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Summary
Background Weight loss trajectories after bariatric surgery vary widely between individuals, and predicting weight loss 
before the operation remains challenging. We aimed to develop a model using machine learning to provide individual 
preoperative prediction of 5-year weight loss trajectories after surgery.

Methods In this multinational retrospective observational study we enrolled adult participants (aged ≥18 years) from 
ten prospective cohorts (including ABOS [NCT01129297], BAREVAL [NCT02310178], the Swedish Obese Subjects 
study, and a large cohort from the Dutch Obesity Clinic [Nederlandse Obesitas Kliniek]) and two randomised trials 
(SleevePass [NCT00793143] and SM-BOSS [NCT00356213]) in Europe, the Americas, and Asia, with a 5 year follow-
up after Roux-en-Y gastric bypass, sleeve gastrectomy, or gastric band. Patients with a previous history of bariatric 
surgery or large delays between scheduled and actual visits were excluded. The training cohort comprised patients 
from two centres in France (ABOS and BAREVAL). The primary outcome was BMI at 5 years. A model was developed 
using least absolute shrinkage and selection operator to select variables and the classification and regression trees 
algorithm to build interpretable regression trees. The performances of the model were assessed through the median 
absolute deviation (MAD) and root mean squared error (RMSE) of BMI.

Findings 10 231 patients from 12 centres in ten countries were included in the analysis, corresponding to 30 602 patient-
years. Among participants in all 12 cohorts, 7701 (75·3%) were female, 2530 (24·7%) were male. Among 434 baseline 
attributes available in the training cohort, seven variables were selected: height, weight, intervention type, age, 
diabetes status, diabetes duration, and smoking status. At 5 years, across external testing cohorts the overall mean 
MAD BMI was 2·8 kg/m² (95% CI 2·6–3·0) and mean RMSE BMI was 4·7 kg/m² (4·4–5·0), and the mean difference 
between predicted and observed BMI was –0·3 kg/m² (SD 4·7). This model is incorporated in an easy to use and 
interpretable web-based prediction tool to help inform clinical decision before surgery.

Interpretation We developed a machine learning-based model, which is internationally validated, for predicting 
individual 5-year weight loss trajectories after three common bariatric interventions.
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Introduction 
The prevalence of obesity has increased globally over 
the past two decades.1 Obesity is a heterogeneous 
condition associated with several complications and 

metabolic manifestations across individuals, ultimately 
increasing the risk of all-cause mortality.2 Bariatric 
surgery, although not first-line therapy, has emerged as 
an effective treatment for sustained weight loss,3 
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resulting in long-term improvement in obesity-related 
complications,4 and prolonged life expectancy.5 Despite 
a comprehensive preoperative assessment of each 
patient, it is challenging to forecast weight loss 
outcomes following the intervention. Indeed, weight 
loss changes over time and variesbetween procedures 
and between individuals.6,7

A reasonable estimation of the expected weight loss 
trajectory after bariatric surgery would help inform 
clinical decisions by patients and health-care providers. 
Therefore, multiple models have been proposed to 
predict postoperative weight loss.8 For such models to be 
clinically relevant, they need to predict at least 5 years of 
weight loss outcome.4 However, most previous studies 
were restricted to the early postoperative period8 or 
undermined by the high proportion of patients lost 
to follow-up, or both.9 Some prediction models also 
incorporated early weight loss (before 6 months), to 
predict longer outcomes (beyond 2 years),10,11 and can 
therefore not be used before the operation. 

Previous attempts to predict longer-term weight loss 
after bariatric surgery have used multivariable 
regressions.8 However, such methods assume that the 
relationship between the dependent and the 
independent variable is linear, which might not always 
be the case. Additionally, multivariable regressions 
might lead to difficulties in accounting for interactions.12 

Moreover, although coefficients in linear regression and 
the odds in logistic regression are relatively easy to 
understand, they are not easy to apply in clinical 
decision making. In contrast, machine learning 
methods have the potential to distinguish subtle, non-
linear patterns in data that are often not accessible using 
traditional approaches such as logistic regression.13 
Likewise, machine learning models have outperformed 
logistic regression in preoperative risk stratification 
using National Surgical Quality Improvement Program 
data.14 Currently only a few studies have applied artificial 
intelligence (neural network) to predict early weight loss 
after bariatric surgery, and none of them were externally 
validated.15

Therefore, the aims of the present study were (1) to use 
machine learning to develop a system predicting post-
operative weight loss trajectory, using information 
gathered by protocol-driven, comprehensive preoperative 
assessment and repeated postoperative weight assess-
ments in a large prospective cohort study of patients 
submitted to bariatric surgery; (2) to validate the 
performance of the proposed model globally, using 
multiple external prospective cohorts and randomised 
controlled trials; and (3) to incorporate the results into an 
easy-to-use and interpretable web-based tool providing 
individual preoperative prediction of postoperative weight 
loss trajectory.

Research in context

Evidence before this study 
Obesity is a heterogeneous condition that increases the risk of 
all-cause mortality. Bariatric surgery, although not first-line 
therapy, is an effective treatment for sustained weight loss, 
improving obesity-related complications and life expectancy. 
However, despite comprehensive preoperative assessment of 
each candidate, long-term weight loss outcomes are 
heterogeneous as regards to changes over time, differences 
between procedures, and between individuals. 
We searched PubMed, Embase, and the Cochrane Library using 
the terms “bariatric surgery”, “postoperative weight loss”, 
“weight loss prediction”, and “prediction model” for studies 
that investigated models of weight loss after Roux-en-Y 
gastric bypass (RYGB), sleeve gastrectomy, and adjusted 
gastric banding (AGB) and used a prospective or retrospective 
design published from database inception up until 
Jan 21, 2021. We included English and French language 
studies. Most previous studies were restricted to the early 
postoperative period or undermined by the high proportion of 
patients lost to follow-up, or both. Some prediction models 
also incorporated early weight loss (before 6 months), to 
predict longer outcomes (beyond 2 years), and can therefore 
not be used before the operation. Previous attempts to predict 
longer-term weight loss after bariatric surgery have used 
multivariable regressions. However, such methods assume 
that the relationship between the dependent and the 

independent variable is linear, which might not always be 
the case. 

Added value of this study
In the present study, we developed a machine learning model 
that provides accurate individual weight trajectories expected 
during 5 years after bariatric surgery, based on seven simple 
preoperative variables: age, weight, height, smoking history, 
type 2 diabetes status and duration, and the type of 
intervention. These variables are readily available in a variety 
of clinical settings without interpretation and do not require 
laboratory tests. The model was incorporated into an easy-to-
use and interpretable web-based tool. This study is the first to 
provide preoperative predictions of weight trajectories up to 
5 years after surgery based on machine learning, 
simultaneously for three of the most common types of surgery 
(RYGB, sleeve gastrectomy, and AGB). The present study also 
showed the effect of diabetes duration and smoking, which 
were not previously included in weight loss surgery prediction 
models. 

Implications of all the available evidence 
This model could help to refine individual weight loss trajectory 
prediction in routine clinical practice, by being an accurate and 
simple strategy to inform clinical decisions for both health-care 
providers and patients before surgery, enabling precision 
medicine and individualised patient management. 
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Methods 
Study design and participants
In this multinational retrospective observational study, we 
used data from ten cohorts of adult patients submitted for 
the first time to Roux-en-Y gastric bypass (RYGB), sleeve 
gastrectomy, and adjusted gastric banding (AGB), from 
eight countries. All patients had up to 5 years of 
postoperative data available and were aged 18 years or 
older. We excluded patients with a previous history of 
bariatric surgery, because the preoperative weights 
measured before reintervention already accounted for the 
effect of past interventions, which would have added a 
bias in the calculated weight loss outcomes. We also 
excluded patients with large delays between scheduled 
and actual visits related to postoperative complications. In 
case of missing follow-up visits, patients were kept in the 
analysis but censored at the corresponding dates. Patients 
not expected at a given time (recent interventions) were 
also censored after the last completed visit (appendix p 3).

The training cohort consisted of patients who were 
prospectively enrolled at the time of primary bariatric 
surgery in two longitudinal cohort studies evaluating the 
long-term outcome of bariatric surgery: Atlas Biologique 
de l’Obésité Sévère (ABOS; NCT01129297) in Lille, 
France, between Feb 10, 2006, and Nov 2, 2020, and 
BAREVAL (NCT02310178) in Montpellier, France, 
between April 8, 2014, and April 28, 2020. 

The prediction model was validated, using eight external 
testing cohorts from France (Projet régional de Recherche 
Clinique en Obésité Sévère [PRECOS; NCT03517072] and 
Lyon [NCT02139813]), the Netherlands (the Dutch Obesity 
Clinic, Nederlandse Obesitas Kliniek [NOK]),10 Sweden 
(the Swedish Obese Subjects [SOS] study),3 Italy 
(NCT01581801 and NCT00888836),16 Singapore (Singapore 
General Hospital [SGH]),17 Brazil (Center for the treatment 
of Obesity and Diabetes [COD], Hospital Oswaldo Cruz, 
Sao Paulo, Brazil),18 and Mexico.19

Additional external validation was conducted in 
participants of two registered and previously published 
randomised, open-label, multicentre trials which com-
pared patients submitted to RYGB with sleeve 
gastrectomy in Finland (SleevePass, NCT00793143)20 and 
Switzerland (Swiss Multicenter Bypass or Sleeve Study 
[SM-BOSS], NCT00356213).7 The individual-level 
5 year-data of these two studies have been merged into a 
single analysis.21

Details about study protocols and data collection for 
these two cohorts are in the appendix (p 7). Study 
participants self-reported sex data and were provided 
with two options (male or female).

Study participants in all cohorts gave written informed 
consent. All centres obtained ethics approval for their 
respective studies.

Outcomes 
The primary study outcome was the prediction of BMI at 
5 years after bariatric surgery. Secondary outcomes were 

weight loss at earlier postoperative visits (at months 1, 3, 
12, and 24), expressed as weight (kg), percent of total 
weight loss (TWL), calculated as: 

TWL=(visit weight – preoperative weight)/preoperative 
weight × 100

and percent of excess weight loss (EWL) calculated as: 

EWL=(preoperative BMI – visit BMI)/(preoperative 
BMI – 25)× 100

Model development
To derive the model, the training cohort was divided into 
two subsets: a training subset consisting of 80% of 
randomly selected patients, and an internal testing 
subset consisting of 20% of patients.

We first performed preprocessing of all patients’ 
baseline characteristics. Because the ABOS cohort had 
many preoperative attributes per patient (appendix 
pp 40–60), we ran a feature selection algorithm on this 
patient subgroup to extract the most statistically relevant 
ones concerning outcome prediction using the Least 
Absolute Shrinkage and Selection Operator (LASSO).22 

To develop the model, first we further leveraged a class 
of machine learning algorithms called decision trees to 
learn meaningful subgroups of patients that share 
statistical similarities in their baseline characteristics, 
and second, to fit a TWL prediction model for each 
subgroup. For instance, decision trees can predict weight 
loss when they are trained on a heterogeneous cohort of 
different bariatric interventions such as RYGB, sleeve 
gastrectomy, and AGB, according to the type of 
intervention as well as using other variables such as the 
age at intervention, BMI, and other clinical features.

To calibrate the decision trees, we used LASSO-
extracted features as input for the classification and 
regression trees (CART) algorithm.23 A workflow diagram 
of the machine learning process is in the appendix (p 24). 
The algorithm was calibrated on the training subset of 
the training cohort. We further compared the predicted 
TWL to the observed outcomes of patients in the testing 
subset of the training cohort (internal validation). Details 
of the model development are in the appendix (p 8).

Additionally, we compared that approach with other 
methods: classic linear models, linear mixed effect 
model, random forest model, and CART on all variables 
without LASSO using instead pruning for feature 
selection (appendix p 9).

Model validation in external cohorts
The model was externally validated by comparing the 
observed (TWLi) and predicted total weight loss: 

at each visit for each participant (i) of eight distinct 
testing cohorts (NOK, SGH, SOS, PRECOS, Roma, Lyon, 

See Online for appendix

TWLi
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COD, and Mexico). For better readability, weight loss was 
also computed as BMI by converting predicted TWL into 
predicted weights: 

The performance of the prediction model was 
calculated at each visit date, and expressed by using the 
standard metric median absolute deviation (MAD): 

which measures dispersion of predicted TWL around the 
true values while being robust to outliers. We also 
calculated root mean squared error (RMSE): 

which jointly measures the model prediction bias and 
variance, but is more sensitive to outliers than MAD 
because the square amplifies them. These two indices 
were also expressed as normalised ratios as percentage of 
observed BMI for each visit.

We used Bland–Altman plots with actual versus 
predicted BMI at each specific timepoint (month 12, 
month 24, and month 60) to assess model calibration.

Model validation in randomised controlled trials
Additionally, we used the individual data from the 
two randomised clinical trials (SLEEVEPASS24 and 
SM-BOSS7) to replicate with our model the previously 
reported comparison of RYGB versus sleeve gastrectomy 
in terms of weight loss.21 The original report combined 
and analysed weight follow-up data from the two studies 
for up to 5 years using a linear mixed model.21 In our 
study, we replaced the observed individual weight loss 
values with those predicted at each timepoint by our 
machine learning model and analysed them using the 
same linear mixed model described in the original report 
to compare the predicted and observed mean (95% CI) 
difference in weight loss between the two operations.

Statistical analysis
Patients’ characteristics were reported for each cohort as 
mean (SD) for continuous traits and n (%) for categorical 
variables. Comparison of median weight loss between 
two groups was performed using the Mann-Whitney 
U test, and between three or more groups using Kruskal-
Wallis one-way ANOVA. MAD and RMSE were displayed 
as their estimates and 95% CIs, estimated by bootstrap 
(bias-corrected and accelerated method, n=10 000 repli-
cations). Weight loss and BMI median trajectories of 
participants submitted to each operation in each cohort 
were illustrated as a function of time using a non-linear 
smoothing of the values observed at discrete times 
(appendix p 4), which is not part of the validation and 
performance assessment. The trajectories of patients are 

displayed along with prediction intervals of predicted 
BMI, calculated as prediction plus 25th percentile of 
error and prediction plus 75th percentile of error.

Patient features containing more than 50% of missing 
values were excluded from the analysis. The remaining 
missing values were handled in two ways. For the LASSO 
analysis, the predictive mean matching method was used 
based on key characteristics at baseline: weight, sex, age, 
operation type, and presence of type 2 diabetes and its 
duration.25 We imputed n=10 sets of data, and selected 
variables by pooling the variable selected by LASSO in 
each dataset. The decision tree algorithm uses surrogate 
variables for the CART analysis in the case of missing 
data.26

The analysis was performed using R software 
version 3.6.3, the rpart library for the CART imple men-
tation, and the glmnet and glinternet libraries for the 
LASSO implementation. An online tool was developed 
based on two components: a front-end graphical user 
interface coded with JavaScript using the React library, 
and a back-end prediction and smoothing model coded 
in Python using the Flask microweb framework. We 
used the TRIPOD AI guidelines27 to report the prediction 
model’s development and validation (appendix pp 61–63).

For comparison, we also analysed results from 
previously published postoperative weight loss prediction 
models8 in the appendix (p 10).

Role of the funding source 
The funders of the study had no role in study design, 
data collection, data analysis, data interpretation, or 
writing of the report.

Results
The training cohort from France (n=1493), and the testing 
cohorts from Europe (n=7137), the Americas (n=167), 
Asia (n=977), and the two randomised controlled trials 
used for validation (n=457), represented a total of 
10 231 patients from 12 centres in ten countries, 
corresponding to 30 602 patient-years. The baseline 
characteristics of participants of each cohort and the 
proportion of each type of operation performed are in 
table 1. The overall trajectories of the median (IQR) BMI 
and TWL observed during the 5 years after each operation 
are shown in figure 1, and in the appendix (pp 12–23) for 
the various training and testing cohorts. Individual 
weights at baseline ranged from 65 kg to 295 kg (SD 25·6) 
and BMI from 26·7 kg/m² to 94·1 kg/m² (SD 7·5). Age at 
intervention ranged from 18 to 74 years. Among the 
10 231 participants in all 12 cohorts, 7701 (75·3%) were 
female, 2530 (24·7%) were male, and 2882 (28·2%) had 
type 2 diabetes at baseline. RYGB was the most frequent 
operation (6691 [65·4%] of 10 231), followed by sleeve 
gastrectomy (2872 [28·1%]), and AGB (668 [6·5%]). At 
5 years, the median TWL was 26·8% (IQR 19·8–34·0), 
ranging from –13·3% to 62·7%. Overall, the general 
shapes of weight loss trajectories for each operation were 

TWLipredicted weight=preoperative weight × (1 – /100)

TWLiMAD=median of |          –          |TWLi

TWLiRMSE=square root of the mean of (          –          )2TWLi
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similar among cohorts, with a nadir weight loss reached 
between 1 and 2 years, followed by limited weight regain 
afterwards: median 18·7% (IQR 4·1–33·9) of maximal 
weight loss across operations. Weight regain was 
significantly greater after sleeve gastrectomy compared 
with RYGB: 21·3% (5·3–39·1) versus 15·0% (4·6–27·1; 
p<0·0001). At 5 years, RYGB resulted in significantly 
higher median total weight loss than sleeve gastrectomy 
(28·2% [21·7–35·1] vs 23·6% [15·2–31·6]) and AGB 
(28·2% [21·7–35·1] vs 14·9% [7·2–25·3]), both p<0·0001.

In the feature selection process during the development 
of the predictive weight loss model, 447 attributes were 
available at baseline in ABOS (appendix pp 40–60); of 
these, 62 (14%) were excluded because of missing data, 
class imbalanced, or free text input. Among the 
385 remaining variables, the LASSO algorithm selected 
seven features that were associated with TWL at least at 
one postoperative visit: preoperative weight, height, type 
of intervention, age at intervention, current smoking 
history, type 2 diabetes status, and diabetes duration. The 
hierarchical group-LASSO method selected the same 
features, as well as two additional interactions: one 
between type of intervention and type 2 diabetes, and one 
between type of intervention and type 2 diabetes duration. 

Training CART using the nine variables selected by 
hierarchical group-LASSO did not modify the decision 
trees. The final CART algorithm therefore used the seven 
features selected by LASSO for the TWL regression task. 

For feature stratification, at all postoperative times, the 
first and most discriminant branch of decision trees 
divided the population by the type of intervention, with 
AGB being separated from RYGB at all times. At 1 year, 
the second descendant branch separated patients by age. 
The following descendant branch distinguished between 
sleeve gastrectomy and RYGB, only in older patients 
(aged >51 years), and smoking status distinguished 
younger patients (aged 18–51 years). At 2 years, the 
second descendant branch distinguished sleeve 
gastrectomy from RYGB. The following branch separated 
sleeve gastrectomy patients by age and RYGB patients 
according to their diabetes status. At 5 years, AGB and 
sleeve gastrectomy was not separated. The second 
descendant branch was type 2 diabetes status (RYGB 
patients) and age (other patients). Overall, RYGB and 
younger age were consistently associated with greater 
weight loss. Having diabetes and longer diabetes 
duration were always associated with less weight loss. 
Smoking was associated with greater weight loss, but 
only during the first year. The corresponding trees for 
each postoperative time are in the appendix (pp 25–27). 

The model’s prediction performances were evaluated at 
1, 2, and 5 years in the testing subset of the training 
cohort (figure 2). At 5 years, the estimate of MAD of BMI 
was 3·1 kg/m² (95% CI 2·7–3·4) and RMSE of BMI was 
4·9 kg/m² (3·9–5·7), corresponding to normalised 
estimates of 8·9% (95% CI 7·8–9·7) for MAD and 14·0% 
(11·2–16·3) for RMSE. 
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The performances of the model at 1 year, 2 years, and 
5 years in the testing cohorts and for each intervention 
are shown in figure 2, table 2, and table 3. At 5 years, 
across cohorts the overall mean weighted values of MAD 
of BMI were 2·8 kg/m² (95% CI 2·6–3·0) and RMSE of 
BMI were 4·7 kg/m² (4·4–5·0), corresponding to 
normalised estimates of 8·8% for MAD and 14·7% for 

RMSE of BMI. The performances of the model were 
significantly higher in RYGB (MAD 2·8, RMSE 4·5) 
than in sleeve gastrectomy (MAD 3·5, RMSE 5·7), and 
AGB (MAD 4·9, RMSE 6·7), all p<0·0001. Overall, the 
mean difference between predicted and observed BMI at 
5 years was –0·3 kg/m² (SD 4·7). The model showed 
good calibration at all timepoints (appendix pp 28–30), 

Figure 1: Smoothed observed median BMI (top) and total weight loss trajectories (bottom) with corresponding IQR for each operation, for the training 
cohort, testing cohorts, and the randomised controlled trial cohorts
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Figure 2: MAD (top) and normalised MAD in percentage of BMI (bottom) of predicted outcomes in testing subset and validation cohorts, meaned by cohort 
size (left), individual validation cohorts (centre), and by operation (right)
COD=Center for the treatment of Obesity and Diabetes, Hospital Oswaldo Cruz, São Paulo, Brazil. MAD=median absolute deviation. NOK=Nederlandse Obesitas 
Kliniek. PRECOS=Projet régional de REcherche Clinique en Obésité Sévère. SGH=Singapore General Hospital. SM-BOSS=Swiss Multicenter Bypass or Sleeve Study. 
SOS=Swedish Obese Subjects.
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that did not reveal any significant systematic bias in the 
predictions.

We tested the model’s performance to predict the 
overall outcome of randomised controlled trials com-
paring weight loss after RYGB and sleeve gastrectomy 
over 5 years. The results of our synthetic study based 
on predicted weights were in overall agreement with 
those of the published research, concluding with a 
significantly higher weight loss following RYGB as 
compared to sleeve gastrectomy. The mean difference 
between the two groups was 14·7% (95% CI 13·7–15·7) 
of EWL and 6·6% (6·2–6·9) of TWL in the synthetic 
study versus 7·0% (3·5–10·5) of EWL and 3·2% 
(1·6–4·7) of TWL in the combined analysis of the two 
original studies.21

The performances of the selected decision tree model 
were compared in training and testing cohorts with 
alternative models based on simple regression, linear 
mixed effect, random forest, and CART with pruning. 
The decision tree approach outperforms simple 
regression at month 12, month 24, and month 60 in both 
internal and external test data (appendix p 32). The 

linear mixed model using the seven selected variables, 
and time as restricted cubic splines, with random 
intercept and slope, did not outperform the decision tree 
model on both internal and external test data (appendix 
p 33). MAD estimates are even slightly lower with the 
decision tree, at month 12 and month 60. Random forest 
resulted in only marginally lower MAD estimates, as 
compared with the decision tree approach (confidence 
intervals largely overlapped; appendix p 34). CART with 
pruning selected only six variables: weight, height, age, 
type 2 diabetes status and duration, and type of 
intervention, as compared to seven variables with 
LASSO plus CART, which additionally selected smoking 
history. Triaging the variables with LASSO in the first 
place resulted in better performances at month 12, the 
only timepoint where smoking history appears in the 
decision trees (appendix p 35). 

We identified 12 models in published literature that 
have been previously proposed to predict weight loss 
following one or more of the three interventions analysed 
in the present study, during 1–5 years after the 
intervention.28–34 The accuracy of weight loss predicted by 

BMI difference* in kg/m² (SD) RMSE† in kg/m² (95% CI)‡ Normalised RMSE† in percentage of BMI (95% CI)‡

Month 12 Month 24 Month 60 Month 12 Month 24 Month 60 Month 12 Month 24 Month 60

Testing subset of ABOS plus BAREVAL, 
n=293

–0·2 (4·1) –0·5 (4·7) –1·0 (4·8) 4·1 (3·8–4·4) 4·7 (4·0–5·4) 4·9 (3·9–5·7) 12·3 (11·4–13·1) 14·0 (12·0–16·1) 14·0 (11·2–16·3)

External validation

NOK, n=5888 0·2 (3·3) –0·1 (4·1) –0·0 (4·7) 3·3 (3·2–3·4) 4·1(4·0–4·2) 4·7 (4·5–4·8) 11·2 (10·8–11·3) 13·9 (13·5–14·2) 15·0 (14·5–15·5)

SGH, n=977 –2·5 (3·7) –0·8 (4·0) –0·9 (4·0) 4·4 (4·2–4·8) 4·1 (3·7–4·6) 4·0 (3·6–4·6) 14·5 (13·7–15·5) 13·2 (12·1–14·8) 12·4 (11·0–14·2)

SOS, n=642 1·8 (4·4) 0·9 (4·9) –1·1 (4·9) 4·8 (4·4–5·1) 5·0 (4·6–5·3) 5·0 (4·7–5·4) 15·1 (13·9–16·1) 15·9 (14·6–16·8) 15·1 (13·9–16·3)

PRECOS, n=237 –0·7 (4·5) –0·0 (4·7) –1·6 (6·0) 4·5 (4·0–5·0) 4·7 (4·3–5·3) 6·2 (5·6–6·8) 13·2 (11·8–14·7) 13·9 (12·5–15·5) 17·2 (15·7–19·0)

Roma, n=200 –0·4 (3·8) 1·3 (4·0) 1·1 (4·6) 3·8(3·3–4·4) 4·2(3·6–5·2) 4·7(4·3–5·3) 12·6 (10·9–14·6) 14·1(12·1–17·4) 15·0 (13·6–16·8)

Lyon, n=170 –1·2 (4·1) –1·4 (4·8) –0·5 (5·8) 4·3(3·7–4·9) 5·0(4·3–6·0) 5·8 (5·1–6·9) 13·5 (11·9–15·8) 16·0 (13·7–19·4) 16·7 (14·8–19·8)

COD, n=126 –0·4 (3·1) –1·4 (2·2) –1·7 (2·2) 3·1 (2·8–3·5) 2·6 (2·3–2·9) 2·8 (2·5–3·1) 12·7 (11·3–14·3) 10·6 (9·6–11·8) 10·6 (9·6–11·7)

Mexico, n=41 –0·9 (4·2) –1·0 (3·5) –0·3 (5·5) 4·3 (3·4–5·5) 3·6 (2·7–4·6) 5·4 (4·4–7·1) 15·4 (12·3–19·7) 12·9(9·9–16·4) 18·8 (15·2–24·6)

SleevePass, n=240 –1·0 (4·4) –0·2 (4·7) 0·2 (5·1) 4·5 (4·1–4·9) 4·7(4·3–5·1) 5·1 (4·7–5·7) 13·2 (12·1–14·5) 13·6 (12·4–15·0) 14·2 (12·9–15·8)

SM-BOSS, n=217 –1·1 (3·6) 0·1 (4·4) 0·2 (5·0) 3·7 (3·4–4·2) 4·4 (4·0 –4·9) 4·9 (4·5–5·7) 12·4 (11·2–13·8) 14·4 (13·1–16·0) 15·5 (14·0–17·7)

Mean weighted by cohort sizes –0·1 (3·5) –0·1 (4·2) –0·3 (4·7) 3·7 (3·5–3·9) 4·2 (4·0–4·5) 4·7 (4·4–5·0) 12·0 (11·4–12·6) 14·0 (13·2–14·8) 14·7 (13·8–15·7)

ABOS=Atlas Biologique de l’Obésité Sévère. BAREVAL=Medical Follow-up of Severe or Morbid Obese Patients Undergoing Bariatric Surgery. COD=Center for the treatment of Obesity and Diabetes, Hospital 
Oswaldo Cruz, São Paulo, Brazil. NOK=Nederlandse Obesitas Kliniek. PRECOS=projet régional de Recherche Clinique en Obésité Sévère. RMSE=root mean squared error. SGH=Singapore General Hospital. 
SM-BOSS=Swiss Multicenter Bypass or Sleeve Study. SOS=Swedish Obese Subjects. *BMI difference is difference between predicted and observed BMI (negative means predicted was lower than observed). 
†RMSE is the measure of prediction bias and standard deviation; the lower, the more accurate. ‡95% CIs are bias-corrected and accelerated bootstrap, n=10 000 replications. 

Table 2: Comparison of predicted outcomes in validation cohorts

BMI difference* in kg/m² (SD) RMSE† in kg/m² (95% CI)‡ Normalised RMSE† in percentage of BMI (95% CI)‡

Month 12 Month 24 Month 60 Month 12 Month 24 Month 60 Month 12 Month 24 Month 60

Roux-en-Y gastric bypass –0·0 (3·2) –0·4 (3·9) –0·3 (4·5) 3·2 (3·2–3·3) 3·9 (3·9–4·0) 4·5 (4·3–4·6) 11·0 (10·8–11·2) 13·5 (13·2–13·8) 14·6 (14·1–15·0)

Sleeve gastrectomy –0·4 (4·3) 1·0 (4·8) 0·9 (5·6) 4·3 (4·2–4·5) 4·9 (4·7–5·2) 5·7 (5·4–6·0) 13·2 (12·7–13·8) 14·9 (14·2–15·6) 16·2 (15·3–17·2)

Adjusted gastric banding 1·7 (3·9) 0·7 (4·1) –2·8 (4·3) 4·7 (4·2–5·4) 4·7 (4·1–5·3) 6·0 (5·4–6·7) 13·6 (11·9–15·3) 13·6 (12·0–15·3) 16·6 (14·9–18·4)

RMSE=root mean squared error. *BMI difference is difference between predicted and observed BMI (negative means predicted was lower than observed). †RMSE is the measure of prediction bias and standard 
deviation; the lower, the more accurate. ‡95% CI are bias-corrected and accelerated bootstrap, n=10 000 replications. 

Table 3: Comparison of predicted outcomes by operation in validation cohorts



Articles

8 www.thelancet.com/digital-health   Published online August 29, 2023   https://doi.org/10.1016/S2589-7500(23)00135-8

these models, estimated by RMSE and normalised RMSE 
in the appropriate subset of patients from the ABOS 
cohort, ranged from 3·8 kg/m² to 6·1 kg/m² and from 
11·7% to 17·4% of BMI at 1 year (six models), compared 
with means of 3·7 kg/m² and 12·0% of BMI for our 
current model. At 2 years, existing models ranged from 
4·9 kg/m² to 7·0 kg/m² and 15·5% to 20·2% of BMI (five 
models), compared with 4·2 kg/m² and 14·0% of BMI 
for our current model. Finally, RMSE and normalised 
RMSE evaluated at 5 years among existing models were 
5·4 kg/m² and 15·8% of BMI (only one model), compared 
with 4·7 kg/m² and 14·7% of BMI for our current model. 
Individual results of these models are in the appendix 
(pp 36–37).

The machine learning model developed in the present 
study was then integrated into software that allowed for 
the display of the 5-year weight trajectory that can be 
expected for a given patient before the intervention 
according to the seven key baseline characteristics 
included in the model. The graphical output of the model 
was presented and discussed among investigators (PSau, 
JT, TS, MD, PP, PB, VR, HV, and FP) and patient 
representatives. The resulting user-friendly calculator 
displays the predicted weight trajectory at any given time, 
alongside prediction intervals corresponding to IQR of 
prediction errors. By default, individual predicted 
trajectories are expressed in kg. According to the user’s 
choice, results can also be displayed in kg/m², % of TWL, 
or % of EWL. To improve readability, predicted 
trajectories over time for each of these metrics are 
displayed as smooth curves. Two illustrative examples of 
BMI and TWL trajectories predicted for individual 
patients from the current version of the bariatric weight 

trajectory prediction calculator are shown in figure 3. 
More examples can be found in the appendix (p 31). 

Discussion
We developed a machine learning model that provides 
accurate individual weight trajectories expected during 
5 years after bariatric surgery, based on seven simple 
preoperative variables, including age, weight, height, 
smoking history, type 2 diabetes status and duration, and 
the type of intervention. These variables are readily 
available in a variety of clinical settings without inter-
pretation and do not require laboratory tests. The model 
was validated globally, in eight cohorts and two ran-
domised controlled trials, in Europe, the Americas, and 
Asia, and incorporated in an easy-to-use and interpretable 
web-based tool providing individual preoperative pre-
diction of postoperative weight loss trajectory.

This accessible and interpretable model is the first to 
provide preoperative predictions of weight trajectories 
up to 5 years after surgery, simultaneously for three of 
the most common types of surgery: RYGB, sleeve 
gastrectomy, and AGB. Our results highlighted the 
association of the type of operation and diabetes status 
with weight trajectories. The present study also showed 
the impact of diabetes duration and smoking, which 
were not previously included in weight loss surgery 
prediction models. 

As expected, the type of surgery was the first node 
to appear in the decision tree. Interestingly, sleeve 
gastrectomy and RYGB were not distinguishable at 1 year 
but separated soon after. This finding is consistent with 
literature.35 Although some early reports showed similar 
weight loss after RYGB and sleeve gastrectomy at 1 year35 
and two years,36 a meta-analysis of randomised clinical 
controlled trials21 as well as a large matched controlled 
cohort study have shown the superiority of RYGB as 
compared with sleeve gastrectomy at 5 years. Additionally, 
a synthetic emulation of the combined analysis of the 
two randomised controlled trials21 based on our model 
resulted in a similar conclusion to the original report, 
albeit resulting in a larger difference between the two 
operations. This finding illustrates that differences in 
weight loss outcomes might be larger in non-randomised 
settings where patient and care provider preferences 
drive procedure selection.37 

Several studies have already suggested that weight loss 
is lower in individuals with type 2 diabetes than in 
individuals without diabetes particularly in patients 
with uncontrolled diabetes.38–40 In the Longitudinal 
Assessment of Bariatric Surgery study, the presence of 
type 2 diabetes at baseline was associated with reduced 
weight loss after surgery.41 In the present study we found 
that TWL also lowers when duration of diabetes 
increases. Diabetes duration is a predictor of disease 
severity, and a proxy of declined β-cell function, which 
was also associated with lower weight loss one year post 
bariatric surgery.42 

Figure 3: Predicted trajectory and IQR of BMI (top) and total weight loss (bottom) for a 30-year-old patient 
with a weight of 150 kg, a height of 1·80 m, who was a non-smoker, without diabetes, undergoing 
Roux-en-Y gastric bypass and sleeve gastrectomy (left); and for a 30 years old patient with a weight of 
150 kg, height of 1·80 m, who was a non-smoker undergoing Roux-en-Y gastric bypass without diabetes 
and with type 2 diabetes with 10 years duration (right)
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Most of the studies that looked at preoperative smoking 
patterns did not show any association between smoking 
and postoperative weight loss.43 A minority of studies 
reported small differences in postoperative weight loss 
between smokers and nonsmokers;43 these differences 
became non-significant with longer follow-up, which is 
consistent with our model, which splits the population 
based on history of smoking only during the first year 
after surgery. Of note, our prediction algorithm did not 
identify sex as a significant predictor of postoperative 
weight loss, in line with several previous reports.38,44,45

One major strength of the present study is the use of 
machine learning approaches, in contrast to previous 
studies. LASSO is an alternative to multivariate 
regression that enforces sparsity in the covariates used 
for prediction. Notably, all variables selected by LASSO in 
the present study were clinical traits, as opposed to the 
many continuous biological variables available in ABOS. 
The CART algorithm learns a tree stratification of 
covariates that identifies relationships beyond the scope 
of traditional analysis techniques.46 Tree-based models 
are well suited to capture non-linear effects of mixed 
nominal, ordinal, and continuous attributes and can also 
outperform deep learning on tabular data.47 Additionally, 
this learned stratification of patient attributes allows for a 
clear interpretation of the predicted outcomes. CART 
also provides critical variable thresholds and their 
directional influences on the outcomes. Unlike multi-
variate linear regression approaches, CART learns non-
parametric models that do not require a strong 
specification of the mapping between covariates and 
outcomes. These strengths are especially valuable in 
addressing the data heterogeneity commonly associated 
with clinical datasets. Descending in the decision tree, it 
is possible to draw the involvement of different features, 
the combination of which allows to define with higher 
accuracy the clinicobiological characteristics of an 
individual with higher or lower weight loss. Another 
remarkable feature is that by exploring the tree from root 
to leaves, CART divided the population based on diabetes 
status or diabetes duration, only for patients submitted to 
RYGB. 

Our study has several limitations. First, the machine 
learning algorithm selected only seven simple clinical 
features. It is possible that the prediction can be 
improved with more performant classes of algorithms, 
such as random forest or deep learning.48 However, such 
methods would require more training data and provide 
a less interpretable model, which we consider as a 
decisive criterion for implementation in patients’ care 
settings. Indeed, more complex models are not 
straightforwardly interpretable by humans, under-
mining trust.49 Concerns about such black-box 
algorithms are increasingly highlighted as one of the 
primary barriers to the adoption of machine learning in 
the health-care context.50 Second, the extensive clinical 
and biological dataset used for model development only 

included a limited number of socioeconomic, ethnic, 
behavioural, and nutritional aspects, which might 
influence postoperative weight loss trajectories. 
Likewise, we did not evaluate the added value of genetic 
analyses51,52 or of new disease stratification.53 Third, our 
analysis was limited to the three most performed 
operations worldwide. AGB has been less frequently 
performed in the past 10 years, and several new and 
rapidly increasing operations, such as one anastomosis 
gastric bypass or endoscopic sleeve gastrectomy, were 
not included because of a scarcity of a large number of 
patients with 5 years of follow-up data. Additionally, we 
did not include reoperations in our model. Fourth, 
except for the SGH, COD, and Mexico cohorts, most 
individuals enrolled in our study were White, especially 
those who had AGB. Therefore, our results should be 
further replicated in non-White populations. Finally, 
our study was focused primarily on weight loss and not 
obesity complications, such as type 2 diabetes, 
hypertension, or non-alcoholic fatty liver disease. We 
also did not analyse the risks associated with surgery,54 
but we appreciate that these are also essential to inform 
clinical decisions.

In summary, we have developed and validated an easy-
to-use and interpretable model that provides individual 
predictions of weight loss trajectory after bariatric 
surgery. We have shown its generalisability and trans-
portability across multiple cohorts in Europe, the 
Americas, and Asia, as well as its performance in 
intervention clinical trials. 

Individual weight loss trajectory prediction appears to 
be an accurate and simple strategy to inform clinical 
decisions for both health-care providers and patients 
before surgery. Our model can also be used post-
operatively to identify patients whose actual weight loss 
trajectories differ from their predicted trajectory, thus 
allowing the timely implementation of appropriate 
clinical interventions. 
Contributors
PSau, PB, VR, HV, PP, and FP conceptualised the study. PSau, PB, JT, 
HV, TS, RC, FP, AJ, DJ, VM, PCL, CHL, JCA-A, LC, P-AS, FG, DN, GD, 
MM, SA, JC, ML, EL, OV, GM, MR, PSal, RP, RVC, and CZ did data 
curation. PSau and PB did the statistical and mathematical analysis of 
the study data. PSau, PB, VR, PP, and FP developed the methodology. 
PSau, PB, JT, TS, and MD developed the software. PSau, PB, and JT 
validated the replication of the model predictions in the validation 
cohorts. PSau, PB, and MD visualised and developed the graphical 
interface and the calculator website. PSau, PB, VR, PP, and FP wrote the 
original draft of the manuscript. PSau, PB, VR, PP, FP, VM, and 
CWLR reviewed and edited the manuscript. PP and FP did project 
administration. FP and PP supervised the investigation and writing. 
CWLR acquired funding. HV, RC, FP, AJ, DJ, VM, PCL, CHL, JCA-A, 
LC, P-AS, FG, DN, GD, MM, SA, JC, ML, EL, OV, GM, MR, PSal, RP, 
RVC, CZ, and CWLR provided data. All authors have seen and approved 
of the final text. All authors had full access to the data and had final 
responsibility for the decision to submit for publication. PSau, PB, 
and TS directly accessed and verified the data. 

Declaration of interests
PP reports a grant from I-Site Université Lille Nord Europe, University 
of Lille, Métropole Européenne de Lille, Inria, Région Hauts-de-France. 
RP reports a grant from Swiss National Science; and foundation fees 



Articles

10 www.thelancet.com/digital-health   Published online August 29, 2023   https://doi.org/10.1016/S2589-7500(23)00135-8

from Johnson & Johnson and the Falik Foundation. RVC reports grants 
from Johnson & Johnson Medical Brazil, Medtronic Brazil, Jansen 
Pharmaceuticals, NovoNordisk, and Abbott; and being a member of a 
Scientific Advisory Board for Baritek and GI Dynamics. CWLR reports 
grants from the Irish Research Council, Health Research Board, Science 
Foundation Ireland, and Anabio; being a member of the Global Advisory 
Board for NovoNordisk, Eli Lilly, Johnson & Johnson, Boehringer 
Ingelheim, GI Dynamics, Herbalife, and Irish Life Health; and has stock 
or stock options in Keyron and Beyond BMI. FP reports consulting fees 
from Novo Nordisk, Eli lilly, Medtronic, and Johnson & Johnson. 
All other authors declare no competing interests. 

Data sharing 
The datasets generated during or analysed during the current study are 
not publicly available because they are subject to national data protection 
laws and restrictions imposed by the ethics committee to ensure data 
privacy of the study participants. However, access to the datasets can be 
applied for through an individual project agreement with the principal 
investigator at the University Hospital of Lille, France (François Pattou; 
francois.pattou@univ-lille.fr). The authors in charge of the access and 
verification of the ABOS, BAREVAL, NOK, SGH, SOS, PRECOS, Roma, 
Lyon, COD, Mexico, SleevePass, and SM-BOSS datasets are listed in the 
appendix (p 65). 

Acknowledgments 
The SOPHIA Innovative Medicines Iniative (IMI) 2 Joint Undertaking 
under grant agreement number 875534, supported by the EU’s Horizon 
2020 research and innovation programme, the European Federation of 
Pharmaceutical Industries and Associations (EFPIA), Type 1 Diabetes 
Exchange, the Juvenile Diabetes Research Foundation (JDRF) and 
Obesity Action Coalition; Métropole Européenne de Lille; Agence 
Nationale de la Recherche; Institut national de recherche en sciences et 
technologies du numérique through the Artificial Intelligence chair 
Apprenf number R-PILOTE-19-004-APPRENF; Université de Lille Nord 
Europe’s I-SITE EXPAND as part of the Bandits For Health project; 
Laboratoire d’excellence European Genomic Institute for Diabetes under 
grant ANR-10-LABX-0046; Soutien aux Travaux Interdisciplinaires, 
Multi-établissements et Exploratoires programme by Conseil Régional 
Hauts-de-France (volet partenarial phase 2, project PERSO-SURG, 
number 2019.01716/5). This Article is part of a project as of May 4, 2023, 
that has received funding from the IMI 2 Joint Undertaking under grant 
agreement number 875534. This Article reflects the authors view and 
neither IMI nor the European Union, EFPIA, or any associated partners 
are responsible for any use that may be made of the information 
contained therein.

References
1 Afshin A, Forouzanfar MH, Reitsma MB, et al. Health effects of 

overweight and obesity in 195 countries over 25 years. N Engl J Med 
2017; 377: 13–27. 

2 Aune D, Sen A, Prasad M, et al. BMI and all cause mortality: 
systematic review and non-linear dose-response meta-analysis of 
230 cohort studies with 3.74 million deaths among 30.3 million 
participants. BMJ 2016; 353: i2156. 

3 Carlsson LMS, Sjöholm K, Jacobson P, et al. Life expectancy after 
bariatric surgery in the Swedish Obese Subjects study. N Engl J Med 
2020; 383: 1535–43. 

4 Colquitt JL, Pickett K, Loveman E, Frampton GK. Surgery for weight 
loss in adults. Cochrane Database Syst Rev 2014; 2014: CD003641. 

5 Syn NL, Cummings DE, Wang LZ, et al. Association of metabolic-
bariatric surgery with long-term survival in adults with and without 
diabetes: a one-stage meta-analysis of matched cohort and prospective 
controlled studies with 174 772 participants. Lancet 2021; 397: 1830–41. 

6 Courcoulas AP, King WC, Belle SH, et al. Seven-year weight 
trajectories and health outcomes in the Longitudinal Assessment of 
Bariatric Surgery (LABS) study. JAMA Surg 2018; 153: 427–34. 

7 Peterli R, Wölnerhanssen BK, Peters T, et al. Effect of laparoscopic 
sleeve gastrectomy vs laparoscopic Roux-en-Y gastric bypass on 
weight loss in patients with morbid obesity: the SM-BOSS 
randomized clinical trial. JAMA 2018; 319: 255–65. 

8 Karpińska IA, Kulawik J, Pisarska-Adamczyk M, Wysocki M, 
Pędziwiatr M, Major P. Is it possible to predict weight loss after 
bariatric surgery–external validation of predictive models. Obes Surg 
2021; 31: 2994–3004. 

9 Puzziferri N, Roshek TB 3rd, Mayo HG, Gallagher R, Belle SH, 
Livingston EH. Long-term follow-up after bariatric surgery: 
a systematic review. JAMA 2014; 312: 934–42. 

10 Tettero OM, Monpellier VM, Janssen IMC, Steenhuis IHM, 
van Stralen MM. Early postoperative weight loss predicts weight 
loss up to 5 years after Roux-en-Y gastric bypass, banded Roux-en-Y 
gastric bypass, and sleeve gastrectomy. Obes Surg 2022; 
32: 2891–902. 

11 Manning S, Pucci A, Carter NC, et al. Early postoperative weight 
loss predicts maximal weight loss after sleeve gastrectomy and 
Roux-en-Y gastric bypass. Surg Endosc 2015; 29: 1484–91. 

12 Batterham M, Tapsell LC, Charlton KE. Predicting dropout in 
dietary weight loss trials using demographic and early weight 
change characteristics: implications for trial design. 
Obes Res Clin Pract 2016; 10: 189–96. 

13 Finks JF, English WJ, Carlin AM, et al. Predicting risk for venous 
thromboembolism with bariatric surgery: results from the 
Michigan Bariatric Surgery Collaborative. Ann Surg 2012; 
255: 1100–04. 

14 Bertsimas D, Dunn J, Velmahos GC, Kaafarani HMA. Surgical risk 
is not linear: derivation and validation of a novel, user-friendly, and 
machine-learning-based predictive optimal trees in emergency 
surgery risk (POTTER) calculator. Ann Surg 2018; 268: 574–83. 

15 Bektaş M, Reiber BMM, Pereira JC, Burchell GL, van der Peet DL. 
Artificial intelligence in bariatric surgery: current status and future 
perspectives. Obes Surg 2022; 32: 2772–83. 

16 Mingrone G, Panunzi S, De Gaetano A, et al. Metabolic surgery 
versus conventional medical therapy in patients with type 2 
diabetes: 10-year follow-up of an open-label, single-centre, 
randomised controlled trial. Lancet 2021; 397: 293–304. 

17 Tan SYT, Syn NL, Lin DJ, et al. Centile charts for monitoring of 
weight loss trajectories after bariatric surgery in Asian patients. 
Obes Surg 2021; 31: 4781–89. 

18 Cohen RV, Pereira TV, Aboud CM, et al. Effect of gastric bypass vs 
best medical treatment on early-stage chronic kidney disease in 
patients with type 2 diabetes and obesity: a randomized clinical 
trial. JAMA Surg 2020; 155: e200420. 

19 Zerrweck C, Herrera A, Sepúlveda EM, Rodríguez FM, Guilbert L. 
Long versus short biliopancreatic limb in Roux-en-Y gastric bypass: 
short-term results of a randomized clinical trial. Surg Obes Relat Dis 
2021; 17: 1425–30. 

20 Salminen P, Grönroos S, Helmiö M, et al. Effect of laparoscopic 
sleeve gastrectomy vs Roux-en-Y gastric bypass on weight loss, 
comorbidities, and reflux at 10 years in adult patients with obesity: 
the SLEEVEPASS randomized clinical trial. JAMA Surg 2022; 
157: 656–66. 

21 Wölnerhanssen BK, Peterli R, Hurme S, et al. Laparoscopic 
Roux-en-Y gastric bypass versus laparoscopic sleeve gastrectomy: 
5-year outcomes of merged data from two randomized clinical trials 
(SLEEVEPASS and SM-BOSS). Br J Surg 2021; 108: 49–57. 

22 Lim M, Hastie T. Learning interactions via hierarchical group-lasso 
regularization. J Comput Graph Stat 2015; 24: 627–54. 

23 Breiman L, Friedman J, Stone CJ, Olshen RA. Classification and 
regression trees. New York, NY: Taylor & Francis, 1984.

24 Salminen P, Helmiö M, Ovaska J, et al. Effect of laparoscopic 
sleeve gastrectomy vs laparoscopic Roux-en-Y gastric bypass 
on weight loss at 5 years among patients with morbid obesity: 
the SLEEVEPASS randomized clinical trial. JAMA 2018; 
319: 241–54. 

25 Van Buuren S, Groothuis-Oudshoorn K. mice: multivariate 
imputation by chained equations in R. J Stat Softw 2011; 45: 1–67. 

26 Therneau T, Atkinson B, Ripley B, Ripley MB. Package ‘rpart’. 2015. 
https://cran.r-project.org/web/packages/rpart/rpart.pdf (accessed 
Oct 10, 2022).

27 Collins GS, Dhiman P, Andaur Navarro CL, et al. Protocol for 
development of a reporting guideline (TRIPOD-AI) and risk of bias 
tool (PROBAST-AI) for diagnostic and prognostic prediction model 
studies based on artificial intelligence. BMJ Open 2021; 11: e048008. 

28 Baltasar A, Perez N, Serra C, Bou R, Bengochea M, Borrás F. 
Weight loss reporting: predicted body mass index after bariatric 
surgery. Obes Surg 2011; 21: 367–72. 

29 Wise ES, Hocking KM, Kavic SM. Prediction of excess weight loss 
after laparoscopic Roux-en-Y gastric bypass: data from an artificial 
neural network. Surg Endosc 2016; 30: 480–88. 



Articles

www.thelancet.com/digital-health   Published online August 29, 2023   https://doi.org/10.1016/S2589-7500(23)00135-8 11

30 Goulart A, Leão P, Costa P, et al. Doctor, how much weight will I 
lose?–a new individualized predictive model for weight loss. 
Obes Surg 2016; 26: 1357–59. 

31 Seyssel K, Suter M, Pattou F, et al. A predictive model of weight loss 
after Roux-en-Y gastric bypass up to 5 years after surgery: a useful 
tool to select and manage candidates to bariatric surgery. Obes Surg 
2018; 28: 3393–99. 

32 Janik MR, Rogula TG, Mustafa RR, Saleh AA, Abbas M, Khaitan L. 
Setting realistic expectations for weight loss after laparoscopic 
sleeve gastrectomy. Wideochir Inne Tech Malo Inwazyjne 2019; 
14: 415–19. 

33 Velázquez-Fernández D, Sánchez H, Monraz F, et al. Development 
of an interactive outcome estimation tool for laparoscopic 
Roux-en-Y gastric bypass in Mexico based on a cohort of 
1002 patients. Obes Surg 2019; 29: 2878–85. 

34 Cottam S, Cottam D, Cottam A, Zaveri H, Surve A, Richards C. 
The use of predictive markers for the development of a model to 
predict weight loss following vertical sleeve gastrectomy. Obes Surg 
2018; 28: 3769–74. 

35 Peterli R, Steinert RE, Woelnerhanssen B, et al. Metabolic and 
hormonal changes after laparoscopic Roux-en-Y gastric bypass and 
sleeve gastrectomy: a randomized, prospective trial. Obes Surg 2012; 
22: 740–48. 

36 Fischer L, Hildebrandt C, Bruckner T, et al. Excessive weight loss 
after sleeve gastrectomy: a systematic review. Obes Surg 2012; 
22: 721–31. 

37 Arterburn DE, Johnson E, Coleman KJ, et al. Weight outcomes of 
sleeve gastrectomy and gastric bypass compared to nonsurgical 
treatment. Ann Surg 2021; 274: e1269–76. 

38 Parri A, Benaiges D, Schröder H, et al. Preoperative predictors of 
weight loss at 4 years following bariatric surgery. Nutr Clin Pract 
2015; 30: 420–24. 

39 Shantavasinkul PC, Omotosho P, Corsino L, Portenier D, 
Torquati A. Predictors of weight regain in patients who underwent 
Roux-en-Y gastric bypass surgery. Surg Obes Relat Dis 2016; 
12: 1640–45. 

40 Diedisheim M, Poitou C, Genser L, et al. Weight loss after sleeve 
gastrectomy: does type 2 diabetes status impact weight and body 
composition trajectories? Obes Surg 2021; 31: 1046–54. 

41 Courcoulas AP, Christian NJ, O’Rourke RW, et al. Preoperative 
factors and 3-year weight change in the Longitudinal Assessment of 
Bariatric Surgery (LABS) consortium. Surg Obes Relat Dis 2015; 
11: 1109–18. 

42 Borges-Canha M, Neves JS, Mendonça F, et al. Beta cell function as 
a baseline predictor of weight loss after bariatric surgery. 
Front Endocrinol (Lausanne) 2021; 12: 714173. 

43 Mohan S, Samaan JS, Samakar K. Impact of smoking on weight 
loss outcomes after bariatric surgery: a literature review. Surg Endosc 
2021; 35: 5936–52. 

44 Mousapour P, Tasdighi E, Khalaj A, et al. Sex disparity in 
laparoscopic bariatric surgery outcomes: a matched-pair cohort 
analysis. Sci Rep 2021; 11: 12809. 

45 Tankel J, Shlezinger O, Neuman M, et al. Predicting weight loss 
and comorbidity improvement 7 years following laparoscopic sleeve 
gastrectomy: does early weight loss matter? Obes Surg 2020; 
30: 2505–10. 

46 Barnholtz-Sloan JS, Guan X, Zeigler-Johnson C, Meropol NJ, 
Rebbeck TR. Decision tree-based modeling of androgen pathway 
genes and prostate cancer risk. Cancer Epidemiol Biomarkers Prev 
2011; 20: 1146–55. 

47 Grinsztajn L, Oyallon E, Varoquaux G. Why do tree-based models 
still outperform deep learning on typical tabular data? Adv Neural 
Inf Process Syst 2022; 35: 507–20.

48 Ge G, Wong GW. Classification of premalignant pancreatic cancer 
mass-spectrometry data using decision tree ensembles. 
BMC Bioinformatics 2008; 9: 275. 

49 Stiglic G, Kocbek P, Fijacko N, Zitnik M, Verbert K, Cilar L. 
Interpretability of machine learning-based prediction models in 
healthcare. Wiley Interdiscip Rev Data Min Knowl Discov 2020; 
10: e1379. 

50 Petch J, Di S, Nelson W. Opening the black box: the promise and 
limitations of explainable machine learning in cardiology. 
Can J Cardiol 2022; 38: 204–13. 

51 de Toro-Martín J, Guénard F, Tchernof A, Pérusse L, Marceau S, 
Vohl MC. Polygenic risk score for predicting weight loss after 
bariatric surgery. JCI Insight 2018; 3: e122011. 

52 Antoine D, Guéant-Rodriguez RM, Chèvre JC, et al. Low-frequency 
coding variants associated with body mass index affect the success 
of bariatric surgery. J Clin Endocrinol Metab 2022; 107: e1074–84. 

53 Raverdy V, Cohen RV, Caiazzo R, et al. Data-driven subgroups of type 
2 diabetes, metabolic response, and renal risk profile after bariatric 
surgery: a retrospective cohort study. Lancet Diabetes Endocrinol 2022; 
10: 67–76.

54 Thereaux J, Lesuffleur T, Czernichow S, et al. Long-term adverse 
events after sleeve gastrectomy or gastric bypass: a 7-year 
nationwide, observational, population-based, cohort study. 
Lancet Diabetes Endocrinol 2019; 7: 786–95. 


