabolic manifestations across individuals, ultimately increasing the risk of all-cause mortality. [START_REF] Aune | BMI and all cause mortality: systematic review and non-linear dose-response meta-analysis of 230 cohort studies with 3.74 million deaths among 30.3 million participants[END_REF] Bariatric surgery, although not first-line therapy, has emerged as an effective treatment for sustained weight loss, [START_REF] Carlsson | Life expectancy after bariatric surgery in the Swedish Obese Subjects study[END_REF] resulting in long-term improvement in obesity-related complications, [START_REF] Colquitt | Surgery for weight loss in adults[END_REF] and prolonged life expectancy. [START_REF] Syn | Association of metabolicbariatric surgery with long-term survival in adults with and without diabetes: a one-stage meta-analysis of matched cohort and prospective controlled studies with 174 772 participants[END_REF] Despite a comprehensive preoperative assessment of each patient, it is challenging to forecast weight loss outcomes following the intervention. Indeed, weight loss changes over time and variesbetween procedures and between individuals. [START_REF] Courcoulas | Seven-year weight trajectories and health outcomes in the Longitudinal Assessment of Bariatric Surgery (LABS) study[END_REF][START_REF] Peterli | Effect of laparoscopic sleeve gastrectomy vs laparoscopic Roux-en-Y gastric bypass on weight loss in patients with morbid obesity: the SM-BOSS randomized clinical trial[END_REF] A reasonable estimation of the expected weight loss trajectory after bariatric surgery would help inform clinical decisions by patients and health-care providers. Therefore, multiple models have been proposed to predict postoperative weight loss. [START_REF] Karpińska | Is it possible to predict weight loss after bariatric surgery-external validation of predictive models[END_REF] For such models to be clinically relevant, they need to predict at least 5 years of weight loss outcome. [START_REF] Colquitt | Surgery for weight loss in adults[END_REF] However, most previous studies were restricted to the early postoperative period [START_REF] Karpińska | Is it possible to predict weight loss after bariatric surgery-external validation of predictive models[END_REF] or undermined by the high proportion of patients lost to follow-up, or both. [START_REF] Puzziferri | Long-term follow-up after bariatric surgery: a systematic review[END_REF] Some prediction models also incorporated early weight loss (before 6 months), to predict longer outcomes (beyond 2 years), [START_REF] Tettero | Early postoperative weight loss predicts weight loss up to 5 years after Roux-en-Y gastric bypass, banded Roux-en-Y gastric bypass, and sleeve gastrectomy[END_REF][START_REF] Manning | Early postoperative weight loss predicts maximal weight loss after sleeve gastrectomy and Roux-en-Y gastric bypass[END_REF] and can therefore not be used before the operation.

Previous attempts to predict longer-term weight loss after bariatric surgery have used multivariable regressions. [START_REF] Karpińska | Is it possible to predict weight loss after bariatric surgery-external validation of predictive models[END_REF] However, such methods assume that the relationship between the dependent and the independent variable is linear, which might not always be the case. Additionally, multivariable regressions might lead to difficulties in accounting for interactions. [START_REF] Batterham | Predicting dropout in dietary weight loss trials using demographic and early weight change characteristics: implications for trial design[END_REF] Moreover, although coefficients in linear regression and the odds in logistic regression are relatively easy to understand, they are not easy to apply in clinical decision making. In contrast, machine learning methods have the potential to distinguish subtle, nonlinear patterns in data that are often not accessible using traditional approaches such as logistic regression. [START_REF] Finks | Predicting risk for venous thromboembolism with bariatric surgery: results from the Michigan Bariatric Surgery Collaborative[END_REF] Likewise, machine learning models have outperformed logistic regression in preoperative risk stratification using National Surgical Quality Improvement Program data. [START_REF] Bertsimas | Surgical risk is not linear: derivation and validation of a novel, user-friendly, and machine-learning-based predictive optimal trees in emergency surgery risk (POTTER) calculator[END_REF] Currently only a few studies have applied artificial intelligence (neural network) to predict early weight loss after bariatric surgery, and none of them were externally validated. [START_REF] Bektaş | Artificial intelligence in bariatric surgery: current status and future perspectives[END_REF] Therefore, the aims of the present study were (1) to use machine learning to develop a system predicting postoperative weight loss trajectory, using information gathered by protocol-driven, comprehensive preoperative assessment and repeated postoperative weight assessments in a large prospective cohort study of patients submitted to bariatric surgery; (2) to validate the performance of the proposed model globally, using multiple external prospective cohorts and randomised controlled trials; and (3) to incorporate the results into an easy-to-use and interpretable web-based tool providing individual preoperative prediction of postoperative weight loss trajectory.

Research in context

Evidence before this study Obesity is a heterogeneous condition that increases the risk of all-cause mortality. Bariatric surgery, although not first-line therapy, is an effective treatment for sustained weight loss, improving obesity-related complications and life expectancy. However, despite comprehensive preoperative assessment of each candidate, long-term weight loss outcomes are heterogeneous as regards to changes over time, differences between procedures, and between individuals. We searched PubMed, Embase, and the Cochrane Library using the terms "bariatric surgery", "postoperative weight loss", "weight loss prediction", and "prediction model" for studies that investigated models of weight loss after Roux-en-Y gastric bypass (RYGB), sleeve gastrectomy, and adjusted gastric banding (AGB) and used a prospective or retrospective design published from database inception up until Jan 21, 2021. We included English and French language studies. Most previous studies were restricted to the early postoperative period or undermined by the high proportion of patients lost to follow-up, or both. Some prediction models also incorporated early weight loss (before 6 months), to predict longer outcomes (beyond 2 years), and can therefore not be used before the operation. Previous attempts to predict longer-term weight loss after bariatric surgery have used multivariable regressions. However, such methods assume that the relationship between the dependent and the independent variable is linear, which might not always be the case.

Added value of this study

In the present study, we developed a machine learning model that provides accurate individual weight trajectories expected during 5 years after bariatric surgery, based on seven simple preoperative variables: age, weight, height, smoking history, type 2 diabetes status and duration, and the type of intervention. These variables are readily available in a variety of clinical settings without interpretation and do not require laboratory tests. The model was incorporated into an easy-touse and interpretable web-based tool. This study is the first to provide preoperative predictions of weight trajectories up to 5 years after surgery based on machine learning, simultaneously for three of the most common types of surgery (RYGB, sleeve gastrectomy, and AGB). The present study also showed the effect of diabetes duration and smoking, which were not previously included in weight loss surgery prediction models.

Implications of all the available evidence

This model could help to refine individual weight loss trajectory prediction in routine clinical practice, by being an accurate and simple strategy to inform clinical decisions for both health-care providers and patients before surgery, enabling precision medicine and individualised patient management.

Methods

Study design and participants

In this multinational retrospective observational study, we used data from ten cohorts of adult patients submitted for the first time to Roux-en-Y gastric bypass (RYGB), sleeve gastrectomy, and adjusted gastric banding (AGB), from eight countries. All patients had up to 5 years of postoperative data available and were aged 18 years or older. We excluded patients with a previous history of bariatric surgery, because the preoperative weights measured before reintervention already accounted for the effect of past interventions, which would have added a bias in the calculated weight loss outcomes. We also excluded patients with large delays between scheduled and actual visits related to postoperative complications. In case of missing follow-up visits, patients were kept in the analysis but censored at the corresponding dates. Patients not expected at a given time (recent interventions) were also censored after the last completed visit (appendix p 3).

The training cohort consisted of patients who were prospectively enrolled at the time of primary bariatric surgery in two longitudinal cohort studies evaluating the long-term outcome of bariatric surgery: Atlas Biologique de l'Obésité Sévère (ABOS; NCT01129297) in Lille, France, between Feb 10, 2006, and Nov 2, 2020, and BAREVAL (NCT02310178) in Montpellier, France, between April 8, 2014, and April 28, 2020.

The prediction model was validated, using eight external testing cohorts from France (Projet régional de Recherche Clinique en Obésité Sévère [PRECOS; NCT03517072] and Lyon [NCT02139813]), the Netherlands (the Dutch Obesity Clinic, Nederlandse Obesitas Kliniek [NOK]), [START_REF] Tettero | Early postoperative weight loss predicts weight loss up to 5 years after Roux-en-Y gastric bypass, banded Roux-en-Y gastric bypass, and sleeve gastrectomy[END_REF] Sweden (the Swedish Obese Subjects [SOS] study), [START_REF] Carlsson | Life expectancy after bariatric surgery in the Swedish Obese Subjects study[END_REF] Italy (NCT01581801 and NCT00888836), [START_REF] Mingrone | Metabolic surgery versus conventional medical therapy in patients with type 2 diabetes: 10-year follow-up of an open-label, single-centre, randomised controlled trial[END_REF] Singapore (Singapore General Hospital [SGH]), [START_REF] Tan | Centile charts for monitoring of weight loss trajectories after bariatric surgery in Asian patients[END_REF] Brazil (Center for the treatment of Obesity and Diabetes [COD], Hospital Oswaldo Cruz, Sao Paulo, Brazil), [START_REF] Cohen | Effect of gastric bypass vs best medical treatment on early-stage chronic kidney disease in patients with type 2 diabetes and obesity: a randomized clinical trial[END_REF] and Mexico. [START_REF] Zerrweck | Long versus short biliopancreatic limb in Roux-en-Y gastric bypass: short-term results of a randomized clinical trial[END_REF] Additional external validation was conducted in participants of two registered and previously published randomised, open-label, multicentre trials which compared patients submitted to RYGB with sleeve gastrectomy in Finland (SleevePass, NCT00793143) [START_REF] Salminen | Effect of laparoscopic sleeve gastrectomy vs Roux-en-Y gastric bypass on weight loss, comorbidities, and reflux at 10 years in adult patients with obesity: the SLEEVEPASS randomized clinical trial[END_REF] and Switzerland (Swiss Multicenter Bypass or Sleeve Study [SM-BOSS], NCT00356213). [START_REF] Peterli | Effect of laparoscopic sleeve gastrectomy vs laparoscopic Roux-en-Y gastric bypass on weight loss in patients with morbid obesity: the SM-BOSS randomized clinical trial[END_REF] The individual-level 5 year-data of these two studies have been merged into a single analysis. 21 Details about study protocols and data collection for these two cohorts are in the appendix (p 7). Study participants self-reported sex data and were provided with two options (male or female).

Study participants in all cohorts gave written informed consent. All centres obtained ethics approval for their respective studies.

Outcomes

The primary study outcome was the prediction of BMI at 5 years after bariatric surgery. Secondary outcomes were weight loss at earlier postoperative visits (at months 1, 3, 12, and 24), expressed as weight (kg), percent of total weight loss (TWL), calculated as: TWL=(visit weight -preoperative weight)/preoperative weight × 100 and percent of excess weight loss (EWL) calculated as: EWL=(preoperative BMI -visit BMI)/(preoperative BMI -25)× 100

Model development

To derive the model, the training cohort was divided into two subsets: a training subset consisting of 80% of randomly selected patients, and an internal testing subset consisting of 20% of patients.

We first performed preprocessing of all patients' baseline characteristics. Because the ABOS cohort had many preoperative attributes per patient (appendix pp 40-60), we ran a feature selection algorithm on this patient subgroup to extract the most statistically relevant ones concerning outcome prediction using the Least Absolute Shrinkage and Selection Operator (LASSO). [START_REF] Lim | Learning interactions via hierarchical group-lasso regularization[END_REF] To develop the model, first we further leveraged a class of machine learning algorithms called decision trees to learn meaningful subgroups of patients that share statistical similarities in their baseline characteristics, and second, to fit a TWL prediction model for each subgroup. For instance, decision trees can predict weight loss when they are trained on a heterogeneous cohort of different bariatric interventions such as RYGB, sleeve gastrectomy, and AGB, according to the type of intervention as well as using other variables such as the age at intervention, BMI, and other clinical features.

To calibrate the decision trees, we used LASSOextracted features as input for the classification and regression trees (CART) algorithm. [START_REF] Breiman | Classification and regression trees[END_REF] A workflow diagram of the machine learning process is in the appendix (p 24). The algorithm was calibrated on the training subset of the training cohort. We further compared the predicted TWL to the observed outcomes of patients in the testing subset of the training cohort (internal validation). Details of the model development are in the appendix (p 8).

Additionally, we compared that approach with other methods: classic linear models, linear mixed effect model, random forest model, and CART on all variables without LASSO using instead pruning for feature selection (appendix p 9).

Model validation in external cohorts

The model was externally validated by comparing the observed (TWL i ) and predicted total weight loss: at each visit for each participant (i) of eight distinct testing cohorts (NOK, SGH, SOS, PRECOS, Roma, Lyon, See Online for appendix TWL i COD, and Mexico). For better readability, weight loss was also computed as BMI by converting predicted TWL into predicted weights:

The performance of the prediction model was calculated at each visit date, and expressed by using the standard metric median absolute deviation (MAD): which measures dispersion of predicted TWL around the true values while being robust to outliers. We also calculated root mean squared error (RMSE):

which jointly measures the model prediction bias and variance, but is more sensitive to outliers than MAD because the square amplifies them. These two indices were also expressed as normalised ratios as percentage of observed BMI for each visit.

We used Bland-Altman plots with actual versus predicted BMI at each specific timepoint (month 12, month 24, and month 60) to assess model calibration.

Model validation in randomised controlled trials

Additionally, we used the individual data from the two randomised clinical trials (SLEEVEPASS [START_REF] Salminen | Effect of laparoscopic sleeve gastrectomy vs laparoscopic Roux-en-Y gastric bypass on weight loss at 5 years among patients with morbid obesity: the SLEEVEPASS randomized clinical trial[END_REF] and SM-BOSS [START_REF] Peterli | Effect of laparoscopic sleeve gastrectomy vs laparoscopic Roux-en-Y gastric bypass on weight loss in patients with morbid obesity: the SM-BOSS randomized clinical trial[END_REF] ) to replicate with our model the previously reported comparison of RYGB versus sleeve gastrectomy in terms of weight loss. 21 The original report combined and analysed weight follow-up data from the two studies for up to 5 years using a linear mixed model. 21 In our study, we replaced the observed individual weight loss values with those predicted at each timepoint by our machine learning model and analysed them using the same linear mixed model described in the original report to compare the predicted and observed mean (95% CI) difference in weight loss between the two operations.

Statistical analysis

Patients' characteristics were reported for each cohort as mean (SD) for continuous traits and n (%) for categorical variables. Comparison of median weight loss between two groups was performed using the Mann-Whitney U test, and between three or more groups using Kruskal-Wallis one-way ANOVA. MAD and RMSE were displayed as their estimates and 95% CIs, estimated by bootstrap (bias-corrected and accelerated method, n=10 000 replications). Weight loss and BMI median trajectories of participants submitted to each operation in each cohort were illustrated as a function of time using a non-linear smoothing of the values observed at discrete times (appendix p 4), which is not part of the validation and performance assessment. The trajectories of patients are displayed along with prediction intervals of predicted BMI, calculated as prediction plus 25th percentile of error and prediction plus 75th percentile of error.

Patient features containing more than 50% of missing values were excluded from the analysis. The remaining missing values were handled in two ways. For the LASSO analysis, the predictive mean matching method was used based on key characteristics at baseline: weight, sex, age, operation type, and presence of type 2 diabetes and its duration. [START_REF] Van Buuren | mice: multivariate imputation by chained equations in R[END_REF] We imputed n=10 sets of data, and selected variables by pooling the variable selected by LASSO in each dataset. The decision tree algorithm uses surrogate variables for the CART analysis in the case of missing data. [START_REF] Therneau | Package 'rpart[END_REF] The analysis was performed using R software version 3.6.3, the rpart library for the CART imple mentation, and the glmnet and glinternet libraries for the LASSO implementation. An online tool was developed based on two components: a front-end graphical user interface coded with JavaScript using the React library, and a back-end prediction and smoothing model coded in Python using the Flask microweb framework. We used the TRIPOD AI guidelines 27 to report the prediction model's development and validation (appendix pp 61-63).

For comparison, we also analysed results from previously published postoperative weight loss prediction models [START_REF] Karpińska | Is it possible to predict weight loss after bariatric surgery-external validation of predictive models[END_REF] in the appendix (p 10).

Role of the funding source

The funders of the study had no role in study design, data collection, data analysis, data interpretation, or writing of the report.

Results

The training cohort from France (n=1493), and the testing cohorts from Europe (n=7137), the Americas (n=167), Asia (n=977), and the two randomised controlled trials used for validation (n=457), represented a total of 10 231 patients from 12 centres in ten countries, corresponding to 30 602 patient-years. The baseline characteristics of participants of each cohort and the proportion of each type of operation performed are in table 1. The overall trajectories of the median (IQR) BMI and TWL observed during the 5 years after each operation are shown in figure 1, and in the appendix (pp 12-23) for the various training and testing cohorts. Individual weights at baseline ranged from 65 kg to 295 kg (SD 25•6) and BMI from 26•7 kg/m² to 94•1 kg/m² (SD 7•5). Age at intervention ranged from 18 to 74 years. Among the 10 231 participants in all 12 cohorts, 7701 (75•3%) were female, 2530 (24•7%) were male, and 2882 (28 

vs 14•9% [7•2-25•3]), both p<0•0001.
In the feature selection process during the development of the predictive weight loss model, 447 attributes were available at baseline in ABOS (appendix pp 40-60); of these, 62 (14%) were excluded because of missing data, class imbalanced, or free text input. Among the 385 remaining variables, the LASSO algorithm selected seven features that were associated with TWL at least at one postoperative visit: preoperative weight, height, type of intervention, age at intervention, current smoking history, type 2 diabetes status, and diabetes duration. The hierarchical group-LASSO method selected the same features, as well as two additional interactions: one between type of intervention and type 2 diabetes, and one between type of intervention and type 2 diabetes duration.

Training CART using the nine variables selected by hierarchical group-LASSO did not modify the decision trees. The final CART algorithm therefore used the seven features selected by LASSO for the TWL regression task.

For feature stratification, at all postoperative times, the first and most discriminant branch of decision trees divided the population by the type of intervention, with AGB being separated from RYGB at all times. At 1 year, the second descendant branch separated patients by age. The following descendant branch distinguished between sleeve gastrectomy and RYGB, only in older patients (aged >51 years), and smoking status distinguished younger patients (aged 18-51 years). At 2 years, the second descendant branch distinguished sleeve gastrectomy from RYGB. The following branch separated sleeve gastrectomy patients by age and RYGB patients according to their diabetes status. At 5 years, AGB and sleeve gastrectomy was not separated. The second descendant branch was type 2 diabetes status (RYGB patients) and age (other patients). Overall, RYGB and younger age were consistently associated with greater weight loss. Having diabetes and longer diabetes duration were always associated with less weight loss. Smoking was associated with greater weight loss, but only during the first year. The corresponding trees for each postoperative time are in the appendix (pp 25-27).

The model's prediction performances were evaluated at 1, 2, and 5 years in the testing subset of the training cohort (figure 2 The performances of the model at 1 year, 2 years, and 5 years in the testing cohorts and for each intervention are shown in figure 2, table 2, and table 3. that did not reveal any significant systematic bias in the predictions.

We tested the model's performance to predict the overall outcome of randomised controlled trials comparing weight loss after RYGB and sleeve gastrectomy over 5 years. The results of our synthetic study based on predicted weights were in overall agreement with those of the published research, concluding with a significantly higher weight loss following RYGB as compared to sleeve gastrectomy. The mean difference between the two groups was 14•7% (95% CI 13•7-15•7) of EWL and 6•6% (6•2-6•9) of TWL in the synthetic study versus 7•0% (3•5-10•5) of EWL and 3•2% (1•6-4•7) of TWL in the combined analysis of the two original studies. 21 The performances of the selected decision tree model were compared in training and testing cohorts with alternative models based on simple regression, linear mixed effect, random forest, and CART with pruning. The decision tree approach outperforms simple regression at month 12, month 24, and month 60 in both internal and external test data (appendix p 32). The linear mixed model using the seven selected variables, and time as restricted cubic splines, with random intercept and slope, did not outperform the decision tree model on both internal and external test data (appendix p 33). MAD estimates are even slightly lower with the decision tree, at month 12 and month 60. Random forest resulted in only marginally lower MAD estimates, as compared with the decision tree approach (confidence intervals largely overlapped; appendix p 34). CART with pruning selected only six variables: weight, height, age, type 2 diabetes status and duration, and type of intervention, as compared to seven variables with LASSO plus CART, which additionally selected smoking history. Triaging the variables with LASSO in the first place resulted in better performances at month 12, the only timepoint where smoking history appears in the decision trees (appendix p 35).

We identified 12 models in published literature that have been previously proposed to predict weight loss following one or more of the three interventions analysed in the present study, during 1-5 years after the intervention. [START_REF] Baltasar | Weight loss reporting: predicted body mass index after bariatric surgery[END_REF][START_REF] Wise | Prediction of excess weight loss after laparoscopic Roux-en-Y gastric bypass: data from an artificial neural network[END_REF][START_REF] Goulart | Doctor, how much weight will I lose?-a new individualized predictive model for weight loss[END_REF][START_REF] Seyssel | A predictive model of weight loss after Roux-en-Y gastric bypass up to 5 years after surgery: a useful tool to select and manage candidates to bariatric surgery[END_REF][START_REF] Janik | Setting realistic expectations for weight loss after laparoscopic sleeve gastrectomy[END_REF][START_REF] Velázquez-Fernández | Development of an interactive outcome estimation tool for laparoscopic Roux-en-Y gastric bypass in Mexico based on a cohort of 1002 patients[END_REF][START_REF] Cottam | The use of predictive markers for the development of a model to predict weight loss following vertical sleeve gastrectomy[END_REF] The accuracy of weight loss predicted by RMSE=root mean squared error. *BMI difference is difference between predicted and observed BMI (negative means predicted was lower than observed). †RMSE is the measure of prediction bias and standard deviation; the lower, the more accurate. ‡95% CI are bias-corrected and accelerated bootstrap, n=10 000 replications. The machine learning model developed in the present study was then integrated into software that allowed for the display of the 5-year weight trajectory that can be expected for a given patient before the intervention according to the seven key baseline characteristics included in the model. The graphical output of the model was presented and discussed among investigators (PSau, JT, TS, MD, PP, PB, VR, HV, and FP) and patient representatives. The resulting user-friendly calculator displays the predicted weight trajectory at any given time, alongside prediction intervals corresponding to IQR of prediction errors. By default, individual predicted trajectories are expressed in kg. According to the user's choice, results can also be displayed in kg/m², % of TWL, or % of EWL. To improve readability, predicted trajectories over time for each of these metrics are displayed as smooth curves. Two illustrative examples of BMI and TWL trajectories predicted for individual patients from the current version of the bariatric weight trajectory prediction calculator are shown in figure 3. More examples can be found in the appendix (p 31).
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Discussion

We developed a machine learning model that provides accurate individual weight trajectories expected during 5 years after bariatric surgery, based on seven simple preoperative variables, including age, weight, height, smoking history, type 2 diabetes status and duration, and the type of intervention. These variables are readily available in a variety of clinical settings without interpretation and do not require laboratory tests. The model was validated globally, in eight cohorts and two randomised controlled trials, in Europe, the Americas, and Asia, and incorporated in an easy-to-use and interpretable web-based tool providing individual preoperative prediction of postoperative weight loss trajectory.

This accessible and interpretable model is the first to provide preoperative predictions of weight trajectories up to 5 years after surgery, simultaneously for three of the most common types of surgery: RYGB, sleeve gastrectomy, and AGB. Our results highlighted the association of the type of operation and diabetes status with weight trajectories. The present study also showed the impact of diabetes duration and smoking, which were not previously included in weight loss surgery prediction models.

As expected, the type of surgery was the first node to appear in the decision tree. Interestingly, sleeve gastrectomy and RYGB were not distinguishable at 1 year but separated soon after. This finding is consistent with literature. [START_REF] Peterli | Metabolic and hormonal changes after laparoscopic Roux-en-Y gastric bypass and sleeve gastrectomy: a randomized, prospective trial[END_REF] Although some early reports showed similar weight loss after RYGB and sleeve gastrectomy at 1 year [START_REF] Peterli | Metabolic and hormonal changes after laparoscopic Roux-en-Y gastric bypass and sleeve gastrectomy: a randomized, prospective trial[END_REF] and two years, [START_REF] Fischer | Excessive weight loss after sleeve gastrectomy: a systematic review[END_REF] a meta-analysis of randomised clinical controlled trials 21 as well as a large matched controlled cohort study have shown the superiority of RYGB as compared with sleeve gastrectomy at 5 years. Additionally, a synthetic emulation of the combined analysis of the two randomised controlled trials 21 based on our model resulted in a similar conclusion to the original report, albeit resulting in a larger difference between the two operations. This finding illustrates that differences in weight loss outcomes might be larger in non-randomised settings where patient and care provider preferences drive procedure selection. [START_REF] Arterburn | Weight outcomes of sleeve gastrectomy and gastric bypass compared to nonsurgical treatment[END_REF] Several studies have already suggested that weight loss is lower in individuals with type 2 diabetes than in individuals without diabetes particularly in patients with uncontrolled diabetes. [38][START_REF] Shantavasinkul | Predictors of weight regain in patients who underwent Roux-en-Y gastric bypass surgery[END_REF][START_REF] Diedisheim | Weight loss after sleeve gastrectomy: does type 2 diabetes status impact weight and body composition trajectories?[END_REF] In the Longitudinal Assessment of Bariatric Surgery study, the presence of type 2 diabetes at baseline was associated with reduced weight loss after surgery. [START_REF] Courcoulas | Preoperative factors and 3-year weight change in the Longitudinal Assessment of Bariatric Surgery (LABS) consortium[END_REF] In the present study we found that TWL also lowers when duration of diabetes increases. Diabetes duration is a predictor of disease severity, and a proxy of declined β-cell function, which was also associated with lower weight loss one year post bariatric surgery. 42 Most of the studies that looked at preoperative smoking patterns did not show any association between smoking and postoperative weight loss. [START_REF] Mohan | Impact of smoking on weight loss outcomes after bariatric surgery: a literature review[END_REF] A minority of studies reported small differences in postoperative weight loss between smokers and nonsmokers; 43 these differences became non-significant with longer follow-up, which is consistent with our model, which splits the population based on history of smoking only during the first year after surgery. Of note, our prediction algorithm did not identify sex as a significant predictor of postoperative weight loss, in line with several previous reports. 38,[START_REF] Mousapour | Sex disparity in laparoscopic bariatric surgery outcomes: a matched-pair cohort analysis[END_REF][START_REF] Tankel | Predicting weight loss and comorbidity improvement 7 years following laparoscopic sleeve gastrectomy: does early weight loss matter?[END_REF] One major strength of the present study is the use of machine learning approaches, in contrast to previous studies. LASSO is an alternative to multivariate regression that enforces sparsity in the covariates used for prediction. Notably, all variables selected by LASSO in the present study were clinical traits, as opposed to the many continuous biological variables available in ABOS. The CART algorithm learns a tree stratification of covariates that identifies relationships beyond the scope of traditional analysis techniques. [START_REF] Barnholtz-Sloan | Decision tree-based modeling of androgen pathway genes and prostate cancer risk[END_REF] Tree-based models are well suited to capture non-linear effects of mixed nominal, ordinal, and continuous attributes and can also outperform deep learning on tabular data. [START_REF] Grinsztajn | Why do tree-based models still outperform deep learning on typical tabular data?[END_REF] Additionally, this learned stratification of patient attributes allows for a clear interpretation of the predicted outcomes. CART also provides critical variable thresholds and their directional influences on the outcomes. Unlike multivariate linear regression approaches, CART learns nonparametric models that do not require a strong specification of the mapping between covariates and outcomes. These strengths are especially valuable in addressing the data heterogeneity commonly associated with clinical datasets. Descending in the decision tree, it is possible to draw the involvement of different features, the combination of which allows to define with higher accuracy the clinicobiological characteristics of an individual with higher or lower weight loss. Another remarkable feature is that by exploring the tree from root to leaves, CART divided the population based on diabetes status or diabetes duration, only for patients submitted to RYGB.

Our study has several limitations. First, the machine learning algorithm selected only seven simple clinical features. It is possible that the prediction can be improved with more performant classes of algorithms, such as random forest or deep learning. [START_REF] Ge | Classification of premalignant pancreatic cancer mass-spectrometry data using decision tree ensembles[END_REF] However, such methods would require more training data and provide a less interpretable model, which we consider as a decisive criterion for implementation in patients' care settings. Indeed, more complex models are not straightforwardly interpretable by humans, undermining trust. [START_REF] Stiglic | Interpretability of machine learning-based prediction models in healthcare[END_REF] Concerns about such black-box algorithms are increasingly highlighted as one of the primary barriers to the adoption of machine learning in the health-care context. [START_REF] Petch | Opening the black box: the promise and limitations of explainable machine learning in cardiology[END_REF] Second, the extensive clinical and biological dataset used for model development only included a limited number of socioeconomic, ethnic, behavioural, and nutritional aspects, which might influence postoperative weight loss trajectories. Likewise, we did not evaluate the added value of genetic analyses [START_REF] De Toro-Martín | Polygenic risk score for predicting weight loss after bariatric surgery[END_REF][START_REF] Antoine | Low-frequency coding variants associated with body mass index affect the success of bariatric surgery[END_REF] or of new disease stratification. [START_REF] Raverdy | Data-driven subgroups of type 2 diabetes, metabolic response, and renal risk profile after bariatric surgery: a retrospective cohort study[END_REF] Third, our analysis was limited to the three most performed operations worldwide. AGB has been less frequently performed in the past 10 years, and several new and rapidly increasing operations, such as one anastomosis gastric bypass or endoscopic sleeve gastrectomy, were not included because of a scarcity of a large number of patients with 5 years of follow-up data. Additionally, we did not include reoperations in our model. Fourth, except for the SGH, COD, and Mexico cohorts, most individuals enrolled in our study were White, especially those who had AGB. Therefore, our results should be further replicated in non-White populations. Finally, our study was focused primarily on weight loss and not obesity complications, such as type 2 diabetes, hypertension, or non-alcoholic fatty liver disease. We also did not analyse the risks associated with surgery, [START_REF] Thereaux | Long-term adverse events after sleeve gastrectomy or gastric bypass: a 7-year nationwide, observational, population-based, cohort study[END_REF] but we appreciate that these are also essential to inform clinical decisions.

In summary, we have developed and validated an easyto-use and interpretable model that provides individual predictions of weight loss trajectory after bariatric surgery. We have shown its generalisability and transportability across multiple cohorts in Europe, the Americas, and Asia, as well as its performance in intervention clinical trials.

Individual weight loss trajectory prediction appears to be an accurate and simple strategy to inform clinical decisions for both health-care providers and patients before surgery. Our model can also be used postoperatively to identify patients whose actual weight loss trajectories differ from their predicted trajectory, thus allowing the timely implementation of appropriate clinical interventions.
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  ). At 5 years, the estimate of MAD of BMI was 3•1 kg/m² (95% CI 2•7-3•4) and RMSE of BMI was 4•9 kg/m² (3•9-5•7), corresponding to normalised estimates of 8•9% (95% CI 7•8-9•7) for MAD and 14•0% (11•2-16•3) for RMSE.
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  At 5 years, across cohorts the overall mean weighted values of MAD of BMI were 2•8 kg/m² (95% CI 2•6-3•0) and RMSE of BMI were 4•7 kg/m² (4•4-5•0), corresponding to normalised estimates of 8•8% for MAD and 14•7% for RMSE of BMI. The performances of the model were significantly higher in RYGB (MAD 2•8, RMSE 4•5) than in sleeve gastrectomy (MAD 3•5, RMSE 5•7), and AGB (MAD 4•9, RMSE 6•7), all p<0•0001. Overall, the mean difference between predicted and observed BMI at 5 years was -0•3 kg/m² (SD 4•7). The model showed good calibration at all timepoints (appendix pp 28-30),

Figure 1 :

 1 Figure 1: Smoothed observed median BMI (top) and total weight loss trajectories (bottom) with corresponding IQR for each operation, for the training cohort, testing cohorts, and the randomised controlled trial cohorts

Figure 2 :

 2 Figure 2: MAD (top) and normalised MAD in percentage of BMI (bottom) of predicted outcomes in testing subset and validation cohorts, meaned by cohort size (left), individual validation cohorts (centre), and by operation (right) COD=Center for the treatment of Obesity and Diabetes, Hospital Oswaldo Cruz, São Paulo, Brazil. MAD=median absolute deviation. NOK=Nederlandse Obesitas Kliniek. PRECOS=Projet régional de REcherche Clinique en Obésité Sévère. SGH=Singapore General Hospital. SM-BOSS=Swiss Multicenter Bypass or Sleeve Study. SOS=Swedish Obese Subjects.

Figure 3 :

 3 Figure 3: Predicted trajectory and IQR of BMI (top) and total weight loss (bottom) for a 30-year-old patient with a weight of 150 kg, a height of 1•80 m, who was a non-smoker, without diabetes, undergoing Roux-en-Y gastric bypass and sleeve gastrectomy (left); and for a 30 years old patient with a weight of 150 kg, height of 1•80 m, who was a non-smoker undergoing Roux-en-Y gastric bypass without diabetes and with type 2 diabetes with 10 years duration (right)

  ABOS=Atlas Biologique de l'Obésité Sévère. BAREVAL=Medical Follow-up of Severe or Morbid Obese Patients Undergoing Bariatric Surgery. COD=Center for the treatment of Obesity and Diabetes, Hospital Oswaldo Cruz, São Paulo, Brazil. NOK=Nederlandse Obesitas Kliniek. PRECOS=projet régional de Recherche Clinique en Obésité Sévère. RMSE=root mean squared error. SGH=Singapore General Hospital.

	11•4-12•6) 14•0 (13•2-14•8) 14•7 (13•8-15•7)

SM-BOSS=Swiss Multicenter Bypass or Sleeve Study. SOS=Swedish Obese Subjects. *BMI difference is difference between predicted and observed BMI (negative means predicted was lower than observed). †RMSE is the measure of prediction bias and standard deviation; the lower, the more accurate. ‡95% CIs are bias-corrected and accelerated bootstrap, n=10 000 replications.

Table 2 : Comparison of predicted outcomes in validation cohorts BMI
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	Month 12	Month 24	Month 60	Month 12	Month 24	Month 60	Month 12	Month 24	Month 60
	Roux-en-Y gastric bypass								

difference* in kg/m² (SD) RMSE † in kg/m² (95% CI) ‡ Normalised RMSE † in percentage of BMI (95% CI) ‡

Table 3 : Comparison of predicted outcomes by operation in validation cohorts

 3 

	these models, estimated by RMSE and normalised RMSE
	in the appropriate subset of patients from the ABOS
	cohort, ranged from 3•8 kg/m² to 6•1 kg/m² and from
	11•7% to 17•4% of BMI at 1 year (six models), compared
	with means of 3•7 kg/m² and 12•0% of BMI for our
	current model. At 2 years, existing models ranged from
	4•9 kg/m² to 7•0 kg/m² and 15•5% to 20•2% of BMI (five
	models), compared with 4•2 kg/m² and 14•0% of BMI
	for our current model. Finally, RMSE and normalised
	RMSE evaluated at 5 years among existing models were
	5•4 kg/m² and 15•8% of BMI (only one model), compared
	with 4•7 kg/m² and 14•7% of BMI for our current model.
	Individual results of these models are in the appendix
	(pp 36-37).
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