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Abstract

Ski tourism is a substantial component of the economy of mountainous
regions in Europe and highly vulnerable to snow scarcity, which increases
due to climate change. However the climate change snow supply risk
to ski tourism has not been quantified in a consistent way throughout
Europe, including the influence and environmental footprint of snow-
making. Here we show that the snow supply risk to ski tourism increases
with global warming level, heterogeneously within and across mountain
areas and countries. Without snowmaking, 53% and 98% of the 2,234
ski resorts studied in 28 European countries are projected at very high
risk for snow supply under global warming of 2°C and 4°C, respec-
tively. By contrast, assuming a snowmaking fractional coverage of 50%
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2 Climate change challenges European ski tourism

leads to a proportion of 27% and 71%, respectively, but with increasing
water and electricity demand (and related carbon footprint) of snow-
making. While it represents a modest fraction of the overall carbon
footprint of ski tourism, snowmaking is an inherent part of the ski tourism
industry and it epitomizes some of the key challenges at the nexus
between climate change adaptation, mitigation, and sustainable devel-
opment in the mountains, with their high social-ecological vulnerability.

Keywords: snow, tourism, ski, snowmaking, Europe, climate change, water,
carbon footprint

Due to climate change, the mountain seasonal snow cover decreases, at a rate
which depends on the geographical location and the elevation [1-3]. Assessing
the extent to which past and future changes in climate affect ski resort opera-
tions across FEurope is critical to design meaningful development pathways for
this key sector of the European tourism industry [4], particularly in the context
of the European Green Deal [5]. This concerns both climate change adapta-
tion and mitigation [6], and needs to take into account related pressures on
the local environment and resources such as water and energy [7]. Indeed, ski
tourism faces complex and intertwined sustainability challenges in the context
of global change [8, 9]. Global tourism (not only ski tourism) is responsible for
substantial greenhouse gas emissions, estimated to 8.1% of global emissions
with 49.1% of this contribution caused by transport [10]. Tourism strongly
influences local and regional social-ecological systems, sustaining livelihoods
but also affecting biodiversity and use of resources [11]. The environmental
impact of ski tourism is often viewed in terms of water and electricity demand
for snowmaking, but only a few studies provide quantitative estimates, most
often at the local scale [12, 13].

Snow scarce conditions are detrimental to ski resort operations, because
snow on ski pistes is the major ingredient of ski tourism supply. An occasional
lack of snow has always been contemplated by ski resort operators, due to
the strong interannual variability of snow conditions [1, 2, 14, 15]. A key con-
cern is how often and to what extent such snow scarce situations occur, as
recurring snow scarce winters threaten the long term economic sustainability
of ski resorts [14, 16-19]. Here we adopt the definition of risk of the Inter-
governmental Panel on Climate Change (IPCC) [20], i.e. the ”potential for
adverse consequences for human or ecological systems”, and conceptualize its
application to snow supply to ski tourism on Figure 1. Quantifying long term
climate change impacts and risks pertaining to the snow supply to European
ski tourism requires accounting not only for the evolution of climatic impact-
drivers (temperature increase, snow cover decline), the related hazards (the
frequency of warm and/or snow scarce winters), but also for their combina-
tion with the exposure (geographic location, elevation range) of individual ski
resorts, and the ski resorts’ individual and collective vulnerability.
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Fig. 1 Snow supply risk to ski tourism in the context of climate change.

Following the IPCC’s conceptual framework, risk, which we define as the frequency of
snow scarce conditions on ski pistes, results from the combination of hazard, exposure and
vulnerability. Changes in the hazard are related to temperature rise and snow cover decline.
Snow management is designed to reduce the snow supply risk, but is itself influenced by
climatic impact-drivers. In turn, it induces pressure on environmental externalities, with
related greenhouse gas emissions. The risk also influences demand-side factors, through
skier satisfaction (influencing profitability of operations) and skier visits (contributing to
greenhouse gas emissions through transportation, housing etc.). Profitability of operations
are influenced by snow management costs but also influence investments in snowmaking
and related path dependencies.

The risk on snow supply to ski tourism can thus be defined as the frequency
of snow scarce conditions on ski pistes, taking into account snow grooming
and snowmaking [1, 16, 21, 22]. Indeed, the climatic impact-driver ”snow cover
decline” directly leads to a rise in the snow supply risk to ski tourism (Figure
1). Snowmaking, by contrast, is primarily designed to reduce the snow supply
risk to ski tourism by decreasing the frequency of snow scarce conditions on ski
pistes through the addition of machine-made snow [14, 18, 19, 23]. There are
multiple interactions between snowmaking, the local climate (snowmaking can
only proceed if the temperature remains sufficiently low), the local environment
(water ressources, local ecosystems), the broader socio-economic functioning
of ski tourism within mountain areas, and the influence of ski tourism on the
climate through greenhouse gas emissions [7, 14, 18, 19, 23] (see Figure 1).
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Europe (see Figure 2 for the included mountain ranges) is the largest global
ski tourism market, with about 50% of the world’s total ski resorts and over
80% of the world’s ski resorts with more than 1 million skier visits (i.e. number
of daily individual use of ski resorts facilities) per year [24]. It accounts for 60%
of annual skier visits (43% only for the European Alps) corresponding to 209
million skier visits in 2019, before the Covid-19 outbreak [24], and a turnover
exceeding 30 billion euros per year according to media reports [25]. Past studies
dedicated to climate change impacts on ski tourism in Europe have either
neglected the influence of snow management, and in particular snowmaking
[4, 26-28], or focused on smaller geographical domains, e.g. at the scale of
individual ski resorts or an aggregation at the national scale [16, 17, 29-31].
Also, many studies [27-29, 31] addressed the demand side risk resulting from
tourists’ reactions to future snow scarce conditions rather than quantifying the
risk to snow supply itself. These deficiencies have made it difficult to produce
a consistent assessment at the scale of the entire continent. The environmental
footprint of snowmaking has seldom been studied [12, 32], and never at the
scale of the entire continent.

1 Climate change ski tourism snow supply risk

We study the climate change effects on the snow supply risk to ski tourism
at the scale of the entire European ski tourism market. We use numerical
simulations of snow conditions, with and without snowmaking, and under past
and future climate conditions, at the scale of individual ski resorts (see Method
and Figures 1 and 2). Expanding from previous work [16, 18, 33|, we quantify
daily snow conditions at ski resort scale as the fraction of the ski resort’s surface
area with a snow mass (snow water equivalent) exceeding a threshold of 100
kg m~2. This corresponds to 20 cm of snow with a density of 500 kg m 3, which
is sufficient for alpine skiing. Averaging this daily value over the critical time
period from December to February [14, 21] provides a yearly indicator of snow
conditions, referred to as the snow reliability index. We define the meaning of
”snow scarce conditions” for each ski resort as the worst 20% years in terms of
groomed natural snow encountered during the reference time period 1961-1990.

The simulation results used in this study are based on the approach imple-
mented to compute the Copernicus Climate Change Service (CS3) Mountain
Tourism Meteorological and Snow Indicators (MTMSI) dataset [34]. This
dataset uses the pan-European near-surface meteorological reanalysis UERRA
and an ensemble of adjusted EURO-CORDEX regional climate model sim-
ulations. Both feed the detailed snow cover model Crocus, which includes
a representation of snow grooming and snowmaking [34, 35]. In the model,
snowmaking depends on operating rules and meteorological conditions, in par-
ticular wet bulb air temperature ([34], see Methods and Extended Data Figure
1). The MTMSI dataset provides state-of-the-art estimates of relevant climate
data for the ski tourism industry, yet is insufficient for sectoral risk assess-
ment because it does not consider the location of individual ski resorts. We
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Fig. 2 Distribution of ski resorts in mountain areas in Europe.

Map of Europe, showing the 18 geographical entities (European Environmental Agency
mountain areas, 6 subdomains for the European Alps) considered in this study and the cor-
responding total estimated surface area of ski pistes (total 984 km?, as of November 2022).
For each geographical entity, subpanels around the map show the vertical distribution of ski
pistes, along with the hypsometry and the corresponding number and total surface areas of
the ski resorts. The subplots also display the distribution of snow reliability values (from 0
to 100) of snow conditions in ski resorts during snow scarce winters, corresponding to the
20% worst winter seasons for the time periods 1961-1990 (left) and 1991-2015 (right).

address this gap by combining the data used to produce the MTMSI dataset
with geographical information of 2,234 individual ski resorts across Europe
(see Method and Extended Data Figures 1 and 2). This enables to compute
snow cover conditions (including the snow reliability index - expanding its use
when snowmaking is taken into account, see Extended Data Figure 3) and
water demand for snowmaking, for various values of the snowmaking fractional
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coverage (i.e. the fraction of a resort’s ski piste area covered by snowmak-
ing infrastructure) for each ski resort. The results of such calculations are
illustrated on Extended Data Figures 4, 5, 6 and 7 for contrasted ski resorts
located in the French/Swiss middle mountains (Metabief, Jura, France), in the
Austrian Alps, in the Nordic mountains and in British Isles, respectively.

The distribution of Q;gf values for ski resorts in Europe, shown on Figure
2, reveals the strong heterogeneity in reference snow conditions within and
across mountain areas, due to the combined effect of the local climate and the
location of ski resorts, and provides the baseline upon which future changes can
be analyzed. It also shows the distribution of the ski resorts’ 20" percentile
of snow reliability index values (Q2) within a geographical entity for the time
period 1991-2015, highlighting that over past decades natural snow conditions
in ski resorts have generally declined, at a rate which differs depending on the
mountain area.

Based on future climate change scenarios, we investigate how the frequency
of snow scarce winters changes with the global warming level for various illus-
trative values of the snowmaking fractional coverage (0%, 25%, 50% and 75%).
The snow supply risk to the European ski tourism is displayed as a function
of the global warming level in the form of burning embers in Figure 3 at the
scale of mountain areas [36] (see Methods and Extended Data Figure 1). We
define the risk level as follows: a frequency of 30% of winters below the snow
scarcity threshold, corresponding to a 50% increase in the risk compared to
the reference value (20%), is referred to as "moderate” (yellow). A frequency
of 40%, corresponding to a doubling of the reference risk value, is referred to as
"high” (red). The risk reaches the ”very high” (violet) domain at a frequency
of 50% and above, i.e. snow scarce conditions encountered at least once every
two years on average.

Burning embers for groomed natural snow only (left), and including snow-
making (right), consistent with the approach taken in the literature and in
recent IPCC reports [36-38] for displaying climate change risk with and with-
out adaptation, shows that, in all cases, the risk systematically increases with
higher global warming level (Figure 3). Further, for groomed natural snow
conditions only, in most geographical entities, a global warming level of 1.5°C
leads to a high to very high snow supply risk to ski tourism, with only a few
entities showing comparatively lower increases in the risk (e.g. Turkey, Central
European middle mountains 2). Three main patterns emerge from the burning
embers analysis taking snowmaking into account. For some mountain areas,
mainly in the Alps but also in the Nordic mountains and in Turkey, addi-
tional snowmaking fractional coverage reduces the risk. However the marginal
benefit decreases, especially between 50% and 75% (block A in Figure 3). For
other areas, snowmaking has a positive impact on the risk level up to a cer-
tain point, but increases in the snowmaking fractional coverage beyond 50%
reduce its efficiency and the risk increases (block B in Figure 3). Last, in some
areas, the risk level quickly reaches high values with increasing global warm-
ing level regardless of the snowmaking fractional coverage (block C in Figure
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3). Note that these general observations do not necessarily apply to all indi-
vidual ski resorts within the mountain areas analyzed. This illustrates that
the snow supply risk to ski tourism under climate change is context-dependent
in multiple ways, including the influence of the snowmaking fractional cover-
age and the geographically and climatically variable efficiency of snowmaking
itself [14, 39, 40]. At 2°C and 4°C global warming levels, respectively, without
snowmaking, 53% and 98% of the 2,234 ski resorts studied are projected to
experience a very high snow supply risk. Assuming a snowmaking fractional
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coverage of 50%, these figures decrease to 27% and 71%, respectively. Results
for individual mountain areas are provided in Extended Data Figure 8.

2 Snowmaking water demand and energy
footprint

b) Carbon footprint of electricity
production for snowmaking

a) Water demand (Mm?) and electricity (GWh) for
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Fig. 4 ‘Water and electricity demand, and associated car-
bon footprint for electricity production, due to snowmaking.

Water demand, corresponding electricity demand and associated carbon footprint for
electricity production, due to snowmaking only, assuming a uniform 50% snowmaking
fractional coverage, for the main 12 countries. Rows correspond to global warming levels
compared to 1850-1900: +0.6°C (1961-1990 reference period, top), +2°C (middle), and
+4°C (bottom). a) Water and electricity demand, from left to right, for November, Novem-
ber and December, and hydrological year (summer to summer; snow production occurs
between November and February). Box plots, showing the percentiles 10, 20, 50, 80 and
90, are coloured according to the ratio between water demand for snowmaking and total
annual precipitation on the ski pistes equipped with snowmaking (colouring also provided
in the circles). b) Carbon footprint of electricity production for snowmaking. The colouring
refers to the carbon footprint per skier visit.

We estimate on Figure 4 the water and electricity demand for snowmak-
ing under past and future climate conditions, along with the corresponding
carbon footprint for the related electricity production (see Methods). Here we
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focus on the 12 main countries in terms of the total snowmaking amount,
comprising 95% of the ski resorts’ surface area considered in this study. The
median value of the total annual water demand for snowmaking, for the refer-
ence period 1961-1990 with 50% snowmaking fractional coverage, is estimated
at 103 Mm? (90 - 119 Mm? range spanning the 10th to 90th percentiles).
Under these conditions, water demand for snowmaking at the European scale
would correspond to 13% of the total annual precipitation falling on ski piste
areas equipped with snowmaking facilities. For individual countries, this figure
varies between 10% and 32%.

Water demand changes substantially in a warmer climate, both in terms
of the total quantity and its seasonal distribution. Our results indicate a gen-
eral decrease of the water demand for snowmaking in November (decreases in
national values range from 0% to -53% at +2°C, and -5% to -96% at +4°C),
due to increasing temperatures leading to fewer time periods adequate for
snowmaking. Projections indicate an overall increase in annual water demand
with the global warming level (changes in national values range from +8% to
+25% at +2°C, and +14% to +42% at +4°C), driven by mountain regions
where climate conditions remain sufficiently cold for snowmaking. The cor-
responding estimates for snowmaking fractional coverages of 25% and 75%,
respectively, are provided on Extended Data Figure 9.

The median value of the total annual electricity demand for snowmak-
ing in these 12 countries is estimated at 309£103 GWh during the reference
time period 1961-1990, assuming a 50% snowmaking fractional coverage (see
Methods and Extended Data Figure 1). This value is in a comparable order
of magnitude to a prior estimate of 600 GWh over the European Alps [41].
Using figures on skier visits from 2019, our estimates corresponds on average
to about 1.5+£0.5 kWh per skier visit devoted to snowmaking. The total elec-
tricity demand for snowmaking is projected to increase on average by 18% and
24% for 42°C and +4°C global warming, respectively.

Based on the carbon intensity of electricity in 2019, the annual carbon
footprint of electricity use for snowmaking in the considered 12 countries is esti-
mated at 78426 kt COzeq for the reference period 1961-1990, and projected to
reach 93+31 kt COzeq and 97£32 kt COzeq at +2°C and +4 °C global warm-
ing level, respectively. Due to ongoing and future policy changes, the carbon
intensity of electricity production is expected to decrease in upcoming decades.
Our results illustrate how the carbon footprint of electricity used for snowmak-
ing would evolve in a warmer climate, based on the current energy mix. Due to
differences between European countries in both water demand for snowmak-
ing and the current carbon intensity of electricity production (ranging from
0.008 to 1.1 kg CO2eq kWh™! on annual averages, see Methods), the carbon
footprint of electricity demand for snowmaking varies considerably between
countries, as shown in Figure 4. Mountainous entities with the highest car-
bon footprint for snowmaking combine a comparatively high water demand for
snowmaking with a high carbon intensity for electricity production.Per skier
visit, the carbon footprint of electricity used for snowmaking varies between
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0.01 and 2.3 kg CO3 eq. These values are consistent with previous estimates at
the national scale [42].

Recent studies estimate that the operations of a ski resort (snow manage-
ment, ski lift operations etc.), including electricity demand for snowmaking,
correspond to 2% to 4% of the total carbon footprint of the destination [42, 43].
In contrast, more than 50% of the carbon footprint, sometimes even exceed-
ing 80%, is induced by arrival, departure and on-site transportation of skiers
[42, 43]. However, while the carbon footprint of ski resort operations represents
a small share of a destination’s total footprint, both are strongly interrelated
as ski-related tourism activities are often the main driver for tourist visits.
Ski tourism operators, together with other mountain tourism stakeholders, are
thus jointly responsible for the broader emissions (e.g. accommodation, trans-
portation) related to ski tourism, even if their operations make a small direct
contribution.

3 Discussion

All estimates provided in this study rely on state-of-the-art reanalyses and
climate projections of the snow cover reliability and a detailed inventory of
ski resort locations in Europe (see Methods and Extended Data Figure 1).
This study comes with inevitable limitations and simplifications implied by
our pan-European approach in a context where detailed data are often missing
(e.g. data on the snowmaking fractional coverage of individual ski resorts,
and the technology implemented). Our estimates of the water demand for
snowmaking assume current technologies and practices of the industry. They
neither reflect any limitations in water availability under the current or future
climate, nor possible changes in technologies and practices of the industry.
Nevertheless, based on a series of reasonable hypotheses and assumptions, we
provide a consistent depiction of the current and future state of the snow
supply risk pertaining to the ski tourism industry in Europe, and some key
related environmental externalities.

Although a warmer climate will systematically increase the snow supply
risk pertaining to this industry, its magnitude depends on the region. Our
results highlight not only the general trend and rising challenges, but also
the variability across mountain regions of Europe in this respect, which is
further modulated at the local scale due to the strong variability within moun-
tain regions [17, 18]. This work provides insights, which are primarily relevant
for regional scale mountain development policy [21, 44]. Our methods and
results also provide a basis for producing local climate change impact stud-
ies in Europe at the ski-resort level. However, their local application would
require the use of additional local information. This includes the use of a
detailed map of the ski resort including the location and characteristics of
snowmaking units, an analysis of the availability and use of water under current
and future climate conditions, the availability of energy resources for sustain-
ing snowmaking operations, and impact studies on local ecosystems [18, 32].
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Such information is critical for informing climate action in mountainous areas,
across all relevant scales of decision [44-46]. Our results are also relevant in
the context of strengthening EU regulations on climate risk disclosure for all
sectors. For planning purposes, such information relevant to the challenges of
the ski tourism supply side (operating conditions) needs to be combined with
future trajectories on the ski tourism demand side (i.e., skiers preferences and
potential changes in practices), which are also heavily dependent on snow con-
ditions and broader socio-economic perspectives including the diversification
of mountain economies and avoiding maladaptation [1, 6, 7, 19, 27, 44, 47, 48].

The presented results illustrate the interaction between climate change
impacts and risks to a given sector (here snow supply to ski tourism) and
broader environmental and climate challenges. Indeed, reaching strong reduc-
tions in greenhouse gas emissions for ski tourism destinations will chiefly
depend on massive reductions of the carbon footprint of transportation and
accommodation [6]. This holds implications for tourism development strate-
gies. In particular, it remains questionable whether far-reaching policies
required to limit global warming to +2°C are compatible with carbon intensive
tourism activities in their current form, in particular regarding transporta-
tion, housing, and the carbon intensity of electricity production [7, 19]. Even
if a substantial fraction of European ski resorts is projected to still be able to
operate at 2°C global warming, the ability of ski tourism destinations, as a
whole, to achieve their share of greenhouse gas emission reductions required
to remain below this global warming level is a major challenge.
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4 Methods

Climate data

This study uses meteorological and snow cover simulations underpinning the
Copernicus Climate Change Service (CS3) Mountain Tourism Meteorologi-
cal and Snow Indicators (MTMSI) dataset [1]. Results are provided for all
countries of the European Union, candidate countries and members of the
European Free Trade Association. Altogether, the dataset covers all EU mem-
ber states, Albania, Andorra, Montenegro, North Macedonia, Serbia, Turkey,
the United Kingdom, Iceland, Liechtenstein, Norway and Switzerland. Within
each country, the data is provided for each NUTS-3 (Nomenclature des unités
territoriales statistiques) area, by elevation steps of 100m, on flat terrain.
Meteorological data are extracted from the UERRA European reanalysis at
5.5km resolution, spanning the time period 1961-2015. This data was used
to adjust 21 pairs (3 RCP2.6, 9 RCP4.5 and RCP8.5) of global (GCM) and
regional (RCM) climate models from the EURO-CORDEX dataset, using the
ADAMONT adjustment method [1]. See Extended Data Figure 1.

Snow cover simulations

Using the UERRA near-surface atmospheric reanalysis and the adjusted cli-
mate change projections, we performed snow cover simulations using the
detailed model Crocus, with and without snowmaking [1, 2]. Crocus is a multi-
layer snowpack model embedded in the ISBA land surface model within the
SURFEX model [3]. Beyond natural snow processes including surface energy
balance and snow metamorphism, Crocus makes it possible to account for
grooming and snowmaking [4], based on physical representations of these snow
management practices and operational rules [4-6]. For the simulations with
snowmaking, the maximum wind speed threshold was set to 4.2ms™!, the
density of machine-made snow to 600 kg m~3, the production rate of machine
made snow to 1.210 3kgm~2 s~!, and the wet-bulb temperature threshold
for snowmaking to -5°C, consistent with previous studies [1, 5]. In the simula-
tions, between November 1 and December 15, up to 150 kg m~2 machine-made
snow is produced, weather conditions permitting and regardless of natural
snowfalls during the period, which corresponds to 25 cm snow depth. Between
December 15 and February 28, snow is produced if meteorologically possible
S0 as to maintain a total snow depth of 60 cm. After March 1, no more snow
is produced. These threshold values are consistent with typical practices of ski
resort operators [2]. All simulations were carried out for flat terrain topographic
configuration. The simulation results include not only snow cover data (total
depth, snow water equivalent) but also the water demand for snowmaking
corresponding to the simulation results.

Inventory of European ski resorts

We use the OpenSkiMap (https://openskimap.org) global database of ski
resorts, which is based on the OpenStreetMap (https://www.openstreetmap.
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org) collaborative geospatial database. Specifically, we use the three files pro-
vided by OpenSkiMap (Ski Areas, Lifts and Runs). Information from these
three files was combined, involving careful checks and occasional removal of
lifts from our analysis, which are not associated directly with a ski piste, in
order to provide a consistent set of ski resorts and ski lifts, together forming a
series of 2,959 ski resorts in Europe. See Extended Data Figure 1.

FEuropean mountain areas

The 15 European Environmental Agency (EEA) European mountain areas
(https://www.eea.europa.eu/data-and-maps/data/european-mountain-areas)
form the core spatial structure of this work. The Atlantic islands, where
there is no resort, and the Eastern Mediterranean islands, where there is only
one resort, were excluded from the analysis. Thus we focus on 13 European
mountain areas. In this study, the ” Alps” mountain area is split by countries
due to its dominant position in terms of ski tourism in Europe.

Ski resort geospatial modelling

We combine various geospatial data sources to generate spatial information
for ski resorts (see Extended Data Figures 1 and 2). Using the European
Digital Elevation Model (EU-DEM), version 1.1, with a spatial resolution
of 25m (http://land.copernicus.eu/pan-european/satellite-derived-products/
eu-dem/eu-dem-vl.1/view) and the ski-lift catalogue from OpenSkiMap
(Extended Data Figure 2a), we compute, for each ski lift in each ski resort,
the geographical domain accessible downhill from the top of all the ski lifts
(Extended Data Figure 2b) and reaching the bottom of one of the ski lifts
(Extended Data Figure 2c). Combining these two areas results in the gravita-
tional envelope of the ski resort (Extended Data Figures 2d and 2e) [5, 7-9].
Further, we apply a geospatial modelling framework to infer the location where
snowmaking is applied within a given ski resort, depending on the snowmak-
ing fractional coverage value (0%, 25%, 50% and 75%, see Extended Data
Figure 2f) [2, 8]. Each pixel of the ski resort gravitational domain is associated
to a NUTS-3 region (Extended Data Figure 2h) and a 100m elevation band
(Extended Data Figure 2f) from the climate and snow cover dataset, for flat
terrain conditions.

The limitations of the MTMSI dataset regarding the available elevation
bands for each NUTS-3 region compared to the actual elevation ranges or the
ski resorts made it necessary to reassign some values. For the resorts fully
included in mountain NUTS-3 regions, but with missing elevation bands, we
assigned the minimum or the maximum available NUTS-3 elevation, depending
on whether the missing elevations are at the top or at the bottom of the
ski resort, in the limit of a 300 m difference and with minimum elevation not
less than 500 m. Resorts outside the NUTS-3 areas, for which climate data
are available, were not processed further. This led to 2,625 ski resorts, within
which only those belonging to EEA mountain areas were considered further,
resulting in a final selection of 2,234 ski resorts (see Extended Data Figure 1).
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Resort-level snow cover reliability calculation

The snow cover reliability indicator for a given ski resort on a given day cor-
responds to the fraction of the surface area (fraction of the pixels) of the
gravitational envelope exceeding a snow mass threshold of 100 kgm~2 (corre-
sponding to 100 mm w.e., i.e. 20 cm of snow depth for a typical snow density
of 500 kgm~3). The average of the daily values for the months from December
to February is used as the snow cover reliability indicator applied in this work.
Crocus model runs provide water demand for snowmaking, which are aggre-
gated for each ski resort. Consistent with previous research, we assume that
10% of the surface area of the gravitational envelope is actually covered with
ski pistes [5]. While the full envelope is taken into account for the calculation
of the snow reliability index, the 10% ratio is applied only for the calculation
of the water volume demand.

Defining whether conditions are snow scarce or not, in a given ski
resort, when snowmaking is taken into account

Snowmaking is implemented in ski resorts in order to secure snow conditions
suitable for skiing. Therefore, snow conditions taking snowmaking into account
can be considered snow scarce if the snow reliability index value is lower than
the snowmaking fractional coverage considered. For assessing the risk level
when snowmaking is taken into account, we therefore define the snow reliability
index threshold Qipreshora as (Equation (1)):

chreshold = maz(Qggf’ Xsnowmaking) (1)

where Xgnowmaking 18 the snowmaking fractional coverage value considered
(25%, 50% or 75%). We exemplify on Extended Data Figure 3 how this calcu-
lation is designed and implemented. The snow supply risk to ski tourism is thus
expressed as the proportion of snow reliability index values below Qipreshold-
By design, the risk level is equal to 20% for the reference period without
snowmaking. This is illustrated on Extended Data Figures 4, 5, 6 and 7.

Computation of the snow supply risk and burning embers

The snow supply risk to ski tourism is defined as the frequency of snow scarce
conditions. These are defined as the 20*" percentile of the snow reliability index
during the reference period 1961-1990 without snowmaking, based on Crocus
model runs driven by the UERRA 5.5 km reanalysis, for each ski resort. The
frequency of snow scarce conditions is estimated for each ski resort for 20-year
time periods for each GCM/RCM pair, centered for each pair on the time
period when the GCM simulation reaches a global warming level for the values
+1.5°C, +2°C, +3°C and +4°C with respect to the time period 1850-1900.
Note that, in contrast to the discrepancy identified between RCM and GCM
simulated temperature changes over Europe in summer, there is a good overall
consistency for the winter season, which is the main seasonal focus of our study
[10, 11]. The global warming level dataset, providing information for all of the
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GCM results used in this study, is obtained from the Santander Meteorology
Group (UC-CSIC) ( https://github.com/SantanderMetGroup/ATLAS /blob/
main/warming-levels/ CMIP5_Atlas_WarmingLevels.csv).

For each ski resort, the average value of the frequency of snow reliability
index values below the Qggf , across all GCM/RCM pairs corresponding to a
given global warming level, is used to relate the risk value to this particular
warming level. This resort-level risk value is then averaged for each mountain
area, using the surface area of the ski resort as a weighting factor. The corre-
sponding risk value for each mountain area and global warming level is then
used to build the burning ember diagram. Ultimately, burning embers [12]
represent the snow supply risk to ski tourism under different global warming
levels, with and without snowmaking.

Due to the lack of a European database on the fraction per ski resort
equipped with snowmaking, we apply a homogeneous 25%, 50% and 75% snow-
making fractional coverage to all ski resorts in Europe, notwithstanding actual
heterogeneities in snowmaking fractional coverages within and across mountain
areas and countries [9].

By design, the risk level is equal to 20% for the reference period without
snowmaking. Hence, a frequency of 20% of snow scarce winters corresponds
to an undetectable change in risk level (displayed in white on Figure 3). A
frequency of 30%, corresponding to a 50% increase in the frequency of snow
scarce conditions compared to the reference value (20%), is referred to as
"moderate” risk (yellow), while a doubling in the frequency (40%) is referred
to as ”high” risk (red). The risk reaches the ”very high” (violet) domain at a
frequency of 50% and above, which corresponds to encountering at least once
every two years a situation of snow scarcity, which was only encountered once
every 5 years during the reference period.

Water and electricity demand for snowmaking

Water demand values are generated as a diagnostic of the snow cover sim-
ulations. Water demand for snowmaking is illustrated in Extended Data
Figures 4, 5, 6 and 7. See Extended Data Figure 8b for more informa-
tion on the calculation of the uncertainty pertaining to the water demand
for various global warming levels and snowmaking fractional coverage
values. Here we assume an electricity consumption of 3+1kWh per m?
of water converted to snow. This value is consistent with recent reports
from the ski tourism industry and national and regional reports from
local environment and tourism authorities (https://www.wko.at/branchen/
transport-verkehr /seilbahnen /Oekologie und_Umwelt.html, http://www.
observatoire.savoie.equipement-agriculture.gouv.fr/Atlas/4-hydro.htm, https:
//side.developpement-durable.gouv.fr/ACCIDR /doc/SYRACUSE/152732).

In fact, this value depends on the technology used and on the temperature of
snow production. However, in lack of a detailed inventory of the technology
deployed in all ski resorts of Europe, which would also require a more detailed
modelling framework than currently exists, we consider this central value


https://github.com/SantanderMetGroup/ATLAS/blob/main/warming-levels/CMIP5_Atlas_WarmingLevels.csv
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Springer Nature 2021 BTEX template

Climate change challenges European ski tourism 21

surrounded by a range from 2 to 4 kWh per m? for this study with a central
estimate of 3 kWhm™3. Since this is a constant parameter in our study, all
of the results, in terms of electricity demand and corresponding greenhouse
gas emissions, can be updated by means of a simple ”rule of three” using a
different value of the electricity demand for water conversion to snow. This
value takes into account the entire snowmaking process, including snowguns
operations, local water pumping etc.

Carbon footprint of electrity consumption for snowmaking

The carbon footprints are calculated using amounts of electricity generation
by type of production (e.g. hard coal, run-of-river hydropower, etc.) and coun-
try as recorded on the ENTSO-E Transparency Platform for 2018 to 2022
(https://transparency.entsoe.eu/dashboard /show). The central estimates were
computed using the figures for the year 2019, deemed representative of the sit-
uation prior to the outbreak of Covid-19. Data for the years from 2018 to 2022
were used for uncertainty analysis, based on the 6 main countries in terms
of water and electricity demand, and for which carbon intensity factors were
calculated. Combining electricity demand time series (from past and future
climate conditions) with a sampling of the carbon intensity data from these 5
years leads to an estimate of the uncertainty due to the interannual variabil-
ity of carbon itensity. The multiannual standard deviation around the mean
of the median shows, for the UERRA reanalysis reference time period 1961-
1990, varies between 8.8% (Norway, expected to increase up to the values of
12.3% and 13.6% at +2°C and +4°C global warming levels, respectively ) and
1.2% (Sweden, expected to reach 0.6% and 1.0% at +2°C and +4°C) of the
mean value. Values for Italy and Austria, where the mean value is the highest,
reach 2.5% and 3.7% respectively. This uncertainty is thus much lower than
the uncertainty due to the electricity demand for snowmaking, considered in
this study. Production for each generation type and country are multiplied
by country dependent emission factors (kg COseq kWh™!) from the ecoinvent
database [13], taking into account life cycle assessment (LCA) components.
The emissions are calculated on an hourly basis and an average emission factor
by country and month is used for the conversion of monthly electricity demand
for snowmaking into equivalents of CO4 emissions. Emissions from imported
electricity are not included, which is a methodological limitation of this study.
The emissions presented are for electricity consumption due to snowmaking
only. They do not include emissions for snow grooming and maintenance, snow
making equipment and its installation and maintenance and ski lift operation.

Data availability

The MTMSI dataset is available on the Copernicus Climate Data
Store following this doi: https://doi.org/10.24381 /cds.2fe6a082  [14]
under the Copernicus licence. We wuse the OpenSkiMap (https:
//openskimap.org) global database of ski resorts, which is based on
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the  OpenStreetMap  (https://www.openstreetmap.org)  collaborative
geospatial database. The description of the 15 FEuropean Environ-
mental Agency (EEA) FEuropean mountain areas is available online:
https://www.eea.europa.eu/data-and-maps/data/european-mountain-areas.
The European Digital Elevation Model (EU-DEM), version 1.1, with a
spatial resolution of 25m, is available online http://land.copernicus.eu/
pan-european/satellite-derived-products/eu-dem/eu-dem-v1.1/view. The
global warming level dataset is available from the Santander Meteorol-
ogy Group (UC-CSIC) (https://github.com/SantanderMetGroup/ATLAS/
blob/main/warming-levels/CMIP5_Atlas_-WarmingLevels.csv). The carbon
footprints are calculated using hourly amounts of electricity generation
by type of production (e.g. hard coal, run-of-river hydropower, etc.) and
country as recorded on the ENTSO-E Transparency Platform for 2019
(https://transparency.entsoe.eu/dashboard /show).

Code availability

The Crocus snow cover model used for this work is developed inside the
open-source SURFEX project (http://www.umr-cnrm.fr/surfex/, last access :
7 June 2020). For reproducibility of results, the version used in this work is
tagged as ” C3S-European-Tourism-MTMSI-2019” on the SURFEX git repos-
itory. The computer code necessary to reproduce the main results is provided
at the Zenodo repository (10.5281/zenodo.8047168) [15].

Methods references

References

[1] Morin, S. et al. Pan-European meteorological and snow indicators of
climate change impact on ski tourism. Climate Services 22, 100215 (2021).

[2] Spandre, P., Frangois, H., George-Marcelpoil, E. & Morin, S. Panel based
assessment of snow management operations in French ski resorts. Journal
of Outdoor Recreation and Tourism (2016).

[3] Vionnet, V. et al. The detailed snowpack scheme Crocus and its
implementation in SURFEX v7.2. Geosci. Model. Dev. 5, 773-791 (2012).

[4] Spandre, P. et al. Integration of snow management in a detailed snowpack
model. Cold Regions Science and Technology (2016).

[5] Spandre, P. et al. Climate controls on snow reliability in French Alps ski
resorts. Sci. Rep. 9 (2019).

[6] Spandre, P. et al. Winter tourism under climate change in the Pyrenees
and the French Alps: relevance of snowmaking as a technical adaptation.


https://www.openstreetmap.org
https://www.eea.europa.eu/data-and-maps/data/european-mountain-areas
http://land.copernicus.eu/pan-european/satellite-derived-products/eu-dem/eu-dem-v1.1/view
http://land.copernicus.eu/pan-european/satellite-derived-products/eu-dem/eu-dem-v1.1/view
https://github.com/SantanderMetGroup/ATLAS/blob/main/warming-levels/CMIP5_Atlas_WarmingLevels.csv
https://github.com/SantanderMetGroup/ATLAS/blob/main/warming-levels/CMIP5_Atlas_WarmingLevels.csv
https://transparency.entsoe.eu/dashboard/show
http://www.umr-cnrm.fr/surfex/
https://doi.org/10.5281/zenodo.8047168

[15]

Springer Nature 2021 BTEX template

Climate change challenges European ski tourism 23

The Cryosphere 13, 13251347 (2019).

Frangois, H., Morin, S., Lafaysse, M. & George-Marcelpoil, E. Crossing
numerical simulations of snow conditions with a spatially-resolved socio-
economic database of ski resorts: A proof of concept in the French Alps.
Cold Regions Science and Technology 108, 98-112 (2014).

Francois, H., Morin, S., Spandre, P., Lafaysse, M. & George-Marcelpoil, E.
Croisement de simulations numériques des conditions d’enneigement avec
une base de données socioéconomiques spatialisée des stations de sports
d’hiver : description de ’approche et application aux Alpes francaises. La
Houwille Blanche 4 (2016).

Berard-Chenu, L., Frangois, H., George, E. & Morin, S. Past changes in
natural and managed snow reliability of French Alps ski resorts from 1961
to 2019. The Cryosphere 16, 863-881 (2022).

Taranu, 1. S.,; Somot, S., Alias, A., Boé, J. & Delire, C. Mechanisms
behind large-scale inconsistencies between regional and global climate
model-based projections over Europe. Climate Dynamics (2022).

Ribes, A. et al. An updated assessment of past and future warming
over France based on a regional observational constraint. Farth System
Dynamics 13, 1397-1415 (2022).

Zommers, Z. et al. Burning embers: towards more transparent and robust
climate-change risk assessments. Nature Reviews FEarth & Environment

1, 516 — 529 (2020).

Wernet, G. et al. The ecoinvent database version 3 (part i): overview and
methodology. Int. J. Life Cycle Assess. (2016).

Morin, S., Samacoits, R., Francois, H. & Abegg, B. Mountain tourism
meteorological and snow indicators for europe from 1950 to 2100 derived
from reanalysis and climate projection. https://doi.org/10.24381/cds.
2fe6a082 (2020).

Frangois, H. & Samacoits, R. European ski resorts snow reliability. https:
//doi.org/10.5281 /zenodo.8047168 (2023).

1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058


https://doi.org/10.24381/cds.2fe6a082
https://doi.org/10.24381/cds.2fe6a082
https://doi.org/10.5281/zenodo.8047168
https://doi.org/10.5281/zenodo.8047168

1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104

Springer Nature 2021 BTEX template

24 Climate change challenges European ski tourism

Extended Data
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Fig. 1 Methodological approach to compute the SNow
conditions on ski pistes and related externalities.
The method brings together advanced spatial modelling of the ski resorts (left), modelling

of snow conditions in ski resorts taking into account grooming and snowmaking (middle)
and estimates of the carbon intensity of snowmaking (right). Results, primarily computed
for individual ski resorts and providing annual values, are aggregated at the scale of EEA
mountain areas and countries, for past climate conditions and for various global warming
levels.
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Fig. 2 Methodological approach for the spatial modelling of ski resorts.

Using the European Digital Elevation Model (EU-DEM), version 1.1, with a spatial res-
olution of 25m and the ski-lift catalogue from OpenSkiMap (a), we compute, for each
ski lift in each ski resort, the geographical domain accessible downhill from the top of all
the ski lifts (b) and reaching the bottom of one of the ski lifts (c). Combining these two
areas results in the gravitational envelope of the ski resort (d and e). Further, we apply a
geospatial modelling framework to infer the location where snowmaking is applied within
a given ski resort, depending on the snowmaking fractional coverage value (0%, 25%, 50%
and 75%) (f). Each pixel of the ski resort gravitational domain is associated to a (NUTS-3,
elevation) pair from the climate and snow cover dataset, by steps of 100 m elevation and for
flat terrain conditions (g). The modelling approach is illustrated here using the Obergugl
ski resort in Austria (European Alps), in the NUTS-3 region ” Tiroler Oberland”.
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1181 Fig. 3 Methodological approach employed to deter-
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1183 Methodological approach employed to determine whether snow conditions are snow scarce
1184 or not, in a given ski resort, when snowmaking is taken into account. The reference snow
1185 reliability index Q;gf is computed based on groomed natural snow simulations for the

1186 reference period 1961-1990, bounding the 20% worst values of the snow reliability index.

A snow reliability index value for a given year is considered snow scarce if it falls below a
1187 threshold value Q¢preshold, €qual to the maximum between Q;gf and the snowmaking frac-
1188 tional coverage. In case A (top), ;Sf (here 23%) is lower than the snowmaking fractional
1189 coverage (here 50%). If for a given year the snow reliability index value is larger than both,
1190 it is not considered snow scarce. If it is lower than both, it is considered snow scarce. In
1191 the intermediate case (here 33%), it is considered snow scarce, because it is lower than the
1192 snowmaking fractional coverage. In case B (bottom), Q;Sf (here 67%) is higher than the

snowmaking fractional coverage (here 50%). There are then only two possible situations,

1193 simply comparing the snow reliability index with the Qggf.
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Fig. 4 Simulation results for the Metabief
ski resort (French Jura mountain regions).

Simulation results for the Metabief ski resort (French Jura mountain regions. All panels
display past simulations (based on the UERRA reanalysis), and climate projections (his-
torical from 1950 to 2005 and future projections for RCP2.6, RCP4.5 and RCP8.5 for 2006
to 2100). Panels are organized horizontally as a function of snowmaking fractional coverage
(0% on the top row, panels a and b; 256% for panels ¢, d and e; 50% for panels f, g, and h;
75% for panels i, j and k). Panels on the left hand side (a, ¢, f and i) display the time series
of the snow reliability index values. Individual annual values are displayed for UERRA
reanalysis. For climate projections, the panels show the median (solid line) and 20/80
percentile values (colored area) for all simulations of the same RCP, on 15-years sliding
windows. The black solid line displays the same information based on UERRA reanalysis.
Panels in the middle column (b, d, g and j) display the frequency of years below the snow
reliability threshold Q¢preshold (computed based on the values obtained using the UERRA
reanalysis from 1961 to 1990). Here, the solid line refers to the mean of the frequency values
obtained for each GCM/RCM pair for each 15-years periods, and the colored area displays
the standard deviation around the mean. Panels on the right side (e, h and k) display
the computed water demand for snowmaking. The solid line refers to the median and the
colored area spans the 20/80 percentile range, on 15-years sliding windows.
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1279 Fig. 5 Simulation results for a given ski resort in the Austrian Alps.
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1281 Same as Extended Data Figure 4 but for a ski resort located in the Austrian Alps.
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Fig. 6 Simulation results for a given ski resort in Norway.

Same as Extended Data Figure 4 but for a ski resort located in Norway.
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Simulation results for a given ski resort

in the British Isles.

Same as Extended Data Figure 4 but for a ski resort located in the British Isles.
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Fig. 9 Water and electricity demand and associated carbon foot-
print for electricity production, due to snowmaking only, assuming
a uniform snowmaking fractional coverage of 25% and 75%.

Same as Figure 4 but for 25% snowmaking fractional coverage (a and b) and 75%
snowmaking fractional coverage (c and d).
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