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combined integral equation and imperialist competitive algorithm method”
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Jean-Claude Krapez
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(*Electronic mail: jean-claude.krapez@onera.fr)

In a recent paper, Mandelis et al. [J. Appl. Phys. 133, 055102 (2023)] describe a photothermal methodology and a new

inversion technique which, when applied to a heterogeneous material, is claimed to allow a simultaneous reconstruc-

tion of the depth profiles of thermal conductivity and density (assuming that the specific heat is a known constant). In

this Comment we recall that, for the thermophysical configuration considered, the thermal conductivity and volumet-

ric heat capacity (VHC) profiles cannot be identified simultaneously because they are fully correlated. The exposed

problem exhibits unconditional non-identifiability leading to the non-uniqueness of the solution. The apparent success

of the inversion tests does not preclude the fact that, for any (apparently) optimal solution, an infinite multiplicity of

equally satisfactory pairs of conjugate profiles can be built. The simultaneous identification of the density and thermal

conductivity profiles is here an unsolvable inverse problem.

I. INTRODUCTION

In a recent paper,1 Mandelis and coworkers present an in-

version technique based on a new thermal-wave direct model

coupled with a method of global optimization. This method-

ology is intended for photothermal depth profiling of hetero-

geneous materials, which consists in applying a periodic heat

flux to the surface of a material and analyzing the temperature

response of this same surface (through amplitude and phase

frequency scans), in order to identify depth profiles of one

or more thermal properties (the analysis in Ref. 1 considers

one-dimensional heat transfer in a thermally thick material,

which allows to consider a semi-infinite model). The thermal

properties appearing as variable coefficients in the heat equa-

tion and the boundary condition are the thermal conductivity

k(x) (x is the depth coordinate) and the volumetric heat ca-

pacity (VHC) C(x) ≡ ρ(x)c(x) (where ρ is the density and

c the specific heat). From these profiles, those of diffusiv-

ity and effusivity are defined respectively as a(x)≡ k(x)/C(x)

and b(x) ≡
√

k(x)C(x). In fact, two of these four profiles al-

low us to deduce the other two. There is an abundant literature

on photothermal depth profiling, considering both modulated

and pulsed thermal stimuli. A consistent approach is to extract

from the temperature data one among the four profiles men-

tioned above, provided that another is known independently;

most often, VHC if assumed to be a known scalar. In Ref. 1,

it is claimed that with the thermophysical configuration de-

scribed above, it is possible, using the new inversion tool, to

simultaneously reconstruct k(x) and ρ(x) (which amounts to

say k(x) and C(x), since the specific heat was taken as con-

stant and known), without any a priori information. In this

Comment we show, based on work on modeling heat transfer

in graded heterogeneous media2,3, that the thermal conductiv-

ity and VHC profiles (in short k-C profiles) are fully correlated

when considering surface temperature. Attempting to identify

them simultaneously is therefore hopeless, since there are in-

finitely many combinations of k-C profiles leading to the same

surface-temperature dynamics. We will elaborate on the basic

reasons for this non-identifiability. We will also discuss a trap

known as inverse crime4 which is known to produce overly

optimistic inversion results.

II. THERMAL MODEL AND LIOUVILLE
TRANSFORMATION

In the Fourier space, the heat equation and the boundary

condition for the problem considered in Ref. 1, express as:

C(x)pT =
d

dx

(

k(x)
dT

dx

)

; 0 ≤ x <+∞, (1a)

P =−k(x)
dT

dx
; x = 0, (1b)

where p = iω is the Fourier variable, ω is the modulation

angular frequency, T and P are the temperature and the pre-

scribed flux, respectively. The expressions in Eqs. (1a) and

(1a) also represent the transient case, when considering T and

P as the Laplace transforms of the temperature and surface

flux, respectively, and p as the Laplace variable. Everything

that will be said subsequently concerns the periodic regime

and the transient regime indiscriminately.

The conductivity profile and the VHC profile appear in dif-

ferent terms in Eq. (1a). Could it be that their influences on

the temperature data are different enough to allow simultane-

ous identification? No sensitivity analysis has been presented

in Ref. 1 that would prove this.

Before looking at heterogeneous materials, let us recall that,

for homogeneous materials, the surface temperature takes the

simple expression: T = P/(b
√

p). Conductivity and VHC

have merged to show only the effusivity b, which is therefore

the only parameter accessible by inversion of the temperature

data. It is not possible to evaluate conductivity and VHC sep-

arately. Exposed to non-identifiability in the case of uniform



2

properties, we might fear that the same is true in the presence

of heterogeneous materials. This fear will be confirmed next

by delving into the Liouville space.

The Liouville transformation allows to change a Sturm-

Liouville differential equation into an equation in so-called

Liouville normal form5,6. For the purposes of this discussion

we will restrict ourselves to the first part of the transformation,

which consists in changing the independent variable x into ξ :

ξ (x)≡
∫ x

0

√

C(x′)/k(x′)dx′. (2)

ξ (x), whose unit is s−1/2, can be interpreted as the Square

Root of the Diffusion Time (SRDT) from the surface to depth

x, taking into account the diffusivity variations along this path.

ξ (x) is a monotonically increasing function, which implies a

one-to-one mapping between x and ξ . Going from x to ξ is

simply a matter of contracting or expanding the space depend-

ing on whether the diffusivity takes high or low values.

In the Liouville space, Eq. (1a) and Eq. (1b) become:

b(ξ )pT =
d

dξ

(

b(ξ )
dT

dξ

)

; 0 ≤ ξ <+∞, (3a)

−b(ξ )
dT

dξ
= P ; ξ = 0. (3b)

It is important to note that a unique variable coefficient is

now present in joint Eqs. (3a)-(3b), namely b(ξ ), the profile

of effusivity vs. SRDT (this would also occur with a bound-

ary condition of third kind). The obvious consequence is that

the temperature in Liouville space, T (p,ξ ), depends on p, ξ ,

and this unique profile: b(ξ ); then, the surface temperature

T (p,x = 0) depends only on p and b(ξ ) (for the present dis-

cussion, it will not be necessary to calculate the temperature

explicitly; it is sufficient to know this unique thermal depen-

dence). The imprint of all thermal parameter profiles on the

surface temperature is expressed through the profile b(ξ ); the

k-C depth-profiles in Eq. 1 have merged to reveal only this

one profile, b(ξ ). The merging of the corresponding scalars,

when the properties are constant, is then only a special case.

This has important consequences on the identifiability of the

variable thermal parameters.

III. IDENTIFIABILITY

Effusivity clearly plays a decisive role. Indeed, it is only

because of variations in effusivity with depth that the surface-

temperature response differs from that of a uniform material.

If there are alterations in the profiles of conductivity, VHC, or

diffusivity and if these alterations do not result in a change in

the effusivity profile b(ξ ), they will go unnoticed since there

will be no change in the surface temperature. b(ξ ) is the only

property profile to which an inversion of the temperature data

can give access (while applying appropriate regularization to

cope with the ill-posedness of the inversion problem, but that

is not the subject of this discussion). It is not possible to go

further without introducing an a priori information.

Such information is, for example, that the compound pa-

rameter kq(x)Cq−1(x), with q ∈ ℜ, is constant throughout the

material (the constant value is denoted A). With q = 0, 1/2,

or 1 we obtain respectively a constant VHC, a constant diffu-

sivity, or a constant conductivity. The ξ -profiles of conduc-

tivity, VHC, and diffusivity are then expressed as Ab2−2q(ξ ),
b2q(ξ )/A, and A2b2−4q(ξ ), respectively. All these ξ -profiles

can then be rescaled to get the corresponding depth pro-

files. The latter are actually defined transitively through x(ξ ),
which is obtained by inverting the Liouville variable-change

in Eq. 2 while taking advantage of the fact that kq(x)Cq−1(x)
is constant2,3,7,8:

x(ξ ) =
∫ ξ

0

√

k(ξ ′)/C(ξ ′)dξ ′ = A

∫ ξ

0
b1−2q(ξ ′)dξ ′. (4)

Since the surface temperature depends only on p and the

profile product k(ξ )C(ξ ), the obvious consequence is that the

profiles k(ξ ) and C(ξ ) cannot be evaluated separately with-

out additional information. Two pairs of k-C depth-profiles

leading to the same ξ -profile b(ξ ) give rise to the same tem-

perature in Fourier-Liouville space, i.e. the same T (p,ξ ) (the

two corresponding distributions T (p,x) are two replicas of the

same temperature distribution differently stretched along the

x direction). In particular, they give rise to the same surface

temperature T (p,x = 0). As a consequence, they are indistin-

guishable in the present thermophysical configuration. This

definitely undermines the identifiability of the two-profiles in-

version problem treated in Ref. 1.

To show how to construct a multiplicity of k-C depth-

profiles leading to exactly the same surface-temperature evo-

lution, we considered the profiles in Figs. 6(a)-6(b) in Ref. 1.

They each belong to E2
x , En

x being the space generated by

the summation of n exponential functions of x and a constant

(bulk) value (Eqs. (33)-(34) in Ref. 1). The corresponding

SRDT was obtained by applying the Liouville transformation

in Eq. (2), which yielded the effusivity profile b(ξ ) (Fig. 1).

Then, an arbitrary profile was chosen for k(ξ ) or C(ξ ) (i.e.

the seed profile), the other being obtained from the fact that

the square root of their product must be equal to the former

profile b(ξ ) (the only constraint is that they should be strictly

positive and bounded). To start, seed profiles C(ξ ) were se-

lected in E2
ξ . To translate the resulting ξ -profiles into depth

profiles, we then computed x(ξ ) from the left integral in Eq.

4, which yielded the conjugate k-C depth-profiles shown in

Fig. 2. The freedom of choice for the seed profile makes that

the minimum of the profiles can be set to a completely differ-

ent depth than in Figs. 6(a)-6(b) in Ref. 1; the minimum can

even be changed to a maximum, see the Supplementary Mate-

rial. Recall that all these conjugate k-C depth-profiles lead to

the same surface temperature as the profiles in Figs. 6(a)-6(b)

in Ref. 1. This is a vivid illustration of the consequence of

the non-identifiability of the inverse problem of simultaneous

VHC and conductivity reconstruction. The conjugate profiles

in Fig. 2 were built on purpose to have the same surface and

bulk values as the original pair in Figs. 6(a)-6(b) in Ref. 1,

thus highlighting the fact that even imposing surface and bulk

values is far insufficient to make the identification unique.
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FIG. 1. Effusivity profile vs. the Square Root of Diffusion Time

(SRDT) ξ inferred from the depth profiles of conductivity and VHC

reported in Figs. 6(a)-6(b) in Ref. 1.
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FIG. 2. Series of conjugate depth profiles of (a) conductivity and (b)

VHC leading to the same effusivity profile b(ξ ) shown in Fig. 1, and

therefore all giving rise to the same surface temperature. Conduc-

tivity and VHC profiles that are conjugate have been drawn with the

same color. Those from Figs. 6(a)-6(b) in Ref. 1 are in black.

IV. INVERSE CRIME

In Ref. 1, the inverse method was tested with k-C profiles

belonging to E2
x . It may seem surprising that despite the non-

identifiability nature of the inverse problem, the tests lead to

profiles that are close to the profiles used to generate the syn-

thetic temperature data. One possible explanation is that the

model for k(x), i.e. E2
x , was the same for generating the syn-

thetic data and for the inversion process. Using an identical

model or submodel for both the simulation of the measure-

ment data and the solution of the inverse problem is known to

provide overly optimistic test results; this is known as inverse

crime4. But, in fact, the reason for this unexpected success

does not matter. Indeed, regardless of the inversion method

used, for any (seemingly) optimal pair of k-C profiles obtained

by minimizing the cost function, one can find, as described

above, an infinite multiplicity of other k-C profiles giving ex-

actly the same theoretical temperature data, hence the same

score for the cost function. Because these alternative solu-

tions are not likely to belong to the (too narrow) search space

(in particular k(x) /∈E2
x ), the method used in Ref. 1 missed this

huge population, and blindly converged to a solution close to

the assumed pair of profiles. Among these alternative solu-

tions, many are perfectly acceptable from the physical point

of view. Finally, the non-uniqueness of the inverse problem

leads to a dead end.

V. SUMMARY

The inverse problem presented in Ref. 1 allows to recon-

struct the effusivity profile as a function of SRDT. Without

independent information on the thermal properties, it is not

possible to go further; thus, it is not possible to reconstruct

simultaneously the conductivity and VHC depth-profiles (or

the density profile if c(x) is a known constant). The Liouville

transformation adds significant insights into the influence of

k-C profiles on the temperature response, in particular it high-

lights the unique role of their product (or equivalently of the

effusivity), and thus reveals the full correlation of conductiv-

ity and VHC profiles. Hidden correlations must be sought,

either by analytical inspection or by a sensitivity analysis, and

so-called inverse crime should be avoided in order not to be

misled by optimistically biased inversion tests.

VI. SUPPLEMENTARY MATERIAL

See supplementary material for additional figures illustrat-

ing the non-uniqueness of the considered inverse problem.
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I. PRESENTATION

For the sake of completeness, additional figures are pro-
vided to give some more examples regarding the non-
uniqueness of thermal conductivity and volumetric heat ca-
pacity (VHC) profiles, and the respective profile shapes when
attempting to invert the temperature data measured on the sur-
face of an heterogeneous material with prescribed heat flux on
the same surface.

II. FIGURES

In addition to Fig. 2 in the main text where the seed pro-
files C(ξ ) were selected from E2

ξ
so as to have a single min-

imum, we also constructed a series of conjugated k-C depth-
profiles by selecting C(ξ ) from E2

ξ
so as to have a single max-

imum. The profile parameters were tuned so that the maxi-
mum was set at different values of the SRDT. The bulk value
for VHC was kept unchanged. A new set of conjugate k-C
depth-profiles is reported in colors in Figs. S1(a)-S1(b). Re-
call that the reference k-C profiles in Figs. 6(a)-6(b) in Ref. 1
both exhibit a minimum (they have been reproduced in black
in Figs. S1(a)-S1(b)). The new depth profiles of conductivity
k(x) in Fig. S1(a) feature a local minimum as well, however,
to compensate for the concavity of the VHC profiles C(x) in
Fig. S1(b), while keeping the same effusivity profile in Liou-
ville space, b(ξ ), in Fig. 1 (main text), the conductivity pro-
files k(x) in Fig. S1(a) have to exhibit a deeper depression as
compared to the reference conductivity profile (black curve in
Fig. S1(a)).

In Figs. S2 and S3, the roles of conductivity and VHC were
changed as compared to Fig. 2 (main text) and Fig. S1, re-
spectively: in Figs. S2 and S3, the conductivity was taken to
provide the seed profile. In Fig. S2, the profiles k(ξ ) were

selected in E2
ξ

while featuring a minimum at various values of
the SRDT. To compensate for the alteration in the conductiv-
ity profile, while keeping the same effusivity profile in Liou-
ville space, b(ξ ), the depth-profiles of VHC, C(x), get more
complex shapes as compared to the reference VHC profile re-
ported in black, see Fig. S2(b): the new VHC profiles feature
up to three local extrema, as was observed symmetrically for
the conductivity depth-profiles k(x) in Fig. 2(a).

The exercise continued in Fig. S3 where, instead of fea-
turing a single minimum, the seed profiles k(ξ ) were chosen
to feature a single maximum. Symmetrically to Fig. S1, the
VHC depth-profiles C(x) feature a single minimum like the
reference VHC profile in Fig. 6(b) in Ref. 1 and reported in
Fig. S3(b) in black. However, to compensate for the concavity
of the conductivity profiles k(x) in Fig. S3(a), while keeping
the same effusivity profile in Liouville space, b(ξ ), in Fig. 1
(main text), the VHC profiles C(x) in Fig. S3(b) have to ex-
hibit a deeper depression as compared to the reference VHC
profile (black curve in Fig. S3(b)).

If it were still necessary to demonstrate the high diversity of
the k-C profiles giving rise to the same temporal evolution of
the surface temperature, we provide a final example in Fig. S4
with conjugate profiles showing a wavy shape. They were
constructed by choosing sinusoidal functions of ξ for the seed
profile k(ξ ).

One should realize that despite large differences in shape,
all of the conjugate k-C depth-profiles shown in Figs. 2 (main
text), S1, S2, S3 and S4, share the same effusivity profile in
Liouville space (Fig. 1 - main text) and are therefore sub-
ject to the same temporal evolution of the surface temperature
(whether in modulated or transient regime).
1A. Mandelis, S. Kooshki, and A. Melnikov, “Simultaneous density and ther-
mal conductivity depth profile reconstructions from noised thermal-wave
amplitude and phase data using a combined integral-equation and imperial-
ist competitive algorithm method,” Journal of Applied Physics 133, 055102
(2023).
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FIG. S1. Same as Fig. 2 in the main text except that here the seed
profiles C(ξ ) exhibit a maximum. They were taken in E2

ξ
while keep-

ing the same bulk value as the original VHC profile in Fig. 6(b) in
Ref. 1. Conjugate k-C profiles have been drawn with the same color.
The original k-C profiles from Fig. 6(a)-6(b) are in black.
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FIG. S2. Same as Fig. 2 in the main text except that here the profile
to be chosen as the seed profile, is the conductivity profile. A series
of k(ξ ) profiles were selected from E2

ξ
to exhibit a minimum while

keeping the same surface and bulk values as the original conductivity
profile in Fig. 6(a) in Ref. 1.



3

10
-5

10
-4

10
-3

10
-2

Depth x (m)

40

45

50
C

o
n

d
u

ct
iv

it
y

(W
m

-1
K

-1
)

10
-5

10
-4

10
-3

10
-2

Depth x (m)

2.5

3

3.5

4

V
H

C
 

(J
m

-3
K

-1
)

10
6

(a)

(b)

FIG. S3. Same as Fig. S2 except that here the seed profiles k(ξ )
exhibit a maximum. They were taken in E2

ξ
while keeping the same

bulk value as the original VHC profile in Fig. 6(a) in Ref. 1.
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FIG. S4. Same as Fig. S2 except that here the seed profiles k(ξ ) are
sinusoidal functions of the SRDT with different frequency values.


