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Large time behavior of finite difference schemes for the transport equation

Lucas Coeuret1

Abstract

In order to study the large time behavior of finite difference schemes for the transport equation, we need to
describe the pointwise asymptotic behavior of iterated convolutions for finitely supported sequences indexed on
Z. In this paper, we investigate this question by presenting the main result of [Coe22] which is a generalization
of the so-called local limit theorem in probability theory to complex valued sequences.

Notations
Throughout this article, we define the unit circle in the complex plane:

S1 := {z ∈ C, |z| = 1}.

For E a Banach space and T a bounded operator acting on E, the notation σ(T ) stands for the spectrum
of the operator T .

For 1 ≤ q < +∞, we let ℓq(Z) denote the Banach space of complex valued sequences indexed by Z and such
that the norm:

∥u∥ℓq :=

(∑
j∈Z

|uj |q
) 1

q

is finite. We also let ℓ∞(Z) denote the Banach space of bounded complex valued sequences indexed by Z
equipped with the norm

∥u∥ℓ∞ := sup
j∈Z

|uj |.

We define the convolution a ∗ b of two elements a and b of ℓ1(Z) by

∀j ∈ Z, (a ∗ b)j :=
∑
l∈Z

albj−l.

When equipped with this product, ℓ1(Z) is a commutative Banach algebra. We define for a sequence a ∈ ℓ1(Z)
and an integer n ∈ N

an := a ∗ . . . ∗ a.

1 Context
This paper is devoted to presenting the main result of [Coe22] which describes the pointwise asymptotic behavior
of iterated convolutions an := a ∗ . . . ∗ a for some sequences a ∈ ℓ1(Z). This question arises for instance when
one discretizes the scalar 1D-transport equation

∂tu+ v∂xu = 0, t ≥ 0, x ∈ R,
u(0, ·) = u0,

(1.1)

with a velocity v ∈ R and a Cauchy datum u0 at t = 0. If we introduce a time step ∆t > 0 and a space
step ∆x > 0 and assume that the Courant number λ := ∆t

∆x is kept constant, we want to approach the value
u(n∆t, j∆x) where u is the solution of (1.1) by a quantity un

j that is determined by using a finite difference
scheme. We claim that any explicit one-step finite difference scheme can be written with some well chosen
finitely supported sequence a ∈ ℓ1(Z) as the following system

∀n ∈ N, un+1 = a ∗ un and u0 ∈ CZ. (1.2)
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Therefore, the precise understanding of the large time behavior of the finite difference scheme (1.2) relies on the
description of the pointwise asymptotic behavior of the family (an)n for the complex valued sequence a ∈ ℓ1(Z).

If we suppose that the sequence a has real non negative coefficients and that the sum of its coefficients equals
1 (as would be the case for a consistent monotone scheme), then the sequence an is the probability distribution2

of the sum of n independent random variables supported on Z each with the probability distribution a. A lot
is known on the pointwise asymptotic behavior of the sequence an in this case. In particular, the local limit
theorem states, under suitable hypotheses on a, that

anj − 1√
2πσ2n

exp

(
−|j − nα|2

2nσ2

)
=

n→+∞
o

(
1√
n

)
, (1.3)

where α =
∑

k∈Z kak and σ2 =
∑

k∈Z k
2ak − α2 > 0 are respectively the mean and the variance of any random

variable with probability distribution a and where the error term in (1.3) is uniform on Z (see [Pet75, Chapter
VII] for more details). The expansion (1.3) gives a precise description of the asymptotic behavior of anj in the
range |j−nα| ≲ √

n and implies that the convolution powers of a are attracted towards the heat kernel. In the
partial differential equation language, this corresponds to a parabolic behavior for the numerical scheme (1.2).

Following, among other works, [DSC14, RSC15, CF22], we are interested in generalizing the local limit
theorem (1.3) of the probability theory to the case where the sequence a is complex valued. Extending the
works of Schoenberg [Sch53], Greville [Gre66] and Diaconis and Saloff-Coste [DSC14, Theorem 2.6], the article
[RSC15] of Randles and Saloff-Coste already provides a generalization of the local limit theorem for a large class
of complex valued finitely supported sequences. By doing so, the authors of [RSC15] describe an asymptotic
expansion similar to (1.3) with an explicit expression of the attractors. Our goal in this paper is to present
the result [Coe22, Theorem 1] which introduces a more precise description of the asymptotic result proved in
[RSC15] by proving a sharp rate of convergence together with a generalized Gaussian bound for the remainder
(see Theorem 1 below). In the case where a is the probability distribution of a random variable, as above,
[Coe22, Theorem 1] would translate in saying that, under suitable assumptions on a, there exist two constants
C, c > 0 such that

∀n ∈ N\{0},∀j ∈ Z,
∣∣∣∣anj − 1√

2πσ2n
exp

(
−|j − nα|2

2nσ2

)∣∣∣∣ ≤ C

n
exp

(
−c

|j − nα|2
n

)
.

To be more precise, [Coe22, Theorem 1] actually allows us to obtain an asymptotic expansion not only of order
1 but up to any order, which was not proved in [RSC15] but was expected due to the local limit theorem in the
probabilistic case (see [Pet75, Chapter VII]). The interested reader can find more details in the latest version
of [Coe22].

However, [Coe22, Theorem 1] relies on a stronger hypothesis on the elements of ℓ1(Z) than the conditions
imposed in [RSC15]. We will consider here elements a of ℓ1(Z) which are finitely supported and such that
the sequence (an)n∈N is bounded in ℓ1(Z). The fundamental contribution [Tho65] by Thomée completely
characterizes such elements and is an important starting point for our work.

2 Main result: Generalization of the local limit theorem
We now present in more details the necessary hypothesis and the main result of [Coe22]. We consider a sequence
a ∈ ℓ1(Z) associated with a one-step in time explicit finite difference scheme (1.2) for the transport equation
(1.1). We recall that the sequence a is thus finitely supported. We introduce the Fourier series F associated
with the sequence a defined as

∀κ ∈ C\{0}, F (κ) :=
∑
j∈Z

ajκ
j . (2.1)

The function F is holomorphic on C\{0}. We now introduce a hypothesis on the Fourier series F which is based
on the work of Thomée in [Tho65].

Hypothesis 1. We assume that

F (1) = 1, F ′(1) = vλ, (Consistency condition)
2We say that a sequence a is the probability distribution of a random variable X with values in Z when P(X = j) = aj for all

j ∈ Z.

2



where v is the velocity in the transport equation (1.1). Moreover, we suppose that

∀t ∈ [−π, π]\{0}, |F (eit)| < 1 (Dissipativity condition)

and that there exist an integer µ ∈ N\{0} and a complex number β ∈ C with ℜ(β) > 0 such that

F (eit) =
t→0

exp(ivλt− βt2µ + o(t2µ)). (Diffusivity condition) (2.2)

The consistency condition on the Fourier series F implies that the numerical scheme (1.2) is consistent with
the transport equation (1.1). The dissipativity condition is a stronger version of the Von Neumann condition
which is necessary and sufficient so that the numerical scheme (1.2) is also ℓ2-stable. The main contribution
of Thomée in [Tho65] is the introduction of the diffusivity condition (2.2) which assures us that the numerical
scheme (1.2) is actually ℓp-stable for all p ∈ [1,+∞]. For instance, the Lax-Wendroff scheme does not satisfy
Hypothesis 1 and is not ℓ∞-stable. To be more precise, it is shown in [Tho65] that Hypothesis 1 is one of two
conditions which characterize the sequences a ∈ ℓ1(Z) so that the family (an)n is bounded in ℓ1(Z).

As discussed in the previous section, the leading order of the pointwise asymptotic behavior of an is already
known and justified in [RSC15]. For µ ∈ N\{0} and β ∈ C with positive real part, we let Hβ

2µ : R → C be the
function defined by

∀x ∈ R, Hβ
2µ(x) :=

1

2π

∫
R
e−ixue−βu2µ

du.

We call those functions generalized Gaussians since for µ = 1, we have

∀x ∈ R, Hβ
2 (x) =

1√
4πβ

exp

(
−x2

4β

)
.

We can now define the so-called "attractors" for the numerical scheme (1.2) satisfying Hypothesis 1:

∀n ∈ N\{0},∀j ∈ Z, H n
j :=

1

n
1
2µ

Hβ
2µ

(
j − nvλ

n
1
2µ

)
.

The result [RSC15, Theorem 1.2] claims that if the sequence a ∈ ℓ1(Z) satisfies Hypothesis 1, then

anj − H n
j =

n→+∞
o

(
1

n
1
2µ

)
(2.3)

where the error term is uniform on Z. This result is obviously a generalization of (1.3) to complex valued
sequences. We now state the main result of [Coe22].

Theorem 1. Let a ∈ ℓ1(Z) which satisfies Hypothesis 1. Then, there exist two positive constants C, c such that

∀n ∈ N\{0},∀j ∈ Z,
∣∣anj − H n

j

∣∣ ≤ C

n
1
µ

exp

(
−c

( |j − ncλ|
n

1
2µ

) 2µ
2µ−1

)
. (2.4)

A consequence is that there also exists a positive constant C such that for all u0 ∈ ℓ2(Z), the solution of the
numerical scheme (1.2) verifies

∀n ∈ N\{0},
∥∥un − H n ∗ u0

∥∥
ℓ2(Z) ≤

C

n
1
2µ

∥∥u0
∥∥
ℓ2(Z) (2.5)

where H n :=
(
H n

j

)
j∈Z

.

The improvement of Theorem 1 compared to (2.3) are the precise rate of convergence in 1

n
1
µ

and the sharp

generalized Gaussian bounds in (2.4), which allow to obtain inequality (2.5). Error estimates in ℓp are also
available thanks to convolution estimates.

The main result of [Coe22] actually has further uses as it allows to obtain an asymptotic expansion of anj up
to any order in powers of n− 1

2µ . Also, it takes care of the case where the Fourier series F restricted to S1 does
not only have one point of modulus 1 (as is the case in Hypothesis 1) but any finite number of points. This case
can occur for some schemes (for instance the Lax-Friedrichs scheme) and the only modification on Theorem 1 is
that there are as many generalized Gaussian waves that appear that there are points where F restricted to S1
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is of modulus 1. However, Theorem 1 does not fully generalize [RSC15, Theorem 1.2] as the conditions in the
paper of Randles and Saloff-Coste are less restrictive. To be more precise, the result (2.3) of [RSC15] does not
need to consider the diffusivity condition (2.2) in Hypothesis 1. A generalization of Theorem 1 in this difficult
case has not yet been found, even though the result of [Cou23] indicates that such a result might be attainable.

We now give some insight on the proof of Theorem 1. In [RSC15], the proof to obtain (2.3) relied on the
use of Fourier analysis to express the coefficients anj using the Fourier series F :

∀n ∈ N,∀j ∈ Z, anj =
1

2π

∫ 2π

0

e−ijtF (eit)ndt.

However, the proof of [Coe22, Theorem 1] uses another representation of the coefficients anj based on an approach
usually referred to in partial differential equations as "spatial dynamics". We introduce the Laurent operator

La : u ∈ ℓ2(Z) 7→ a ∗ u ∈ ℓ2(Z).

The Wiener theorem [New75] implies that the spectrum of the operator La is

σ(La) = F (S1).

Then, if we introduce the "discrete" Dirac mass δ ∈ ℓ2(Z) defined by

∀j ∈ Z, δj :=

{
1 if j = 0,
0 else,

we observe that
∀n ∈ N, an = La

nδ.

Thus, using functional calculus (see [Con90, Chapter VII]), we can express the coefficients anj using the resolvent
of the operator La:

∀n ∈ N,∀j ∈ Z, anj :=
1

2iπ

∫
Γ

znG(z, j)dz

where G(z, ·) = (zId − La)
−1δ is called the spatial Green’s function and Γ is a path on the complex plane C

which surrounds the spectrum of the operator La. The proof of Theorem 1 then relies on a precise analysis of
the spatial Green’s function G(z, ·) and an adequate choice of path Γ (which depends on j, n). The choice of
the contour Γ is done using the Riemann saddlepoint method and follows similar ideas as in [God03, ZH98].
We refer to [Coe22] for the complete details.

3 A numerical example: The O3 scheme
We will now consider a concrete example of finite difference scheme. The O3 scheme is an explicit third order
accurate finite difference approximation of the transport equation (1.1). We refer to [Des08] for a detailed
analysis of this scheme. It corresponds to the numerical scheme (1.2) for a ∈ ℓ1(Z) such that aj = 0 for
j /∈ {−1, 0, 1, 2} and

a2 = −vλ(1− (vλ)2)

6
, a1 =

vλ(1 + vλ)(2− vλ)

2
,

a0 =
(1− (vλ)2)(2− vλ)

2
, a−1 = −vλ(1− vλ)(2− vλ)

6
,

with λ := ∆t
∆x > 0. For vλ ∈]− 1, 1[\{0}, we have that F (1) = 1 and

∀κ ∈ S1\{1}, |F (κ)| < 1.

Also, there exists β ∈]0,+∞[ such that

F (eit) =
t→0

exp(ivλt− βt4 + o(t4)).

Hypothesis 1 is satisfied with µ = 2. We can then apply Theorem 1. We introduce the attractors

∀n ∈ N\{0},∀j ∈ Z, H n
j =

1

n
1
4

Hβ
4

(
j − nvλ

n
1
4

)
.

4



200 220 240 260 280 300

−0.015

−0.010

−0.005

0.000

0.005

0.010

0.015

0.020

n=500 b
√
nErr(n, j)

20 40 60 80 100

0.028

0.030

0.032

0.034

0.036

0.038

0.040

0.042

a
√
nmaxj∈{−2n,...,n} |Err(n, j)|

Figure 1: For these figures, we chose vλ = 1/2. On figure a : A representation of
√
nmaxj∈{−2n,...,n} |Err(n, j)|

with Err(n, j) := anj −H n
j depending on n. As expected, the function seems to be bounded. On figure b : We

fixed n = 500 and represented j ∈ Z 7→ √
nErr(n, j). We observe the exponential decay in j and a particular

shape of curve that arises which can be explained by looking at the next order of the asymptotic expansion.

Theorem 1 then states that there exist two constants C, c > 0 such that

∀n ∈ N\{0},∀j ∈ Z, |Err(n, j)| ≤ C√
n
exp

(
−c

( |j − nvλ|
n

1
4

) 4
3

)
. (3.1)

where Err(n, j) := anj − H n
j .

This behavior is represented on Figure 1 where we even see that the remainder
√
n(anj −H n

j ) seems to scale

like f

(
j−nvλ

n
1
4

)
. Hence, the 1√

n
pre-factor in (3.1) seems to be sharp. In [Coe22], we find a reliable way to

compute the terms of the asymptotic expansion up to any order.
Acknowledgement: The author would like to thank Jean-François Coulombel and Grégory Faye for their

many useful advice and suggestions which led to this result as well as the referees for their indications to improve
the paper.
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