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PALEONTOLOGY

Why the Early Paleozoic was intrinsically prone to
marine extinction
Alexandre Pohl1*, Richard G. Stockey2, Xu Dai1, Ryan Yohler3, Guillaume Le Hir4, Dominik Hülse5,6,
Arnaud Brayard1, Seth Finnegan3, Andy Ridgwell6

The geological record of marine animal biodiversity reflects the interplay between changing rates of speciation
versus extinction. Compared to mass extinctions, background extinctions have received little attention. To dis-
entangle the different contributions of global climate state, continental configuration, and atmospheric oxygen
concentration (pO2) to variations in background extinction rates, we drive an animal physiological model with
the environmental outputs from an Earth systemmodel across intervals spanning the past 541 million years. We
find that climate and continental configuration combined to make extinction susceptibility an order of magni-
tude higher during the Early Paleozoic than during the rest of the Phanerozoic, consistent with extinction rates
derived from paleontological databases. The high extinction susceptibility arises in the model from the limited
geographical range of marine organisms. It stands even when assuming present-day pO2, suggesting that in-
creasing oxygenation through the Paleozoic is not necessary to explainwhyextinction rates apparently declined
with time.
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INTRODUCTION
The seminal work of Sepkoski et al. (1, 2) constituted a milestone in
the quantitative reconstruction of marine (invertebrate) biodiver-
sity over the Phanerozoic (past 541 Ma). Subsequently, the develop-
ment of community paleobiological databases (3, 4), combined with
more robust statistical methods to reduce the impact of sampling
and preservation biases (3, 5), has led to further refinements in
the Phanerozoic biodiversity curve. However, key features of the
long-term global biodiversity patterns are robust, particularly the
Early Paleozoic (Cambrian and Ordovician) increase in standing bi-
odiversity, the Permian-Triassic drop and Early Mesozoic recovery,
with a rise to peak Phanerozoic biodiversity during the Late Meso-
zoic through Cenozoic (5). Many studies have investigated the
drivers of these temporal trends but have done so mainly in isola-
tion and focusing on short intervals of time spanning mass extinc-
tions or intense radiation (6–8). Therefore, attempts to unravel the
long-term drivers of biodiversity change throughout the Phanero-
zoic have been scarce (5, 9–11). Those that have done so, such as in a
recent numerical biodiversification model study (11), have often
focused on the net diversification rate. In contrast, the distinct con-
tributions of diversification versus extinction have remained
underexplored.

Analyses of the Paleobiology Database (PBDB) reveal that major
variations in apparent marine extinction rates have occurred
outside of mass extinctions during the Phanerozoic (2, 12, 13).
“Background” extinction rates are particularly elevated during the
Early Paleozoic (Cambrian and Ordovician) (12, 13). For this
reason, these periods are sometimes considered separately in

paleontological analyses (12, 14). For example, it has been proposed
that the high Early Paleozoic extinction rates reflected an interval of
lower-than-modern atmospheric oxygen concentrations (pO2)
throughout the Cambrian and Ordovician (ca. 0.4 times modern)
(15), the latter pO2 estimates aligning with the results of long-
term carbon cycle (box) models (16–18). However, some geochem-
ical proxies suggest that the Early Paleozoic pO2 may have been
closer to modern (19). Moreover, Earth system model simulations
resolving ocean circulation show that Cambrian and Ordovician
continental configurations lead to a poorly ventilated and largely
anoxic seafloor—potentially reconciling Early Paleozoic redox
proxies for deep-sea anoxia (16) with a pO2 possibly as high as
modern. These elements highlight that Early Paleozoic pO2
remains poorly constrained and might have been closer to
modern, inviting us to revisit the cause of elevated Early Paleozoic
extinction rates (15).

Here, we investigate the evolution of the susceptibility of marine
animal background extinction during the Phanerozoic, assuming
that ocean temperature and dissolved oxygen concentrations to-
gether exert a first-order control on marine habitability (15, 20)
and that global environmental perturbation (represented here
using global warming) constitutes an essential driver of extinction.
We use an ecophysiological model forced by environmental condi-
tions of ocean temperature and ocean oxygenation simulated with
an Earth system model. On the basis of previous works, three main
factors were identified as exerting a first-order control on oceanic
oxygen concentrations, thus potentially on marine biodiversity
and extinctions, during the Phanerozoic: the atmospheric oxygen
concentration (pO2) (15, 21), continental configuration (22, 23),
and global climatic state (6, 23) (the latter two further affecting
ocean temperatures). Successive series of simulations allow us to
quantify the contributions of these three factors to changes in back-
ground extinction rates during the Phanerozoic.

We start by simulating the potential evolution of global climate
and ocean biogeochemistry during the Phanerozoic using the
carbon-centric Grid Enabled Integrated Earth system model
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(cGENIE) (24) (Materials and Methods). We conduct simulations
at regular time intervals (every 20 million years) during the Phan-
erozoic and, for each time slice, generate a “cold” and a “warm” cli-
matic state. The warmer state assumes a quadrupling of pCO2
compared to the cold state (Fig. 1A), leading to a +5°C increase
in equatorial sea surface temperature (SST). This amplitude of
global warming was chosen to represent the upper limit of rapid cli-
matic changes known from the geological record, known as ‘hyper-
thermals” (25).

Simulated marine environmental conditions are used as input to
an ecophysiological model accounting for the combined impacts of
temperature and ocean dissolved oxygen ([O2]) on ectotherm
habitat viability. The model is based on the metabolic index (20).
A marine region is defined as viable for a population under a
given climate as long as dissolved oxygen supplied by the physical
environment exceeds the organism’s oxygen demand (Materials
and Methods). This model has been developed and validated for
the modern ocean (20, 26). It assumes an infinite dispersal capacity
of marine organisms (15, 20).

For each of our 28 Phanerozoic time slices, we evaluate the
degree of marine extinction occurring in the model in response to
a hyperthermal event. To that end, we simulate standing ecophysio-
type biodiversity in the cold and warm climatic states simulated in
cGENIE and calculate the magnitude of extinction resulting from
warming—referred to hereafter as the simulated “susceptibility of
extinction.” This quantity, calculated on a single model time slice,
is intrinsically very different from an “extinction rate” derived from
paleontological data, which is calculated between two subsequent
time slices. Therefore, our simulated trends in susceptibility of ex-
tinction cannot be compared with data-derived extinction rates at
face value but will permit quantifying the contributions of various
environmental factors to changes in extinction risk during the
Phanerozoic.

To simulate standing ecophysiotype biodiversity (under the cold
and warm climatic states, for each time slice), and in the absence of
quantitative constraints on the ecophysiological affinities of ancient
marine animals, 1000 physiological ecotypes (herein, ecophysio-
types) are generated, whose physiological characteristics are

randomly sampled from probability density functions established
on available experimental respirometry data (15, 20). These physi-
ological characteristics consist of three parameters. Each ecophysio-
type is first defined by an oxygen demand under resting metabolism
conditions (parameter no. 1) and a dependence of this oxygen
demand on changes in seawater temperature (parameter no. 2).
To constitute viable populations, organisms have to accomplish ad-
ditional tasks such as reproduction and locomotion, which increas-
es their oxygen demand above resting value. Therefore, each
ecophysiotype is also characterized by an increase in oxygen
demand necessary for viable populations (parameter no. 3). Extir-
pation rate is calculated for each model grid point as the percentage
of ecophysiotypes that are present in the cold state but that are not
present in thewarm state (see Fig. 2). In linewith previous work (15,
27), we only consider nonpolar shelf environments in our simula-
tions (defined as all nonpolar, upper-ocean model grid cells adja-
cent to landmasses), because they represent the main part of the
Phanerozoic paleontological databases. The same pool of 1000 eco-
physiotypes is used for every time slice.

Then, we need to derive a global susceptibility of extinction
based on these spatial data. To permit a more robust comparison
of our numerical results with temporal trends in marine extinction
derived from paleontological data, we explore the impact of incom-
plete geological sampling in our model using a subsampling ap-
proach. Instead of reading model results at face value, we consider
that the information in the paleontological databases is incomplete.
Hence, we only record a fraction of all model shelf grid points. In
other words, for each time slice, we subsample a fraction of all shelf
grid points to determine the ecophysiotypes present in the cool and
warm states and calculate a global susceptibility of extinction occur-
ring in response to global warming (defined as the percentage of
ecophysiotypes that are present in the cold state, which are not
present in the warm state). We repeat this procedure 1000 times
to calculate uncertainty estimates. Because the fraction of shelf en-
vironments documented through geological time is poorly con-
strained, we arbitrarily set the subsampling rate to 33% in our
main simulations. We test alternative subsampling rates (and
numbers of repetitions) in our sensitivity analyses and show that
varying these parameters does not affect our conclusions. Then,
we estimate the resulting probability density function of simulated
susceptibility of extinction using a kernel density estimator to quan-
tify uncertainty in our simulations (shading in Fig. 3, A to C). Last,
our central estimate for the temporal trend in simulated Phanero-
zoic extinction susceptibility is obtained by connecting the median
values for all time slices (thick lines in Fig. 3, A to C). This subsam-
pling approach avoids giving too much weight to species found in
only a fewmodel grid points, which would probably not be sampled
and thus not be documented in paleontological databases. Our
simple experimental setup featuring a uniform magnitude of
global warming through time was not designed to investigate the
magnitude of specific ancient extinction events but only the
general temporal trends in susceptibility to an idealized warming-
driven extinction. This approach is designed to provide a directional
comparison in extinction susceptibility, and absolute numbers
should not be compared with paleontological databases at
face value.

Fig. 1. SSTs and atmospheric pO2 forcing. (A) Equatorial (10°S to 10°N) SSTs in
the pre- and postwarming states (lower and upper curves, respectively) of the
baseline and pO2 (identical, black lines) and constant SST (blue lines) series of sim-
ulations. (B) Atmospheric pO2 in baseline and constant SST (identical, black line)
and pO2 (red line) series of simulations. Ꞓ, Cambrian; O, Ordovician; S, Silurian; D,
Devonian; C, Carboniferous; P, Permian; T, Triassic; J, Jurassic; K, Cretaceous; P, Pa-
leogene; N, Neogene.
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RESULTS
Simulated extinction susceptibility
In our first series of "baseline" (best-guess) simulations, in addition
to varying the continental configuration, we also vary the atmo-
spheric CO2 concentration during the Phanerozoic based on a com-
bination of carbon cycle models and proxy data compilations (25,
28). The resulting global temperature curve simulated in cGENIE
(black lines in Fig. 1A) exhibits temporal trends that align well
with other climate models (29) and temperature proxy data (30,
31), including a warm Early Paleozoic (Cambrian-Devonian), a
cooler Late Paleozoic (Carboniferous-Permian) coincident with
the Late Paleozoic Ice Age (32), a warm (but cooler than the Early
Paleozoic) Mesozoic (Triassic-Cretaceous), and a long-term Ceno-
zoic cooling. In these simulations (Fig. 3A), we account for com-
bined changes in continental configuration and global climate but
consider a modern atmospheric pO2 (black line in Fig. 1B). Simu-
lated extinction susceptibility exhibits a sudden drop from an Early
Paleozoic mean of 6.2% (SD, 1.2%) from the Cambrian to Ordovi-
cian (540 to 440 Ma)—meaning that ~6 of 100 model species are
driven extinct following global climate warming—to much lower
values during the rest of the Phanerozoic, with a mean of 0.8%
(SD, 0.5%). These changes represent an eightfold decrease in
mean extinction susceptibility following the Ordovician. Sensitivity
analyses reveal that simulated temporal trends are robust when
model parameters are varied. That includes varying the initial
random sampling of the physiological characteristics of the model

ecophysiotypes (fig. S1), the model ecophysiotype pool size
(between 100 and 10,000 ecophysiotypes, compared to 1000 in
our standard simulations; fig. S2), the random sampling protocol
(fig. S3), and random sampling rate used to represent incomplete
geological sampling (between 0.1 and 0.75, compared to 0.33 in
our standard simulations; fig. S4; or increasing through time,
Fig. 3A), the model spatial domain (figs. S5 and S6), and assump-
tions regarding ocean phosphate inventories (fig. S7). Sensitivity
tests for the spatial domain, in particular, demonstrate that our
results are not overly dependent on the (simplified) representation
of shelf environments (defined in our model as all cells adjacent to
landmasses) (figs. S5 and S6).

To disentangle the contributions of changes in the global climate
state and continental configuration to the simulated extinction
trend through the Phanerozoic, we conduct an additional series
of simulations under a constant global climatic state (blue curves
in Fig. 1A). Similar to (22), climatic detrending is achieved by
varying pCO2 in the model so that the equatorial SST of every
time slice approximates the median equatorial SST in the baseline
simulations (ca. 24.5°C before warming). This second series of sim-
ulations is referred to as “constant SST” hereafter. Similar to the
baseline simulations, atmospheric pO2 is set to modern. In these
constant SST simulations, only the continental configuration is
thus varied through time. The consequence of a constant-
through-time climate state is that particularly high extinction sus-
ceptibility now occurs in the Early Paleozoic (Late Cambrian and

Fig. 2. Maps of surface-ocean extirpation rate simulated in response to global warming in the baseline simulations. Extirpation rate is calculated for each grid
point as the percentage of ecophysiotypes that are present before global climate warming (i.e., in the cold state) but that are not present in the warm state. Emerged
continental masses are shaded gray. Eckert IV projections.
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Ordovician) and during the Permian-Triassic transition (Fig. 3B).
Comparing the baseline and constant SST (Fig. 3, A and B) series
of experiments reveals the role of continental configuration versus
climate in driving trends in extinction susceptibility in our model.
From this, we deduce that the continental configuration of the
Permian-Triassic transition favors high extinction susceptibilities
but also that the cooler climatic conditions act to reduce extinction
susceptibility in our baseline simulations (Fig. 1A). Note that the
short-term global warming at the Permian-Triassic boundary is
not resolved at the prescribed 20–million year temporal model res-
olution (33). The opposite is observed for the Early Cambrian, when
the continental configuration is not particularly favorable to extinc-
tion, but the warm climate elevates extinction risk. Sensitivity tests
show that these temporal trends in extinction susceptibility are
largely independent of the magnitude of warming perturbation
assumed (~2.5°C versus ~5°C) (Fig. 4). However, three time
periods do stand out as being particularly sensitive to themagnitude
of the environmental perturbation: the Early Cambrian, the Ordo-
vician-Silurian transition, and the Permian-Triassic transition. Un-
fortunately, the current formulation of the metabolic index cannot
be used to specifically evaluate the contribution of global climate

change to the Late Ordovician Mass Extinction, which happened
in response to global cooling rather than warming (6, 34).

In a third and final series of experiments (named “pO2”), we
quantify the combined impacts of changes in the continental con-
figuration and global climate (as per baseline) with the additional
assumption of changing atmospheric pO2 through time. For this,
pO2 estimates are taken from the recent update of the GEOCARB-
SULFmodel of (28) (red line in Fig. 1B). The result of this analysis is
consistent with the findings of (15). Low Early Paleozoic pO2, by
reducing the thermal safety margins of marine ectotherms facing
global climate warming, increases extinction risk by an order of
magnitude during the Cambrian and Ordovician (compare Fig. 3,
A and C; note the different y axes).

Drivers of Phanerozoic extinction rates
The unexpected result from our coupled global marine environ-
mental and ecophysiological modelling is that the extinction sus-
ceptibility simulated in response to global warming is
substantially higher in the Cambrian and Ordovician than in
more recent time slices, even if we assume that atmospheric pO2
throughout the Phanerozoic was the same as modern (Fig. 3A).
In addition, the high Early Paleozoic global extinction susceptibil-
ities are not associated with high local extirpation rates (Fig. 2). Ex-
tirpation rates for more recent periods (e.g., 0 Ma or 300 to 340 Ma)
are higher than those for 460 to 540 Ma, suggesting that more
complex mechanisms modulate extinction susceptibility in the
model, which we explore below.

Under certain conditions, ecophysiotypes whose ecophysiologi-
cal requirements are not fulfilled in the low latitudes after global
warming can migrate poleward and occupy habitats at higher lati-
tudes (and thus do not become extinct). These high-latitude habi-
tats constitute refugia for organisms facing global environmental
disturbances (35). Figure 5 shows that high low-latitude extirpation
rates at 0 Ma or 300 to 340 Ma in the baseline simulations are (at
least in part) counterbalanced by the development of refugia at
higher latitudes. The development of these high-latitude refugia is
associated with local increases in the capacity of the environment to
sustain a high metabolism (i.e., metabolic index, fig. S8), resulting
from the combination of a substantial increase in ocean [O2] (fig.
S9) and muted SST rise (fig. S10). These unexpected local climatic
signals arising in response to global warming are due to the partial
melt (and persistence of a fraction) of the local sea-ice cover (figs.
S11 to S13), which favors ocean-atmosphere O2 transfers (due to
sea-ice partial melt) while reducing SST rise (due to sea-ice persis-
tence). This muted SST change is important in both maintaining
metabolic oxygen demand at the same level and preventing any
warming-induced limitation of O2 dissolution in seawater (36).
The refugia developing in more recent periods (e.g., 0 or 300 to
340 Ma) lower the susceptibility of extinction for these time
slices. In contrast, the Early Paleozoic is comparatively more
prone to extinction in our model.

The differential refugia capacity, however, does not explain the
order-of-magnitude difference in extinction susceptibility during
the Early Paleozoic versus that of some more recent periods (e.g.,
140 to 180 Ma). Nor does it explain the step change in extinction
risk simulated between 440 and 420 Ma in the baseline simulations
(or between 460 and 440Ma in the constant SST experiments) (Figs.
3 and 5). At the Phanerozoic timescale, extinction susceptibility
positively correlates in the model with the number of

Fig. 3. Simulated extinction susceptibility. (A) Extinction susceptibility in our
baseline simulations with sampling rate fixed at 0.33 (density distribution and
thick solid line) and with sampling rate linearly increasing from 0.2 at 540 Ma to
0.8 at 0 Ma (thin dashed line, representing a possibly more complete paleontolog-
ical sampling toward present day), using 1000 sampling repetitions and sampling
prewarming and postwarming states at same shelf grid points. (B) Extinction sus-
ceptibility in our constant SST simulations with sampling rate fixed at 0.33 (density
distribution and solid line, 1000 repetitions using same sampling points). Results of
the baseline simulations with sampling rate fixed at 0.33 [1000 repetitions using
same sampling points, see (A)] overlaid for comparison (dashed line). (C) Same as
(B) for pO2 simulations. (D) Same as (A) but using PBDB-derived, collection-based
sampling rates. Results of the baseline simulations with sampling rate fixed at 0.33
[1000 repetitions using same sampling points, see (A)] overlaid for comparison
(dashed line). Y scale differs in the different panels.
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ecophysiotypes having a limited geographical spatial range
(Fig. 6A), the latter ecophysiotypes effectively displaying an extinc-
tion susceptibility substantially higher than ecophysiotypes occupy-
ing a large geographical space (Fig. 6B) (see also figs. S14 to S16).
Therefore, the simulated high Early Paleozoic extinction suscepti-
bility results from the existence of many ecophysiotypes with a
limited geographical range in the prewarming state, which are pref-
erentially driven extinct in response to global warming.

Why, then, are there so many ecophysiotypes with limited extent
in these oldest model time slices? One possibility is that the Early
Paleozoic permits stabilizing model ecophysiotypes with unusual
ecophysiological characteristics, whose requirements are fulfilled
in a small ocean region only, and that these ecophysiotypes are
not found in other time slices. However, ecophysiotypes with a
limited extent in the Early Paleozoic are equally present in other
time slices, only showing a larger (and monotonically increasing)
spatial cover toward the modern (fig. S17). An alternative hypoth-
esis, and the one we prefer, is that the Early Paleozoic high-latitude
marine environment is spatially highly heterogeneous, leading to
environmental fragmentation. Spatial variations in physical ocean
parameters ([O2] and temperature) create a very variable ecophys-
iological landscape in the southern high latitudes (fig. S18). As a
consequence of this and the lack of northern high-latitude conti-
nental shelves in the Early Paleozoic, many ecophysiotypes are
present in just a few model grid points in the prewarming state
(fig. S19); their ecological niche disappears in response to global
warming, and they are consequently driven extinct (Fig. 6).

Sampling structure and biases in the PBDB
To quantify the likely impact of heterogeneous preservation and
sampling of the fossil record [e.g., (37)] on our simulated extinction
trend, we calculated new extinction susceptibilities by sampling the
maps of simulated ecophysiotypes based on the number of PBDB
collections documented for each cGENIE grid point (Materials
and Methods). While the subsampling approach previously used
in the standard model assumes an incomplete but spatially
uniform (random) sampling bias, this alternative approach ac-
counts for the spatially heterogeneous nature of the paleontological
sampling biases, with most data coming from North America and
Europe (37) (fig. S20). Figure 3D shows that PBDB-derived, collec-
tion-based subsampling leads to higher extinction susceptibility
during virtually the whole Phanerozoic—an expected result from
the relative undersampling of the high paleolatitudes in the PBDB
(fig. S20), which are refugia for ecophysiotypes facing global
warming in our simulations. While main temporal trends still
stand, extinction susceptibility displays drastic increases during
the earliest Cambrian and the Devonian-Carboniferous transition
suggesting a potential sampling factor in the high reconstructed ex-
tinction rates during these time intervals. An alternative subsam-
pling method based on the number of PBDB entries (instead of
collections) per cGENIE grid point gives similar results (fig. S21).

DISCUSSION
Simplifications in our numerical modeling (which represents a sus-
ceptibility of extinction in response to climatic perturbations) and
biases of the PBDB (12) prohibit direct numerical comparison of
our models and data. However, qualitative comparison of the tem-
poral trends is instructive and reveals that it is not necessary to
assume that atmospheric pO2 was low during the Early Paleozoic
to obtain a simulated extinction susceptibility that is substantially
higher during the Cambrian and Ordovician than during the rest
of the Phanerozoic (Fig. 3). This does not necessarily imply that
Early Paleozoic atmospheric pO2 was as high as modern but does
indicate that oxygen was not the only important factor. While
pO2 has a first-order impact on simulated extinction susceptibility
(Fig. 3C) in line with previous studies (15), we find that climate and
continental configuration acted synergistically to make Early Paleo-
zoic marine ecosystems particularly susceptible to elevated extinc-
tion and lower atmospheric oxygen need not be invoked.

In our model, ecophysiotypes with a small geographical range
size display a higher extinction risk in response to global warming
(Fig. 6), in line with previous analyses of the predictors of extinction
risk based on the PBDB (14, 38). This mechanism, combined with
the highly heterogeneous ecophysiological landscape resulting from
the Early Paleozoic continental configuration (and climate) (fig.
S18), explains the high extinction susceptibility reconstructed for
the Cambrian and Ordovician. Our coupled climate-ecophysiology
model also suggests that global climate state and continental config-
uration exert control on marine extinction susceptibility at the
Phanerozoic timescale. As illustrated in our baseline simulations,
extinction proceeds differently in greenhouse and icehouse cli-
mates. In our coldest time slices (0 to 20 Ma and 260 to 360 Ma;
to a lesser extent in the 60-Ma time slice; see Fig. 1A), high low-lat-
itude extirpation is, in part, counterbalanced by the development of
refugia at higher latitudes, where species migrating poleward can
survive following global warming (Figs. 2 and 5). The development

Fig. 4. Sensitivity of simulated extinction risk to the magnitude of global
warming. (A) Sea surface temperature in the prewarming state of the constant
SST series of simulations (black line), for a pCO2 doubling (blue line) relative to
the prewarming state and for a quadrupling (red line). Black and red curves iden-
tical to Fig. 1A (blue curves). (B) Extinction susceptibility in the constant SST sim-
ulations with sampling rate fixed at 0.33 (1000 repetitions using same sampling
points), when considering a doubling (blue line) or quadrupling (red line) of
pCO2 [i.e., shifting from respectively black to blue or black to red in (A)]. Red line
similar to Fig. 3B. (C) Sensitivity of simulated extinction susceptibility to the mag-
nitude of global warming, i.e., increase in extinction susceptibility simulated when
increasing the magnitude of global warming from a doubling to a quadrupling of
pCO2 (i.e., when increasing equatorial SST rise from ~2.5° to ~5°C).
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of high-latitude refugia requires the (only) partial melt of sea ice. In
our simulations, this mechanism occurs in the modern glacial state
and during the Permian-Carboniferous glaciation. It does not occur
in warmer climates. We note, however, that the relative resilience to
warming-induced extinctions in (modern-like) cool environments
may partly arise from the fact that modern organisms that are used
as the basis for the ecophysiotypes have adapted to these conditions.
This possible contribution cannot be discarded, and it will be im-
portant to quantify it in future work.

The second period identified as the most prone to leading to ex-
tinction in our series of constant SST simulations (featuring a
roughly constant global climatic state) is the Permian-Triassic tran-
sition, considered as the largest mass extinction over Earth’s history
(1, 39) (Fig. 3B). Simulations accounting for PBDB-derived sam-
pling biases (Fig. 3D) demonstrate that incomplete geological sam-
pling leads to an overestimation of the simulated susceptibility of
extinction. Extinction rates documented during the earliest Cam-
brian and latest Devonian may thus be substantially overestimated
in the PBDB, with implications for the role sampling may play in
our reconstruction of major extinction intervals through time (40).

Numerical approaches such as those presented here provide an
important tool for exploring the coevolution of global climate and
the marine biosphere at the Phanerozoic timescale and additionally
provide a promising approach to bridging the gap between model
outputs and the geological record (here, the PBDB). Nevertheless,
further refinements are needed. A first limitation is that global
warming was used in our model to destabilize ecological niches

and derive a susceptibility of extinction through time, while back-
ground extinctions are not necessarily driven by global warming
during the Phanerozoic. Another limitation is that our model im-
plicitly considers that the dispersal capacity of the model ecophysio-
types is infinite, as is the carrying capacity of marine habitats (11).
No factor other than temperature and dissolved oxygen concentra-
tions limits the extent of model ecophysiotypes, which systemati-
cally occupy their whole ecological niches. Implementing
migration in our model would permit investigating the impact of
physical barriers and the kinetics of global climate change. It
would also permit accounting for the contribution of (seasonal to
centennial) climatic variability, such as simulated by recent global
climate models of, e.g., the CoupledModel Intercomparison Project
(41), on ecological niche stability and marine extinction susceptibil-
ities. Noteworthily, accounting for dispersal limitation would lead
to higher simulated extinction susceptibility but would probably
not alter our conclusions. Our model results are, therefore, likely
a conservative estimate of extinction susceptibility. Previous work
demonstrated that the Early Paleozoic continental configuration,
due to the limited latitudinal continuity of landmasses, makes or-
ganisms facing global climate change particularly vulnerable (27).
In addition, earliest planktotrophic larvae likely appeared at (or
very close to) the base of the Ordovician (42, 43), suggesting that
Early Paleozoic (and especially Cambrian) marine animals were
limited in their dispersal abilities compared to later animals. There-
fore, a finite dispersal capacity of model ecophysiotypes might make
the post-Ordovician drop in extinction susceptibility even more

Fig. 5. Maps of surface-ocean simulated refugia capacity (expressed as a number of ecophysiotypes) in the baseline simulations. Refugia capacity is calculated in
each grid point as the number of ecophysiotypes (present in the cold state) that were not present in this specific grid point in the prewarming state but are present in the
postwarming state. Emerged continental masses are shaded gray. Eckert IV projections.
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pronounced. Finer model resolution would also be an obvious ad-
vantage in being able to better account for the diversity of environ-
mental niches but equally creates its own computational challenges
if dissolved oxygen concentrations are to be simulated globally and
to steady state, and for multiple time intervals through the
Phanerozoic.

Another future direction relates to the representation of the
marine biosphere. In the current ecophysiological model version,
previously validated for the modern (26) and successfully applied
to the geological past (20), metabolic rates of most ecophysiotypes
monotonically increase with temperature, leading to a monotonic
decrease in ecophysiotype fitness. However, empirical results (44,
45) and models (46) demonstrate that natural species thermal per-
formance curves are unimodal and metabolic rates decline rapidly
once the optimal temperature is exceeded. Assembling a database to
represent this increase in ecophysiotypes fitness with increasing
temperatures will permit capturing more finely the latitudinal di-
versity gradient (47–49) and will thus offer a better representation
of marine biodiversity. It should also be noted that our approach is
rooted in the modern and that organisms that populated deep-time
oceans may have had different environmental affinities. Although
the analysis of experimentally derived estimates of thermal toler-
ance limits of >2000 terrestrial and aquatic species suggests that
the upper thermal limits of metazoans have not changed much
throughout the Phanerozoic (50), it has also been suggested that
the Paleozoic fauna may have been characterized by lower rates of
metabolism (51). It would also be informative to test the impact of
implementing a representation of the legacy of past extinctions in
defining the ecophysiotypes present in the next time slice
(whereas the same pool of ecophysiotypes is considered in every
time slice in the current model). Last, it might also be worth repre-
senting ecophysiotype adaptation and evolution in response to
climate change (through time-evolving ecological niches) (52).
However, such model development would probably not drastically

affect our conclusions because of the rapidity of the climatic pertur-
bations considered here (hyperthermals).

Overall, our coupled climate-ecophysiology model illustrates
how continental configuration and climate state specific to the
Early Paleozoic render metazoans particularly prone to extinction.
Although our results reaffirm the possible contribution of a reduced
pO2 to increasing Early Paleozoic extinction rates (15, 16), they also
reconcile the vision that extinction susceptibility was much higher
during the Cambrian and Ordovician than during the rest of the
Phanerozoic with a relatively constant atmospheric pO2 through
time [possibly as high as modern (22)]. Our simulations further
suggest that the continental configuration may have also played a
key role in setting the conditions for the largest Phanerozoic mass
extinction at the Permian-Triassic boundary. Last, PBDB-based
subsampling of our model output reveals that extinction rates doc-
umented during the latest Devonian may be substantially overesti-
mated in the PBDB.

MATERIALS AND METHODS
Earth system model simulations
Description of the model
cGENIE (24) is an Earth system model of intermediate complexity.
It is based around a three-dimensional ocean circulation model
coupled to a two-dimensional (2D) energy-moisture-balance atmo-
spheric model. The model was configured on a 36 × 36 equal-area
grid with 17 unevenly spaced vertical levels to a maximum 5890-m
depth in the ocean. The cycling of carbon and associated tracers in
the ocean is based on a single (phosphate) nutrient limitation of bi-
ological productivity (6) but adopts the Arrhenius-type tempera-
ture-dependent scheme for the remineralization of organic matter
exported to the ocean interior of (53). Despite its low spatial reso-
lution, cGENIE has been shown to satisfactorily simulate first-order
ocean [O2] spatial patterns and values in the modern (24) and geo-
logical past (6, 7).
Description of the numerical experiments
We adopted the (flat-bottomed) Phanerozoic continental recon-
structions of (54, 55) but substituted the deep-ocean bathymetry
of (56) when available (140 to 0 Ma) to account for mid-ocean
ridges, following previous work (22). Solar luminosity was
adapted for each time slice after Gough (57). We used a null eccen-
tricity-minimum obliquity orbital configuration, which provides an
equal mean annual insolation to both hemispheres with minimum
seasonal contrasts. Atmospheric CO2 concentration was varied in
our baseline experiments after (25), when available (≤400 Ma),
and (28) for deeper time slices. In detail, we ran two series of
cGENIE simulations for our baseline experiments, to generate the
prewarming and postwarming global climatic states, by multiplying
the pCO2 values of (25) and (28) (see above) by 0.5 and 2.0, respec-
tively. These multiplication factors were chosen to provide a qua-
drupling of pCO2 (permitting to simulate the +5°C low-latitude
warming required for our ecophysiological simulations; see main
text), while staying as close as possible to the “target” values of
(25) and (28). Specifically, the simulated low-latitude (10°S to
10°N) SST warming amounts to +4.80°C (SD, 0.21°C), or equiva-
lently a mean global SST increase of +4.77°C (SD, 0.23°C). We
note that atmospheric pCO2 during the Devonian may have been
lower than considered in our simulations, which would lead to a
colder Devonian climate at 420 and 400Ma (18).We also conducted

Fig. 6. Extinction susceptibility and ecophysiotype geographical range size in
the baseline simulations. (A) Linear correlation between simulated extinction
susceptibility (median value calculated by sampling 1000 times at same locations;
thick line in Fig. 3A) and number of ecophysiotypes with limited spatial extent (<10
equal-area model shelfal grid cells at any depth level in the prewarming state).
Points represent each of the 28 time slices and the line is the linear correlation
line (with 95% confidence interval), the coefficient of which is provided on top
of the panel. (B) Extinction susceptibility for ecophysiotypes with limited spatial
extent present in the prewarming state (<10 equal-area shelfal model grid cells
at any depth level) versus for all ecophysiotypes. Boxplots were calculated on
the basis of the individual extinction susceptibilities calculated for each of the
28 time slices studied without accounting for uncertainties in spatial sampling.
Results for other series of experiments are provided in figs. S15 and S16.
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additional simulations (constant SST experiments), in which we
varied pCO2 so as to approximatively correct for the global climatic
trend and therefore leave equatorial SST mainly invariant. Atmo-
spheric oxygen concentrations were set to modern (20.95%) in
our baseline and constant SST simulations, but varied according
to (28) in our pO2 experiments (Fig. 1B). Ocean nutrient inventory
was kept invariant to modern (2.1 μmol kg−1 PO4) in our experi-
ments (only varied for the purpose of sensitivity testing).

To generate the physical atmospheric boundary conditions re-
quired by cGENIE for each different cGENIE continental configu-
ration, we ran experiments using the slab version of the Fast Ocean
Atmosphere Model (FOAM) (58) for 100 years (until equilibrium).
This setup of the FOAMmodel couples an atmospheric general cir-
culationmodel to a 50-m “slab”mixed-layer ocean of resolution 1.4°
× 2.8° (latitude × longitude) (59, 60). We then derived the 2D wind
speed and wind stress, and 1D zonally averaged albedo forcing fields
required by the cGENIE model, using the “muffingen” open-source
software (DOI: 10.5281/zenodo.7545809), following the methods
used in (6, 22, 61).

cGENIE simulations were initialized with a sea-ice free ocean
and homogeneous temperature and salinity in the ocean (5°C and
33.9‰, respectively) and integrated for a total of 8000 years (a du-
ration largely sufficient to reach ocean thermal equilibrium and
upper-ocean dissolved oxygen equilibrium).

Ecophysiological modeling
We adapted the probabilistic ecophysiological model of extinction
vulnerability of (15), which is based in turn on the metabolic index
developed and validated in (26) and (20). Metabolic habitat viability
is calculated following Eq. 1

Metabolic habitat viability ¼
XmaxðAo;Eo;ϕcritÞ

minðAo;Eo;ϕcritÞ

ϕ . ϕcrit ð1Þ

with

ϕ ¼ Ao
pO2

exp � Eo
kB

1
T �

1
Tref

� �h i ð2Þ

ϕ is the metabolic index defined following (20) and (15). Metabolic
habitat viability defines the fraction of model ecophysiotypes that
can live in the oceanic region investigated. Ocean temperature T
and seawater pO2 are taken from our Earth system model simula-
tions. kB is the Boltzmann constant. Tref is a reference temperature
of 15°C. At the individual organism scale, Ao is the inverse of the
hypoxic threshold of the organism (theminimum required seawater
pO2 to sustain resting aerobic metabolism), Eo is the temperature
dependency of the hypoxic threshold, and ϕcrit is the multiplicative
increase in oxygen supply that is required to support ecologically
sustainable populations. Following (15), values for Ao, Eo, and
ϕcrit are randomly sampled for each ecophysiotype from probability
density functions established on laboratory experiments and the ob-
servation of species distribution (20).

In our standard model simulations, following (15), we generate
1000 ecophysiotypes and consider nonpolar shelf environments
only, defined as all nonpolar model grid cells adjacent to landmass-
es in the upper three cGENIE ocean levels, down to a depth of ca.
285 m (but see sensitivity tests for additional experiments using

alternative numbers of ecophysiotypes and considering other
oceanic regions; figs. S2, S5, and S6).

We calculate extinction susceptibility as the loss of ecophysio-
types in response to a +5°C equatorial warming (15). Global
climate change is simulated in cGENIE using a quadrupling of at-
mospheric pCO2 (see previous section) and is intended to represent
a hyperthermal event of the same order of magnitude as the Paleo-
cene-Eocene ThermalMaximum (62). We also conduct a sensitivity
test with a +2.5°C equatorial warming.

We extend the original model of (15) through an explicit repre-
sentation of incomplete geological sampling bias. This process
modifies how a global extinction susceptibility is derived from spa-
tially resolved maps of metabolic habitat viability. Instead of calcu-
lating extinction susceptibility at face value based on all
ecophysiotypes present in the prewarming and postwarming
states, we subsample shelf grid points to account for incomplete
geological data sampling. In detail, we extract 33% of all equal-
area model grid points and calculate the extinction susceptibility
based on the ecophysiotypes found in these grid cells only, and
repeat this approach 1000 times for each of our 28 time slices.
The result is, for each time slice, a probability density function of
simulated extinction susceptibility, estimated using a kernel
density estimator. Subsampling ensures that ecophysiotypes
present in few model grid cells only would not affect too strongly
the calculation of global extinction susceptibilities. This approach
is motivated by the fact that such ecophysiotypes would probably
not be documented in the paleontological databases. It also
ensures that our results are not overly dependent on the environ-
mental conditions simulated in a few cGENIE model grid points
but rather represent large-scale environmental patterns. Last, we de-
termine the most probable temporal evolution of Phanerozoic
global model extinction susceptibility by joining the median extinc-
tion susceptibilities derived for each time slice from the probability
density function. In our standard simulations, we subsample the
prewarming and postwarming habitat viability maps at the same lo-
cations. A sensitivity analysis to random sampling approach (sub-
sampling the prewarming and postwarming habitat viability maps
at different locations; fig. S3) and rate (fig. S4) are provided as Sup-
plementary Materials.

Paleontological data
Downloading fossil data
Fossil occurrence data of all marine metazoans were downloaded
from the PBDB on 22 February 2022. We restricted downloads to
regular taxa (“Preservation = regular taxa only”). Occurrences
with uncertain genus or species attribution were excluded (“Modi-
fiers = exclude uncertain gen. and sp.”). Downloaded data were re-
stricted to marine environment (“Environment = any marine,
carbonate, siliciclastic”). A total of 886,252 marine metazoan
fossil occurrences were downloaded.

In keeping with previous studies (15, 63), fossil data of the fol-
lowing classes were omitted: Ostracoda, Arachnida, Insecta, Repti-
lia, and Mammalia. In detail, Ostracoda were excluded because the
poor database quality, combined with the high diversity of this
group, may induce important biases (63, 64). Arachnida and
Insecta are terrestrial and documented in marine sediments only
under very specific conditions (63). Reptilia were excluded
because they are either terrestrial or air breathing (15). Mammalia
were excluded because they are endotherms, while the metabolic
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index applies to ectotherms. Lagerstätten were also excluded. We
also excluded occurrences with unknown paleocoordinates and
with age older than 550 Ma. After applying these filtering criteria,
741,860 fossil occurrences of 30,387 marine metazoan genera were
used in this work.
Calculating paleocoordinates
Paleocoordinates of individual fossil occurrences were calculated on
the basis of present-day longitude-latitude coordinates and geolog-
ical age (both available in downloaded PBDB data), using pyGPlates
and the rotational model of Scotese and Wright (54). For each oc-
currence belonging to a given time bin, the closest oceanic grid
point was found in the cGENIE simulation of corresponding age,
provided that the identified closest oceanic grid point was no
further than 2000 km (the PBDB occurrence being otherwise dis-
carded; fig. S20).
PBDB-derived sampling and extinction rates
In an effort to represent the impact of heterogeneous geological
sampling, we derived sampling rates from the number of collections
found in our cured PBDB data (and also conducted a sensitivity test
using the number of PBDB entries). For each time slice, we built a
PBDB-derived sampling rate map by (i) calculating the paleocoor-
dinates of each PBDB entry included in the time bin and identifying
the corresponding cGENIE grid cell, (ii) extracting the number of
unique collections found in each cGENIE grid cell, (iii) converting
the number of collections into a sampling rate, assuming that sam-
pling rate linearly increases from 0 (in grid points with 0 collections)
to 1 (in grid points with a number of collections greater or equal to
the 95th percentile of the distribution of the number of collections
per cGENIE grid points in cGENIE grid points having at least 1 col-
lection, calculated over all time slices). Resultingmaps are shown for
each time slice in fig. S20.

We calculated extinction susceptibility by sampling the ecophy-
siotypes living in the cold and warm climatic states using the sam-
pling rate maps. In each cGENIE grid cell, we randomly extracted a
given number of possible ecophysiotypes, varying from 0 (if sam-
pling rate = 0) to the total number of ecophysiotypes considered
in the model (1000 in the standard simulations; if sampling rate =
1). It should be noted that while we subsample these model ecophy-
siotypes, all subsampled ecophysiotypes will not be viable in each
cGENIE grid cell, and that the same randomly generated subset
of possible ecophysiotypes is used to subsample the cold and
warm climatic states. We calculated an extinction susceptibility in
response to global climate warming based on the ecophysiotypes ex-
tracted in the cold and warm simulations. We repeated the random
extraction 1000 times to obtain a probability density function of the
simulated susceptibility of extinction.

Supplementary Materials
This PDF file includes:
Figs. S1 to S21
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