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1 - Rayleigh-Taylor instability (RTI)

Hydrodynamic instability
▶ at a fluid-fluid interface
▶ when accelerated in the direction of the density gradient

(2) : ρ2 > ρ1

(1) : ρ1
∇⃗ρ a⃗

(2) : ρ2 > ρ1

(1) : ρ1
∇⃗ρ g⃗

Digitations of various shapes
▶ (1) ≡ oil / (2) ≡ water → ρ2 − ρ1 ∼ 102 kg/m3

t = 0, 04s t = 0, 10s t = 0, 16s t = 0, 24s

▶ (1) ≡ air / (2) ≡ water → ρ2 − ρ1 ∼ 103 kg/m3

t = 0, 04s t = 0, 09s t = 0, 16s t = 0, 21s
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1 - 2-layer fluid system → 3-layer fluid system

Reference: S Chandrasekhar, Hydrodynamic and Hydromagnetic
Stability, 1961, Chapter X .

Fields of observation: geophysics, astrophysics and nuclear safety
→ multi-layer fluid systems

Case of study: a 3-layer fluid system immersed in a gravity field

(1) : ρ1

(2) : ρ2

(3) : ρ3

g⃗

→ 2 unstable interfaces if ρi+1 > ρi for i ∈ {1; 2}

Focus: RTI at the lower interface

(1) : ρ1

(2) : ρ2 > ρ1

(3) : ρ3 < ρ2
∇⃗ρ

∇⃗ρ
g⃗
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1 - Review of the literature

Theoretical studies

1. KO Mikaelian Phys. Rev. A 1983
→ inviscid model, surface tension ignored, analytical solutions.

2. S Parhi & G Nath Int. J. Engng Sci. 1991
→ viscous model, solving method, stability criterion.

3. KO Mikaelian Phys. Rev. E 1996
→ viscous model, solving method.

Experimental work

1. JW Jacobs & SB Dalziel J. Fluid Mech. 2005
→ miscible fluids, method of barrier removal, turbulent initial flow.

2. R Adkins, EM Shelton, MC Renoult, P Carles, C Rosenblatt Phys.
Rev. Fluids 2017
→ non-miscible fluids, method of magnetic levitation, sinusoidal
initial interface deformation.
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1 - Motivation

Set of images versus time for one
experimental run from Adkins et al.

Growth rate measurements at the lower
interface

▶ assuming exponential growth

▶ lower values than the ones
predicted by the inviscid Mikaelian
theory.

Sources of discrepancy

1. Fluids viscosity

2. Sides effects

3. Interfaces coupling

→ viscous theory and comparison to
experiments and numerical simulations.
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2 - Formulation

ρ1, µ1

ρ2, µ2

ρ3, µ3

(1)

(2)

(3)

0

h

z

x

y

g⃗

γ12

γ23

Assumptions:

▶ Incompressible fluids.

▶ Newtonian fluids.

▶ Non miscible fluids.

▶ Extreme layers of infinite
depth.

▶ Isothermal conditions.

Condition for RTI occurrence:
ρ3 > ρ2 and/or ρ2 > ρ1.
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2 - Equations

Volume equations in each phase i ∈ {1; 2; 3}:

∇⃗ · u⃗i = 0 (mass balance)
ρi

(
u⃗i,t + (u⃗i · ∇⃗)u⃗i

)
= −∇⃗pi + µi∆⃗u⃗i + ρi g⃗ (momentum balance)

Jump conditions at each interface i i + 1
with i ∈ {1; 2}:

(i + 1)

(i)

zii+1

n⃗i

u⃗i · n⃗i = v⃗ii+1 · n⃗i = u⃗i+1 · n⃗i (mass balance)
(pi+1 − pi + γii+1κii+1) n⃗i = (¯̄τi+1 − ¯̄τi ) · n⃗i (momentum balance)
u⃗i × n⃗i = u⃗i+1 × n⃗i (no slip)

with n⃗i =
(
−zii+1,x ,−zii+1,y , 1

)
T , κii+1 =

zii+1,x,x

(1+z2
ii+1,x)

3
2
+

zii+1,y,y

(1+z2
ii+1,y)

3
2

and

¯̄τi = µi (∇⃗u⃗i + (∇⃗u⃗i )
T )

MC Renoult Viscous theory for three-layer Rayleigh-Taylor instability 7 / 20



2 - Basic state

Definition:

▶ Fluids at rest: u⃗∗i = 0⃗

▶ Interface 12 plane: z∗12 = 0

▶ Interface 23 plane: z∗23 = h

Solution for the pressure:

p∗1(z) = −ρ1gz + pc
p∗2(z) = −ρ2gz + pc
p∗3(z) = −ρ3gz + gh(ρ3 − ρ2) + pc

with pc = p∗1(z = 0) a constant.
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2 - Perturbed state

Definition:

u⃗i (x , y , z , t) = u⃗ ∗
i + u⃗ ′

i (x , y , z , t) = u⃗ ′
i with u′i ≪ 1

pi (x , y , z , t) = p∗i (z) + p′i (x , y , z , t) with p′i ≪ p∗i
zii+1(x , y , t) = z∗ii+1 + z ′ii+1(x , y , t) with z ′ii+1 ≪ z∗ii+1

Volume equations in each phase i ∈ {1; 2; 3}:
Mass balance: uij,j = 0
Linearized momentum balance: ρiuij,t = −p′i,j + µi∆uij j ∈ {x ; y ; z}

Linearized jump conditions at z = (i − 1)h, i ∈ {1; 2}:

uiz = z ′ii+1,t = ui+1z

uix = ui+1x
uiy = ui+1y
p′i+1 − p′i − (ρi+1 − ρi )gz

′
ii+1 − γii+1(z

′
ii+1,x,x + z ′ii+1,y ,y ) =

2(µi+1ui+1z,z − µiuiz,z)
µi+1(ui+1z,x + ui+1x,z) = µi (uiz,x + uix,z)
µi+1(ui+1z,y + ui+1y ,z) = µi (uiz,y + uiy ,z)
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2 - Dispersion relation

▶ Solutions searched under the form: e(ikxx+iky y+ωt) with
k2 = k2

x + k2
y the wavenumber of the perturbation and

ω the time coefficient (complex number).

▶ Volume equations → uiz :

u1z = (C1e
kz + D1e

q1z)e(ikxx+iky y+ωt)

u2z = (A2e
−kz + B2e

−q2z + C2e
kz + D2e

q2z)e(ikxx+iky y+ωt)

u3z = (A3e
−kz + B3e

−q3z)e(ikxx+iky y+ωt)

with C1, D1, A2, B2, C2, D2, A3 and B3 8 unknown coefficients
and qi =

√
k2 + ωρi/µi the modified wavenumber in phase i .

▶ 4 equations at each interface → 8 equations → closed problem

Dispersion relation: solution of M·
(
C1,D1,A2,B2,C2,D2,A3,B3

)
T=0

where M is a 8 × 8 matrix dependant of 9 dimensionless numbers
(Π theorem: 12 physical parameters - 3 fundamental units).
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2 - Solutions

Non-trivial solutions are solutions of

|M| = 0

There is one analytical solution, stable ∀k :

Ω1 =
ω1√
gk

=

√
g

k3
ρi
µi

= −Re−1
2

And 3 or 4 other solutions, depending on k , determined numerically.

Limit case: disregarding the viscosity and the surface tension
→ Mikaelian relation

a(At12,At23,H) Ω4 + b(At12,At23,H) Ω2 + c(At12,At23,H) = 0

with Atii+1 = (ρi+1 − ρi )/(ρi+1 + ρi ) the Atwood numbers and H = kh
the dimensionless thickness → 4 analytical solutions ∀k .
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3 - Operating conditions

Let us consider the 2 cases studied in Adkins et al.

▶ (1) ≡ Oil / (2) ≡ Water / (3) ≡ Oil

▶ (1) ≡ Oil / (2) ≡ Water / (3) ≡ Air

(1)

(2)

(3)

0

h

z

x

y

g⃗

(1)

(2)

(3)

0

h

z

x

y

Variable quantities: h and k → various H.
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3 - 2 limit cases for comparison

1. 2 separate 2-layer fluid systems (considering the fluid viscosities)

(3)/(2)/(1) is compared to (2)/(1) and (3)/(2)

▶ (2)/(1) is gravitationally unstable.
▶ (3)/(2) is gravitationally stable.

(1)

(2)

(3)

0

h

z

x

y =

(1)

(2)

0

z

x

y +
(2)

(3)

0

z

x

y

2. 3-layer inviscid model of Mikaelian
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3 - Solutions for 2 separate 2-layer fluid systems

g⃗ -unstable vs g⃗ -stable

kc : cutoff wavenumber due to surface tension.
Re(w) > 0 → unstable solution; Im(w) ̸= 0 → oscillations.
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3 - All solutions on the same graph!

k < kc : 1 unstable + 2 stables
k > kc : 4 stables
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3 - Solutions for the 3-layer fluid system, h=1 mm

3 totally stable solutions: 1 analytically, 2 numerically determined
Other solutions: 2 stable for k > kc , 1 unstable for k < kc .
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3 - Effect of h on the unstable solution

ω∗: maximum growth rate for the viscous 2-layer fluid model

Decreasing h (i.e. increasing interface coupling) decreases ω.
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3 - Comparison to experimental values

ω∗: maximum growth rate for the inviscid 3-layer fluid model

The viscous model improves the prediction as h is reduced.
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4 - Conclusion & Ongoing work

Conclusion
▶ Development of a theory for 3-layer RTI that considers the viscosity

of the fluids and all the solutions of the dispersion relation.
▶ Improvement of the theoretical prediction.

Ongoing work
▶ Comparison of interface deformations with numerical simulations.

OPENFOAM simulations. (1) ≡ Huile/(2) ≡ Eau/(3) ≡ Mercure.
Set of images versus time.

▶ Inclusion of the magnetic field for a viscous model for liquid metal
batteries (g⃗ -stable stratification).

Future work → New experiments at Case Western Reserve University?
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Thank you for your attention.

Any questions?
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