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Abstract-This paper deals with the optimisation of a multi-robot inspection mission in an industrial area. We aim to solve a specific combinatorial optimisation problem where a team of sensing mobile robots must gather several measurement tasks distributed over the state space. Based on previous work where a Hybrid Filtered Beam Search (HFBS) approach solves task assignment and planning for this specific problem, we focus on the planning aspect to improve the computed solution. Therefore, this planning problem is modeled as a one-depot multiple Travelling Salesman Problem (mTSP). As the performance of HFBS depends on the challenging selection of its suitable parameters, and considering the coupling between task assignment and task planning problems, we propose a local search algorithm that improves the solution and deals with the optimality issue.
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I. INTRODUCTION

In this study, we consider the problem of inspection planning in industrial areas using a Multi-Robot System (MRS). We present it as the multiple Travelling Salesman Problem (mTSP) which is an extension of the classic combinatorial Traveling Salesman Problem (TSP). The herein focus on the security of high-level dangerous industrial areas where the activity involves handling, producing, or storing harmful substances. For these systems, monitoring is regarded as a crucial component in preventing unexpected failures and ensuring system security and safety. Generally, the use of several autonomous robots has become a common procedure promoted as being less expensive than manned systems. Even though the development of autonomous inspection is still progressing, it is desirable to have a plan in place for the effective use of a number of vehicles to ensure lowcost inspection. Coordinating Unmanned Ground Vehicles (UGVs), Unmanned Ariel Vehicles (UAVs), and Unmanned Surface Vehicles (USVs) is a promising way to collect inspection information through the sensors they are equipped with. In this context, the mission may be considered not only for inspection but also for intervention in case a disaster occurs. Robots can collect information during a disaster in {hamza.chakraa, edouard.leclercq, francois.guerin, dimitri.lefebvre}@univ-lehavre.fr an industrial area and thus facilitates the firefighter's and inspector's work.

As an introductory example, consider the TotalEnergies refinery near the city of Le Havre, France (Figure 1). This industrial area is located near the residents. So, it is crucial to plan periodical safety inspection patrols and also intervention ones in case of disasters. Such missions are constituted of UGVs, UAVs, and USVs equipped with a set of sensors that are suitable to perform the different types of measurements (represented with colored marks in Figure 1).

In real-world operations, experts usually construct manually the mission plan. To speed up the process, it is crucial to equip robots with decision-making algorithms to help them distribute the work among themselves. Also, it is necessary to decide which sequence will be performed by each one, what information they would have to collect during the mission, and in what order the tasks would be performed. For this purpose, certain tasks may use several robots, while on another hand, certain less critical ones can be carried out by one robot.

This paper can be considered as an improvement of the solution proposed in [START_REF] Gam | Hybrid filtered beam search algorithm for the optimization of monitoring patrols[END_REF] where a Hybrid Filtred Beam Search (HFBS) approach (which is an extension of the classic Beam Search) is proposed to solve task assignment and planning for a multi-robot inspection mission. The proposed method is motivated by the limitations of HFBS in terms of solution quality. Hence, the problem is defined as multiple mobile sensing robots that must perform measurement tasks in different positions in an industrial environment. Observe that if a robot is equipped with the right sensors, it can perform many measurements in the same location simultaneously. Developing multi-robot missions that integrate the capabilities of robots add new restrictions and additional constraints that have not been addressed in past formulations. Afterward, and once the assignment of tasks is done, a sequence of tasks must be dedicated to each robot. Thus, the sequencing problem is formulated as a TSP.

The solution of this problem is defined as a series of visits to specified targets, arranged for each robot into a sequence set. Each robot executes a subset of measurement tasks such that the team can complete the mission in all positions for the lowest possible cost. The proposed approach aims to minimise the cumulative total inspection cost of the entire fleet. We propose a heuristic-based method for TSP to solve the problem in a reasonable execution time. The approach used in this paper is the 2-Opt heuristic. It's a local search algorithm that is used for solving TSP with O(n 2 ) complexity. It computes a solution in a reasonable time even for larger-size scenarios.

The rest of the paper is organized as follows. A summary of the related works on MRS planning missions and TSP is presented in the next section. Then, the studied problem is formalised in section 3. Details about the methodology are provided in section 4. The results are presented and discussed in section 5 through a simulation scenario. Finally, the conclusion and perspectives are presented in section 6.

II. RELATED WORKS

Multi-robot patrolling problems have been widely studied in the literature [START_REF] Portugal | A survey on multi-robot patrolling algorithms[END_REF][START_REF] Almadhoun | A survey on inspecting structures using robotic systems[END_REF]. Such situations lead to studying Multi-Robot Task Allocation (MRTA) problems [START_REF] Khamis | Multi-robot Task Allocation: A Review of the State-of-the-Art[END_REF]. In fact, MRTA aims to coordinate robots to execute several tasks in order to optimize an objective function. Many researchers have proposed different strategies and taxonomies to facilitate solving MRTA problems. Gerkey and Matarić [START_REF] Gerkey | A formal analysis and taxonomy of task allocation in multi-robot systems[END_REF] proposed a taxonomy to categorize the issue based on robot capabilities, task requirements, and time. Single-Task robots (ST) refers to problems where robots can only carry out one task at a time. Additionally, the term Multi-Task Robots (MT) refers to robots that can perform several tasks simultaneously. Afterward, tasks can be considered as Single-Robot tasks (SR) or Multi-Robot tasks (MR), depending on how many robots are needed to complete them. Instantaneous Assignment (IA) deals with one planning, i.e., each robot completes one job; there is no future planning. Finally, a Time-extended Assignment (TA) assigns to each robot a series of duties over a planning horizon. When it comes to TA problems, task allocation is containing two layers: task assignment and task planning.

In this study, we focus on improving the MRTA work in [START_REF] Gam | Hybrid filtered beam search algorithm for the optimization of monitoring patrols[END_REF] in terms of task planning. So, the problem can be seen as a mTSP [START_REF] Trigui | FL-MTSP: a fuzzy logic approach to solve the multi-objective multiple traveling salesman problem for multi-robot systems[END_REF]. Authors of [START_REF] Bektas | The multiple traveling salesman problem: an overview of formulations and solution procedures[END_REF][START_REF] Cheikhrouhou | A comprehensive survey on the multiple traveling salesman problem: Applications, approaches and taxonomy[END_REF] summarized the used techniques for solving TSP and mTSP variants. These problems are NP-Hard and therefore it is always difficult to solve them optimally and in a reasonable time. For this purpose, many strategies have been developed to deal with these particular challenges. TSP was mainly addressed by Integer Linear Programming (ILP) [START_REF] Laporte | Generalized travelling salesman problem through n sets of nodes: the asymmetrical case[END_REF] and heuristic approaches [START_REF] Rego | Traveling salesman problem heuristics: Leading methods, implementations and latest advances[END_REF]. Nevertheless, ILP based-approaches have large numerical complexity, especially for larger-size problems. Meta-heuristics such as Genetic Algorithm (GA) [START_REF] Usman | An Evolutionary Traveling Salesman Approach for Multi-Robot Task Allocation[END_REF], Ant Colony Optimisation (ACO) [START_REF] Yang | An ant colony optimization method for generalized TSP problem[END_REF], Particle Swarm Optimisation (PSO) [START_REF] Wang | Particle swarm optimization for traveling salesman problem[END_REF], Simulated Annealing (SA) [START_REF] Song | Extended simulated annealing for augmented TSP and multi-salesmen TSP[END_REF], and local search methods such as Greedy Search (GS) [START_REF] Likas | A note on a new greedysolution representation and a new greedy parallelizable heuristic for the traveling salesman problem[END_REF] and 2-Opt [START_REF] Verhoeven | A parallel 2opt algorithm for the traveling salesman problem[END_REF] are the most used techniques in this topic for their capacity of computing good solutions in a reasonable time even for large-size problems.

In the context of MRS, authors in [START_REF] Nekovar | Multi-Tour Set Traveling Salesman Problem in Planning Power Transmission Line Inspection[END_REF] addressed the problem of inspecting power transmission lines using a team of UAVs. They formulated the problem as multi-tour mTSP in order to consider maximum UAVs flight times. A GSbased approach was developed and compared to an ILPbased resolution where it was shown that the latter has computational limitations. Further, they extended their work to deal with robot failures [START_REF] Nekovar | Vehicle Fault-Tolerant Robust Power Transmission Line Inspection Planning[END_REF] i.e. once the mission is interrupted, the inspection is re-planned according to other robots remaining battery ranges and using several types of cost functions. In [START_REF] Miloradovic | GMP: A genetic mission planner for heterogeneous multirobot system applications[END_REF], an Extended Colored Traveling Salesman Problem (ECTSP) formulation was considered for a multirobot inspection mission planning where heterogeneous tasks must be performed by robots according to their capabilities. Colors represent either the equipment needed to complete a task or the equipment a salesman has. Thus, the solver's architecture proposed in this paper is constituted of GA and GS.

According to the literature, 2-Opt is one of the most used heuristics for TSP since it converges rapidly to nearly optimal solutions. Its complexity is its main asset, especially for euclidean TSP [START_REF] Brodowsky | The Approximation Ratio of the 2-Opt Heuristic for the Euclidean Traveling Salesman Problem[END_REF]. Moreover, few researchers considered this method to deal with MRS routing problems. Authors in [START_REF] Liu | Optimization of Base Location and Patrol Routes for Unmanned Aerial Vehicles in Border Intelligence, Surveillance, and Reconnaissance[END_REF] have considered border patrolling as a Location-Routing Problem (LRP) of multiple drones. Hence, the flying paths from drone base stations to inspect each target is the main focus of the optimisation problem. Every target will be assigned to the closest station by clustering, and the 2-Opt method will then improve the planning.

Considering the literature review, it was shown that the addition of a local search approach to a heuristic or a metaheuristic helps to converge faster and get better solutions [START_REF] Miloradovic | GMP: A genetic mission planner for heterogeneous multirobot system applications[END_REF]. This paper improves the solution proposed in [START_REF] Gam | Hybrid filtered beam search algorithm for the optimization of monitoring patrols[END_REF] where the problem is to assign tasks to a multi-robot fleet in order to gather measurements for industrial inspection. We propose a 2-Opt-based method to improve the planning part of the solution computed by HFBS that have optimality limitations.

III. PROBLEM STATEMENT

The problem studied in this paper involves heterogeneous robots equipped with different types of sensors that have to perform various tasks with various requirements and constraints. The MRTA problem considered in this paper is to assign a set of measurement tasks to a set of robots ensuring good results regarding the objective function (minimising the cumulative energy consumption or time). Observe that, a task is considered as a pair composed of a specific location and a given measurement. So, a single robot should complete a measurement operation. Besides, one or more activities can be carried out by a robot simultaneously. Subsequently, this study is classified as MT-SR-TA [START_REF] Gerkey | A formal analysis and taxonomy of task allocation in multi-robot systems[END_REF].

The navigation environment is considered as a twodimensional mesh of size (N x × N y ) constituted of N cells. Each cell defines a spatial area where a robot can stay and is defined by the spatial coordinates of its center of gravity (x, y). The environment may include several types of obstacles where the robots cannot stay. Tasks should be performed in some specific cells of the environment, named sites. The following notations are introduced. A = {a 1 , . . . , a i , . . . , a j , . . . , a A } is the set of site addresses that must be visited where A =| A | is the number of total sites. R = {r 1 , . . . , r k , . . . , r R } stands for the set of types of robots (depending on the characteristics and sensors carried on by each one), and R =| R |. M = {m 1 , . . . , m q , . . . , m M } stands for the set of measurements where M =| M |.

A task (i, q) is defined formally as a measurement of type m q ∈ M to be completed at a certain site a i ∈ A. The set of all tasks in different sites is defined by the table T where t iq = 1 if measurement m q should be taken in a i and t iq = 0 otherwise. The displacement between two given sites a i and a j for a robot r k is defined as an average elementary cost c(i, j, k) that can be interpreted as the energy or time required by r k to move from a i to a j . All displacement costs c(i, j, k) for a robot of type r k are defined in table c(k). Each robot r k carries a specific subset of sensors where each one is appropriate for a specific measurement, and M also represents the set of sensors. Table P defines the sensors carried on by a robot of type r k : p kq = 1 if measurement m q can be taken by r k and p kq = 0 otherwise. min k∈R i,j∈A

x k ij • c(i, j, k) (1) 
s.t.

j∈A x k 1j = 1 ∀k ∈ R (2) j∈A x k ij = j∈A x k ji ∀i ∈ A, ∀k ∈ R (3) 
u k i + x k ij ≤ u k j + (A -1) • (1 -x k ij ) ∀i ∈ A, ∀j ∈ A/{a 1 }, ∀k ∈ R (4) 
k∈R i∈A

p kq • x k ij ≥ t jq ∀q ∈ M, ∀j ∈ A (5)
The problem studied in this paper is described in a formal way using Mixed Integer Linear Programming (MILP) formulation (equations 1 to 5). x k ij is a binary decision variable such that x k ij = 1, if the robot of type r k moves from the site a i to a j and x k ij = 0 otherwise. u k i is an integer decision variable that represents the visiting order of the site a i that is visited by a robot r k . The objective function (1) to be minimised, is the total mission cost (in terms of energy or time) required to perform all tasks of the mission. Equations ( 2) to (4) guarantee that each robot moves along a circuit that starts and ends in the depot (site a 1 ) [START_REF] Bektas | The multiple traveling salesman problem: an overview of formulations and solution procedures[END_REF]. Finally, Equation [START_REF] Gerkey | A formal analysis and taxonomy of task allocation in multi-robot systems[END_REF] guarantees that each task is executed once by a robot equipped with the appropriate sensor for that task.

IV. METHODOLGY

In [START_REF] Gam | Hybrid filtered beam search algorithm for the optimization of monitoring patrols[END_REF], a heuristic approach was proposed to solve this problem based on Dijkstra and HFBS algorithms. Dijkstra algorithm is one of the most common methods for finding the path of the smallest cost between two given nodes in directed or undirected graphs [START_REF] Dijkstra | A note on two problems in connexion with graphs[END_REF]. In particular, Dijkstra was used to compute the trajectories for a robot r k of lowest cost c(i, j, k) between any pair of sites (a i , a j ). Afterward, HFBS is a search algorithm in trees or graphs based on a heuristic function that evaluates the cost to reach a given final node (or a set of final nodes) from a given initial one. HFBS was used to assign measurements to robots based on the low-cost trajectories obtained by the Dijkstra algorithm. In this paper, we propose to improve this method by combining the HFBS optimisation with the 2-Opt local search algorithm.

A. HFBS Approach

The considered MRTA problem is described by a tree. Each node s of this tree represents a candidate solution that is said to be complete if all tasks have been performed and all robots have returned to a 1 . s is defined by two components. The first one is the sequences Robot(s, k) of the set of measurements M(k, i j ) taken by the robots of each type r k in site a ij where a ij is the jth site visited by r k in Robot(s, k):

Robot(s, k) = M(k, i 1 )M(k, i 2 ) . . . M(k, i h k ) (6)
Observe that h k refers to the index of the last site in a robot r k sequence. Further, s is defined also by the value of the two HFBS functions g(s) and h(s) which are presented and detailed in equations ( 7) and [START_REF] Cheikhrouhou | A comprehensive survey on the multiple traveling salesman problem: Applications, approaches and taxonomy[END_REF]. In addition, M(i) is the set of all measurements that must be taken in site a i and T asks(s) defines the remaining surveillance tasks at s and is initialized according to the relations T and P. When a measurement m q is performed at a given site a i , then m q is withdrawn from M(i) in T asks(s) and once M(i) becomes empty, then the site a i is also withdrawn from T asks(s). Further, from each candidate solution s, it is also possible to compute the set of sites Succ(s, k) that contains one or more remaining measurements that could be taken by any robot of type r k . A site a i is added in the set Succ(s, k) only if the robot of type r k , can reach a i , take at least one measurement, and return to a 1 while satisfying the energy constraints.

The HBFS algorithm explores the tree of candidate solutions by using an evaluation function f and the parameters β g and β l that respectively limit the number of nodes at each level of the search tree and the number of successors for each expanded node (the reader is referred to [START_REF] Gam | Hybrid filtered beam search algorithm for the optimization of monitoring patrols[END_REF] for more details). The function f is computed at each node s of the graph by f (s) = g(s) + h(s) where g(s) is the actual cost from the initial node s 0 to s and h(s) is an estimation of the cost from s to s * (the final node). Equation ( 7) defines the function g(s) used in this paper.

g(s) = k∈R M(k, ij) ∈ Robot(k, s) j < h k c(i j , i j+1 , k) (7) 
where Robot(s, k) is defined by equation [START_REF] Trigui | FL-MTSP: a fuzzy logic approach to solve the multi-objective multiple traveling salesman problem for multi-robot systems[END_REF]. Afterward, in order to calculate the estimation h(S), the following notations are considered:

• L(s): the set of sites that still need a visit at s (it results directly from T ask(s) by ignoring the measurements). • a(s): is the set of robot current positions at s (it results from the last element in Robot(s, k)).

• L 1 (s) = L(s) ∪ {a 1 } • L a (s) = L(s) ∪ {a(s)}
The heuristic function h(s) is formulated as follows:

h(s) = max {h 1 (s), h 2 (s)} (8) 
with

     h 1 (s) = c * (a(s), L 1 (s)) + a∈L(s) c * (a, L 1 (s)) h 2 (s) = a ′ ∈La(s) c * (L a (s), a ′ )
where c * (a(s), L 1 (s)) is the minimal non-null cost from the current positions of the robots to the sites in L 1 (s), c * (a, L 1 (s)) is the minimal non-null cost from the current position a of one of the robots to the sites in L 1 (s), c * (L a (s), a ′ ) is the minimal non-null cost from the sites in L a (s) to a particular site a ′ . The heuristic function h(s) defined by equation ( 8) underestimates the actual cost as required to ensure convergence to a complete candidate solution.

B. 2-Opt Local Search

The 2-Opt method is a TSP local search method that was first proposed by Croes in 1958 [START_REF] Croes | A Method for Solving Traveling-Salesman Problems[END_REF]. It operates by starting from an existing solution or a randomly generated one, then it replaces repeatedly two edges with two new ones to create a shorter tour starting from an initial one until discovering a better solution [START_REF] Nilsson | Heuristics for the traveling salesman problem[END_REF]. The major objective is to identify a path that intersects over itself and changes it by swapping two edges in the sequence. The operation is repeated until no improvement can be made for the path (all possible permutations must be tested). Given two edges (a i → a i+1 ) and (a j → a j+1 ) in a robot tour, there are two options for replacing these two edges with two additional ones. Either we can select the pair consisting of (a i → a j ) and (a i+1 → a j+1 ), or we can select the pair consisting of (a i → a j+1 ) and (a j → a i+1 ). Nevertheless, only one of these two couples will lead to the next sequence. The tour is assumed to be an oriented cycle, where each site has precisely one incoming and one departing edge. For this purpose, there is only one way to swap out a pair of edges so that the new edge set is once again a tour. The suitable permutation is concerning both edges (a i → a j ) and (a i+1 → a j+1 ) in order to obtain an oriented cycle again as presented in Figure 2. In general, for any two edges (a i → a i+1 ) and (a j → a j+1 ), the following 2-Opt criteria must be verified:

a i a j a j+1 a i+1 a i a j a j+1 a i+1
c(i, j, k)+c(i+1, j +1, k) ≥ c(i, i+1, k)+c(j, j +1, k) (9)
Inequality ( 9) is referred to as the 2-optimality condition. Specifically, a sequence is considered to be 2-optimal if the 2-Opt method cannot improve it [START_REF] Brodowsky | The Approximation Ratio of the 2-Opt Heuristic for the Euclidean Traveling Salesman Problem[END_REF]. Once the 2optimality condition is violated (the case of the example in Figure 2), a better sequence (strictly shorter sequence) can be obtained by replacing the edges (a i → a i+1 ), (a j → a j+1 ) with (a i → a j ),(a i+1 → a j+1 ). In general, when the triangular weight inequality is verified, the permutation includes typically replacing the diagonals with the sides of the parallelogram constituted by the four sites linking the two edges. Further, we note that in the modified sequence, there are two possible modifications. The first one is to switch two sites. But, when we consider the impact it has on the path, we realise how significant the change is because it breaks several connections between the sites. A simpler transformation is the reversal of the route between the two sites a i+1 and a j . This reversal can reduce the number of permutations and thus it leads to an improvement in terms of execution time. In Figure 2, the orientation of the tour edges between a i+1 and a j has been inverted. Moreover, several strategies may be used when choosing the permutation: it may be the first one found, the best or worse option given the current scenario, or even a random selection from a group of possible permutations.

Although it is generally uncommon to exceed 3 edges per permutation, 2-Opt can be easily generalized to k-Opt by attempting to permute k edges at each step [START_REF] Helsgaun | General k-opt submoves for the Lin-Kernighan TSP heuristic[END_REF]. In addition, there exist approaches that involve changing the permutation type in each iteration according to the current solution. However, this generalization does not guarantee better solutions than 2-Opt.

The 2-Opt pseudo code is presented in Algorithm 1. The algorithm condition is verified iteratively according to the elements of the cost matrix c(k) for each type of robot r k .

V. RESULTS AND DISCUSSION

This section presents the validation and evaluation of the proposed method. HFBS and 2-Opt methods were implemented using MATLAB. We aim to optimise the cumulative cost used by the entire team in the mission. HFBS generates

Algorithm 1 2-Opt Algorithm Require: Robot(s * , k), c(k) n ← size(Robot(s * , k))
while there exists a possible improving 2-Opt permutation in the robot sequence do for i ← 1, n -3 do for j ← i + 2, n -1 do if 2-Opt condition is violated then perform 2-Opt permutation end if end for end for end while an initial solution for the whole problem including task assignment and planning. Afterward, the local search is applied in order to improve the solution in terms of planning i.e., the execution order of tasks in the robots' tours. So, a two-layer technique is suggested: First, an initial sequence of tasks is computed. Then, a scheduling improvement with iterative local search is proposed. Many scenarios including different numbers of tasks and robots were considered. Table I shows the specification of these scenarios with the calculated cost of the solution computed by HFBS and the one after applying the 2-Opt method. For each example, HFBS is executed with a random choice of its parameters β g and β l .

As seen in Table I, the proposed 2-Opt method improves the solution computed by HFBS in almost all the examples. The selected combination of β g and β l is the difficulty in this method; increasing the values of β g and β l doesn't always result in an improved solution. Hence, multiple tests must be conducted to identify the more appropriate values, which change depending on the scenario's particularities. The adoption of a local search mechanism had the immediate effect of minimising the need for parameter-picking tests. In fact, a bad choice that can lead to a bad solution is revised, and the proposed TSP-based approach leads to good solutions. In another hand, the assignment part isn't modified in the second phase and the optimality of the final result depends also on the quality of this assignment that is generated by HFBS. However, we observe that even in the worst-case scenario (when the assignment isn't optimal), the system generates near-optimal solutions that are acceptable regarding the complexity of the problem studied.

Further, we consider the simulation scenario proposed in [START_REF] Gam | Hybrid filtered beam search algorithm for the optimization of monitoring patrols[END_REF] of a factory that generates high-risk activities. The environment of this industrial area is presented as a 2D grid map of dimension N x = 43 by N y = 29 with 1247 cells. Three robots of different types R = {r 1 , r 2 , r 3 } aim to perform 58 measurement tasks distributed over 26 sites A = {a 1 , ..., a 26 } including the "depot" a 1 (the location where the robots start and end their mission). The robots will visit the sites to execute tasks within the defined set of four possible measurements M = {m 1 , m 2 , m 3 , m 4 } and according to their capabilities (sensors each robot is carrying). The robot r 1 is equipped with sensors that can This optimisation aims to minimise the cumulative travel time of all robots to execute all tasks. It is interpreted as the cumulative energy consumed by the entire fleet during the mission. To determine the optimal allocation of tasks to be assigned to each robot, HFBS will use the calculated costs and the state space's preliminary data (robots' capabilities and tasks' requirements) to compute a sequence for each robot. The solution proposed in [START_REF] Gam | Hybrid filtered beam search algorithm for the optimization of monitoring patrols[END_REF] assigns two robots to the mission i.e., the third robot is not used since the other ones are equipped with the same sensors. The obtained cost of the computed solution is f = 488 (obtained for β g = 50 and β l = 30).

Following the determination of the initial solution, 2-Opt is applied over the route of each robot. The newly obtained sequences have a lower cost of f = 428. Figure 3 presents the evolution of the cost function during the execution of the 2-Opt algorithm for this simulation scenario. Every time a permutation is performed, new intersections are created, and the algorithm keeps changing them over time.

In this example, it took 35 steps to get to the final result that solves all conflicting situations. Observe that, although the cost function is reduced throughout the method, some permutations momentarily raise the sequence's cost during the process. This can be explained by the fact that some permutation resolutions may cause some other intersection situations that will be solved later in the process. This leads to several reflections about the choice of permutation order. In our study, the permutations are realised one by one i.e., we deal with the first one found every time. Some other strategies may be considered such as choosing the order of permutations randomly or performing them in ascending or descending order (in each iteration the best or the worse swap option is considered). The first technique is efficient for some particular situations where numerous permutations arise that all have an equal chance of improving the cost function. If the randomly selected permutations do not sufficiently explore the search space, the method might potentially result in local minima. Afterward, the second technique may be more efficient if the available permutations have a clear hierarchy, such as if some swaps are always preferable to others. But one should note that this method might also be stuck in local optima. In addition to potentially lowering the performance of the algorithm, using alternative permutation strategies can also increase the computational requirements.

The main limitation of 2-Opt is that it does not provide a guarantee of the quality of the final solution: the algorithm is prone to fall into local minima. We also observe that the original solution's characteristics have a significant impact on the final result. However, several studies demonstrate that the 2-Opt algorithm produces better results than constructive TSP methods. It may compute sub-optimal solutions with just a little difference from the optimal one. Subsequently, this method still presents a promising way to deal with multirobot issues, and it can be used for a wide range of problems in this field. VI. CONCLUSION In this paper, a multi-robot mission for inspecting industrial areas is presented. The objective of this mission is to appropriately assign a set of measurement tasks to a group of mobile sensing robots based on their capacities in order to gather patrolling data. The contribution of this work is to improve the HFBS approach by combining it with the 2-Opt method. A set of numerical experiments illustrates that this combination generates better solutions.

Our future works will consider robots' autonomy constraints by adding a limited maximal travel cost for each robot to deal with the battery state of charge. In addition, the path planning part of the problem will be improved to ensure conflict-free trajectories (collision avoidance between robots). Finally, decentralised aspects and online architectures will be studied to address robots' malfunctions and adapt to dynamic environments.
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 1 Fig. 1.An illustration of a possible industrial inspection scenario © TotalEnergies refinery, Le Havre, France.
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 2 Fig. 2. The 2-Opt permutation: initial solution (left), solution after the 2-Opt operation (right).

Fig. 3 .

 3 Fig. 3. Objective function evolution during the 2-Opt process.

  and m 3 . Besides, r 2 can execute m 2 and m 4 . Finally, r 3 can measure m 1 and m 2 .

			TABLE I		
	SOLVERS' RESULTS FOR 8 DIFFERENT SCENARIOS	
	Number of	Number of	Number of	HFBS HFBS + 2-Opt
	Robots	Tasks	Measurements	costs	costs
	2	13	3	148	138
	2	15	4	150	140
	2	30	4	286	236
	2	33	5	266	236
	3	13	3	148	138
	3	15	4	176	152
	3	30	4	250	234
	3	33	5	256	242
	perform m 1