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- Rayleigh-Taylor instability (RTI)

Hydrodynamic instability
» at a fluid-fluid interface

» when accelerated in the direction of the density gradient
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Digitations of various shapes
> (1) = oil / (2) = water — pp — p1 ~ 10? kg/m3

t =0,04s t=0,10s t=0,16s t=0,24s
> (1) = air / (2) = water — p» — p1 ~ 10% kg/m?

t=0,04s t =0,09s t=0,16s t=0,21s
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D - 2-layer fluid system — 3-layer fluid system

Reference: S Chandrasekhar, Hydrodynamic and Hydromagnetic
Stability, 1961, Chapter X.

Fields of observation: geophysics, astrophysics and nuclear safety
— multi-layer fluid systems

Case of study: a 3-layer fluid system immersed in a gravity field
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— 2 unstable interfaces if pi11 > p; for i € {1;2}

Focus: RTI at the lower interface
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D - Review of the literature

Theoretical studies

1. KO Mikaelian Phys. Rev. A 1983
— inviscid model, surface tension ignored, analytical solutions.

2. S Parhi & G Nath Int. J. Engng Sci. 1991
— viscous model, solving method, stability criterion.

3. KO Mikaelian Phys. Rev. E 1996
— viscous model, solving method.

Experimental work

1. JW Jacobs & SB Dalziel J. Fluid Mech. 2005
— miscible fluids, method of barrier removal, turbulent initial flow.

2. R Adkins, EM Shelton, MC Renoult, P Carles, C Rosenblatt Phys.
Rev. Fluids 2017
— non-miscible fluids, method of magnetic levitation, sinusoidal
initial interface deformation.
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@ - Motivation

Growth rate measurements at the lower
interface

» assuming exponential growth

» lower values than the ones
predicted by the inviscid Mikaelian
-
t=0.115 theory.

il h g Ay # yd Sources of discrepancy

t=0.154

wVVvew

1. Fluids viscosity
2. Sides effects

3. Interfaces coupling

1 “ i‘ )
\“/ !ll {@!4 — viscous theory and comparison to

experiments and numerical simulations.

Set of images versus time for one
experimental run from Adkins et al.



9 - Formulation

>

>
>
>

Assumptions:

Incompressible fluids.
Newtonian fluids.
Non miscible fluids.

Extreme layers of infinite
depth.

Isothermal conditions.

Condition for RTI occurrence:
p3 > p2 and/or ps > p.
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MC Renoult

Volume equations in each phase i € {1;2;3}:

V.-G =0 (mass balance)

pi <L7',-,t + (dj - ﬁ)ﬂ’,) = —Vpi + piAd; + pig (momentum balance)

Jump conditions at each interface iji +1
with i € {1;2}:

— — — — —

Ui - ni = Vjiy1 - Nj = Ujy1 - ﬁ, (mass balance)
(p,'+1 —pi + ’}/,','+1I<.J,','+1) n = (7_','+1 - ’7_',') e (momentum balance)
G X i = Gy X 7 (no slip)

H = T _ Ziit+1,x, Ziit1,y,
with 7 =(—Ziit1,x —Ziip1,y, 1) T, Rijpy = e Hlyy - and

(142207 (1422,,)%
F=w(Vi + (V)T
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9 - Basic state

Definition:
> Fluids at rest: & =0

» Interface 12 plane: z, =0

» Interface 23 plane: zJ; = h

Solution for the pressure:

pi(z) = —p1gz + pc
p5(2) = —p28z + pc
p3(z) = —p3gz + gh(pz — p2) + pc

with p. = p;(z = 0) a constant.
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9 - Perturbed state

Definition:
Ui(x,y,z,t) = uF + dl(x,y,z,t) = 0 with v} <1

pi(x,y,z,t) = p; (z) + pi(x,y, z, t) with p; < p}
Zip1 (X, y,t) = zi g + zi 4 (X y, t) with ;) <z

Volume equations in each phase i € {1;2;3}:
Mass balance: uj;; =0
Linearized momentum balance: pjuj . = —p;; + piAu; j € {x;y; z}

Linearized jump conditions at z = (i — 1)h, i € {1;2}:

Uiy = Zi,i+1,t = Ujt+1z

Uix = Uj4+1x

Up = Ujy1y

Piv1 — Pi = (pit1 — pi)8Zi1 = Viit1(Zip1 xx T Ziigryy) =
2(pit1Uiziz,z — Pilliz,z)

Wit1(Uis1z.x + Uitix,z) = pi(Uizx + Uix.z)

Pit1(Uiviz,y + Uiv1y,z) = pi(Uiz,y + Uiy 2)
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® - Dispersion relation

» Solutions searched under the form: elkxtiky+wt) \yith
k? = k2 + k2 the wavenumber of the perturbation and
w the time coefficient (complex number).

» Volume equations — u;,:

U, = (Clekz 4 Dleq1z)e(ikxx+ikyy+wt)
Up, = (Aze_kz + Bye~ %27 + Czekz + Dzeqzz)e(’kxx+'kyy+wt)
Uz, = (A3e—kz + B3e—CI3Z)e(lkxX+lkyy+Wt)

with Gy, Dy, A>, Bo, Gy, D>, A3 and B; 8 unknown coefficients
and gq; = \/k? + wp;/p; the modified wavenumber in phase /.

» 4 equations at each interface — 8 equations — closed problem

Dispersion relation: solution of /\/I~(C1, D1, Az, By, G5, D>, As, 83) T=0

where M is a 8 x 8 matrix dependant of 9 dimensionless numbers
(M theorem: 12 physical parameters - 3 fundamental units).
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Non-trivial solutions are solutions of

M| =0

There is one analytical solution, stable Vk:

B L | Reyt
= 2

Q = =
YT Vek VKB

And 3 or 4 other solutions, depending on k, determined numerically.

Limit case: disregarding the viscosity and the surface tension
— Mikaelian relation

a(At12, At23, H) Q4 + b(Al'lz, At23, H) Qz + C(Atlg, Atos, H) =0

with Ativ1 = (piv1 — pi)/(pis1 + pi) the Atwood numbers and H = kh
the dimensionless thickness — 4 analytical solutions Vk.
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® - Operating conditions

Let us consider the 2 cases studied in Adkins et al.
> (1) = Qil / (2) = Water / (3) = Ol
> (1) = Oil / (2) = Water / (3) = Air

Variable quantities: h and k — various H.
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9 - 2 limit cases for comparison

1. 2 separate 2-layer fluid systems (considering the fluid viscosities)

)
1) is gravitationally unstable.
2) is gravitationally stable.

2. 3-layer inviscid model of Mikaelian
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8 - Solutions for 2 separate 2-layer fluid systems

o o
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kc: cutoff wavenumber due to surface tension.

MRe(w) > 0 — unstable solution; Jm(w) # 0 — oscillations.
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® - All solutions on the same graph!

k < kc: 1 unstable + 2 stables

k > k.: 4 stables
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3 - Solutions for the 3-layer fluid system, h=1 mm

3 totally stable solutions: 1 analytically, 2 numerically determined
Other solutions: 2 stable for k > k., 1 unstable for k < k..
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3 - Effect of h on the unstable solution

w*: maximum growth rate for the viscous 2-layer fluid model

MC Renoult

= = +2layers case
h=1mm

h=2mm
h=3mm
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kike

Decreasing h (i.e. increasing interface coupling) decreases w.
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MC Renoult

“oil/water/oil

® - Comparison to experimental values

" case

1.2

oil/water/air" case

w*: maximum growth rate for the inviscid 3-layer fluid

Experimental data for h=5mm
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Viscid theory for h=5mm
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The viscous model improves the prediction as h is reduced.

model
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B - Conclusion & Ongoing work

Conclusion

» Development of a theory for 3-layer RTI that considers the viscosity
of the fluids and all the solutions of the dispersion relation.

» Improvement of the theoretical prediction.
Ongoing work

» Comparison of interface deformations with numerical simulations.

OPENFOAM simulations. (1) = Huile/(2) = Eau/(3) = Mercure.
Set of images versus time.

» Inclusion of the magnetic field for a viscous model for liquid metal
batteries (g-stable stratification).

Future work — New experiments at Case Western Reserve University?
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Thank you for your attention.

Any questions?
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