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S 1 := {z ∈ C, |z| = 1}.
For E a Banach space and T a bounded operator acting on E, the notation σ(T ) stands for the spectrum of the operator T .

For 1 ≤ q < +∞, we let ℓ q (Z) denote the Banach space of complex valued sequences indexed by Z and such that the norm:

∥u∥ ℓ q := j∈Z |u j | q 1 q
is finite. We also let ℓ ∞ (Z) denote the Banach space of bounded complex valued sequences indexed by Z equipped with the norm ∥u∥ ℓ ∞ := sup When equipped with this product, ℓ1 (Z) is a commutative Banach algebra. We define for a sequence a ∈ ℓ 1 (Z) and an integer n ∈ N a n := a * . . . * a.

Context

This paper is devoted to presenting the main result of [START_REF] Coeuret | Local Limit Theorem for Complex Valued Sequences[END_REF] which describes the pointwise asymptotic behavior of iterated convolutions a n := a * . . . * a for some sequences a ∈ ℓ 1 (Z). This question arises for instance when one discretizes the scalar 1D-transport equation

∂ t u + v∂ x u = 0, t ≥ 0, x ∈ R, u(0, •) = u 0 , (1.1)
with a velocity v ∈ R and a Cauchy datum u 0 at t = 0. If we introduce a time step ∆t > 0 and a space step ∆x > 0 and assume that the Courant number λ := ∆t ∆x is kept constant, we want to approach the value u(n∆t, j∆x) where u is the solution of (1.1) by a quantity u n j that is determined by using a finite difference scheme. We claim that any explicit one-step finite difference scheme can be written with some well chosen finitely supported sequence a ∈ ℓ 1 (Z) as the following system ∀n ∈ N, u n+1 = a * u n and u 0 ∈ C Z .

(1.2) Therefore, the precise understanding of the large time behavior of the finite difference scheme (1.2) relies on the description of the pointwise asymptotic behavior of the family (a n ) n for the complex valued sequence a ∈ ℓ 1 (Z).

If we suppose that the sequence a has real non negative coefficients and that the sum of its coefficients equals 1 (as would be the case for a consistent monotone scheme), then the sequence a n is the probability distribution2 of the sum of n independent random variables supported on Z each with the probability distribution a. A lot is known on the pointwise asymptotic behavior of the sequence a n in this case. In particular, the local limit theorem states, under suitable hypotheses on a, that

a n j - 1 √ 2πσ 2 n exp - |j -nα| 2 2nσ 2 = n→+∞ o 1 √ n , (1.3) 
where α = k∈Z ka k and σ 2 = k∈Z k 2 a kα 2 > 0 are respectively the mean and the variance of any random variable with probability distribution a and where the error term in (1.3) is uniform on Z (see [START_REF] Petrov | Sums of independent random variables[END_REF] Chapter VII] for more details). The expansion (1.3) gives a precise description of the asymptotic behavior of a n j in the range |j -nα| ≲ √ n and implies that the convolution powers of a are attracted towards the heat kernel. In the partial differential equation language, this corresponds to a parabolic behavior for the numerical scheme (1.2). Following, among other works, [DSC14, RSC15, CF22], we are interested in generalizing the local limit theorem (1.3) of the probability theory to the case where the sequence a is complex valued. Extending the works of Schoenberg [START_REF] Schoenberg | On smoothing operations and their generating functions[END_REF], Greville [START_REF] Greville | On stability of linear smoothing formulas[END_REF] and Diaconis and Saloff-Coste [DSC14, Theorem 2.6], the article [RSC15] of Randles and Saloff-Coste already provides a generalization of the local limit theorem for a large class of complex valued finitely supported sequences. By doing so, the authors of [START_REF] Randles | On the convolution powers of complex functions on Z[END_REF] describe an asymptotic expansion similar to (1.3) with an explicit expression of the attractors. Our goal in this paper is to present the result [Coe22, Theorem 1] which introduces a more precise description of the asymptotic result proved in [START_REF] Randles | On the convolution powers of complex functions on Z[END_REF] by proving a sharp rate of convergence together with a generalized Gaussian bound for the remainder (see Theorem 1 below). In the case where a is the probability distribution of a random variable, as above, [Coe22, Theorem 1] would translate in saying that, under suitable assumptions on a, there exist two constants

C, c > 0 such that ∀n ∈ N\{0}, ∀j ∈ Z, a n j - 1 √ 2πσ 2 n exp - |j -nα| 2 2nσ 2 ≤ C n exp -c |j -nα| 2 n .
To be more precise, [Coe22, Theorem 1] actually allows us to obtain an asymptotic expansion not only of order 1 but up to any order, which was not proved in [START_REF] Randles | On the convolution powers of complex functions on Z[END_REF] but was expected due to the local limit theorem in the probabilistic case (see [START_REF] Petrov | Sums of independent random variables[END_REF] Chapter VII]). The interested reader can find more details in the latest version of [START_REF] Coeuret | Local Limit Theorem for Complex Valued Sequences[END_REF]. However, [Coe22, Theorem 1] relies on a stronger hypothesis on the elements of ℓ 1 (Z) than the conditions imposed in [START_REF] Randles | On the convolution powers of complex functions on Z[END_REF]. We will consider here elements a of ℓ 1 (Z) which are finitely supported and such that the sequence (a n ) n∈N is bounded in ℓ 1 (Z). The fundamental contribution [START_REF] Thomee | Stability of difference schemes in the maximum-norm[END_REF] by Thomée completely characterizes such elements and is an important starting point for our work.

Main result: Generalization of the local limit theorem

We now present in more details the necessary hypothesis and the main result of [START_REF] Coeuret | Local Limit Theorem for Complex Valued Sequences[END_REF]. We consider a sequence a ∈ ℓ 1 (Z) associated with a one-step in time explicit finite difference scheme (1.2) for the transport equation (1.1). We recall that the sequence a is thus finitely supported. We introduce the Fourier series F associated with the sequence a defined as ∀κ ∈ C\{0}, F (κ) := j∈Z a j κ j .

(2.1)

The function F is holomorphic on C\{0}. We now introduce a hypothesis on the Fourier series F which is based on the work of Thomée in [START_REF] Thomee | Stability of difference schemes in the maximum-norm[END_REF].

Hypothesis 1. We assume that

F (1) = 1, F ′ (1) = vλ, (Consistency condition)
where v is the velocity in the transport equation (1.1). Moreover, we suppose that

∀t ∈ [-π, π]\{0}, |F (e it )| < 1 (Dissipativity condition)
and that there exist an integer µ ∈ N\{0} and a complex number β ∈ C with ℜ(β) > 0 such that

F (e it ) = t→0 exp(ivλt -βt 2µ + o(t 2µ )). (Diffusivity condition) (2.
2)

The consistency condition on the Fourier series F implies that the numerical scheme (1.2) is consistent with the transport equation (1.1). The dissipativity condition is a stronger version of the Von Neumann condition which is necessary and sufficient so that the numerical scheme (1.2) is also ℓ 2 -stable. The main contribution of Thomée in [START_REF] Thomee | Stability of difference schemes in the maximum-norm[END_REF] is the introduction of the diffusivity condition (2.2) which assures us that the numerical scheme (1.2) is actually ℓ p -stable for all p ∈ [1, +∞]. For instance, the Lax-Wendroff scheme does not satisfy Hypothesis 1 and is not ℓ ∞ -stable. To be more precise, it is shown in [START_REF] Thomee | Stability of difference schemes in the maximum-norm[END_REF] that Hypothesis 1 is one of two conditions which characterize the sequences a ∈ ℓ 1 (Z) so that the family (a n ) n is bounded in ℓ 1 (Z).

As discussed in the previous section, the leading order of the pointwise asymptotic behavior of a n is already known and justified in [START_REF] Randles | On the convolution powers of complex functions on Z[END_REF]. For µ ∈ N\{0} and β ∈ C with positive real part, we let H β 2µ : R → C be the function defined by

∀x ∈ R, H β 2µ (x) := 1 2π R e -ixu e -βu 2µ du.
We call those functions generalized Gaussians since for µ = 1, we have

∀x ∈ R, H β 2 (x) = 1 √ 4πβ exp - x 2 4β .
We can now define the so-called "attractors" for the numerical scheme (1.2) satisfying Hypothesis 1:

∀n ∈ N\{0}, ∀j ∈ Z, H n j := 1 n 1 2µ H β 2µ j -nvλ n 1 2µ
.

The result [RSC15, Theorem 1.2] claims that if the sequence a ∈ ℓ 1 (Z) satisfies Hypothesis 1, then

a n j -H n j = n→+∞ o 1 n 1 2µ (2.3)
where the error term is uniform on Z. This result is obviously a generalization of (1.3) to complex valued sequences. We now state the main result of [START_REF] Coeuret | Local Limit Theorem for Complex Valued Sequences[END_REF].

Theorem 1. Let a ∈ ℓ 1 (Z) which satisfies Hypothesis 1. Then, there exist two positive constants C, c such that

∀n ∈ N\{0}, ∀j ∈ Z, a n j -H n j ≤ C n 1 µ exp -c |j -ncλ| n 1 2µ 2µ 2µ-1 .
(2.4)

A consequence is that there also exists a positive constant C such that for all u 0 ∈ ℓ 2 (Z), the solution of the numerical scheme (1.2)

verifies ∀n ∈ N\{0}, u n -H n * u 0 ℓ 2 (Z) ≤ C n 1 2µ u 0 ℓ 2 (Z) (2.5)
where

H n := H n j j∈Z
.

The improvement of Theorem 1 compared to (2.3) are the precise rate of convergence in 1 n 1 µ and the sharp generalized Gaussian bounds in (2.4), which allow to obtain inequality (2.5). Error estimates in ℓ p are also available thanks to convolution estimates. The main result of [START_REF] Coeuret | Local Limit Theorem for Complex Valued Sequences[END_REF] actually has further uses as it allows to obtain an asymptotic expansion of a n j up to any order in powers of n -1 2µ . Also, it takes care of the case where the Fourier series F restricted to S 1 does not only have one point of modulus 1 (as is the case in Hypothesis 1) but any finite number of points. This case can occur for some schemes (for instance the Lax-Friedrichs scheme) and the only modification on Theorem 1 is that there are as many generalized Gaussian waves that appear that there are points where F restricted to S 1 is of modulus 1. However, Theorem 1 does not fully generalize [RSC15, Theorem 1.2] as the conditions in the paper of Randles and Saloff-Coste are less restrictive. To be more precise, the result (2.3) of [START_REF] Randles | On the convolution powers of complex functions on Z[END_REF] does not need to consider the diffusivity condition (2.2) in Hypothesis 1. A generalization of Theorem 1 in this difficult case has not yet been found, even though the result of [START_REF] Coulombel | The Green's function of the Lax-Wendroff and beam-warming schemes[END_REF] indicates that such a result might be attainable.

We now give some insight on the proof of Theorem 1. In [START_REF] Randles | On the convolution powers of complex functions on Z[END_REF], the proof to obtain (2.3) relied on the use of Fourier analysis to express the coefficients a n j using the Fourier series F :

∀n ∈ N, ∀j ∈ Z, a n j = 1 2π 2π 0 e -ijt F (e it ) n dt.
However, the proof of [Coe22, Theorem 1] uses another representation of the coefficients a n j based on an approach usually referred to in partial differential equations as "spatial dynamics". We introduce the Laurent operator

L a : u ∈ ℓ 2 (Z) → a * u ∈ ℓ 2 (Z).
The Wiener theorem [START_REF] Newman | A simple proof of Wiener's 1/f theorem[END_REF] implies that the spectrum of the operator L a is σ(L a ) = F (S 1 ).

Then, if we introduce the "discrete" Dirac mass δ ∈ ℓ 2 (Z) defined by ∀j ∈ Z, δ j := 1 if j = 0, 0 else, we observe that ∀n ∈ N, a n = L a n δ.

Thus, using functional calculus (see [START_REF] Conway | A course in functional analysis[END_REF] Chapter VII]), we can express the coefficients a n j using the resolvent of the operator L a :

∀n ∈ N, ∀j ∈ Z, a n j := 1 2iπ Γ z n G(z, j)dz
where G(z, •) = (zId -L a ) -1 δ is called the spatial Green's function and Γ is a path on the complex plane C which surrounds the spectrum of the operator L a . The proof of Theorem 1 then relies on a precise analysis of the spatial Green's function G(z, •) and an adequate choice of path Γ (which depends on j, n). The choice of the contour Γ is done using the Riemann saddlepoint method and follows similar ideas as in [START_REF] Godillon | Green's function pointwise estimates for the modified Lax-Friedrichs scheme[END_REF][START_REF] Zumbrun | Pointwise semigroup methods and stability of viscous shock waves[END_REF]. We refer to [START_REF] Coeuret | Local Limit Theorem for Complex Valued Sequences[END_REF] for the complete details.

3 A numerical example: The O3 scheme

We will now consider a concrete example of finite difference scheme. The O3 scheme is an explicit third order accurate finite difference approximation of the transport equation (1.1). We refer to [START_REF] Desprès | Finite volume transport schemes[END_REF] for a detailed analysis of this scheme. It corresponds to the numerical scheme (1.2) for a ∈ ℓ 1 (Z) such that a j = 0 for j / ∈ {-1, 0, 1, 2} and

a 2 = - vλ(1 -(vλ) 2 ) 6 , a 1 = vλ(1 + vλ)(2 -vλ) 2 , a 0 = (1 -(vλ) 2 )(2 -vλ) 2 , a -1 = - vλ(1 -vλ)(2 -vλ) 6 , with λ := ∆t ∆x > 0. For vλ ∈] -1, 1[\{0}, we have that F (1) = 1 and ∀κ ∈ S 1 \{1}, |F (κ)| < 1.
Also, there exists β ∈]0, +∞[ such that

F (e it ) = t→0 exp(ivλt -βt 4 + o(t 4 )).
Hypothesis 1 is satisfied with µ = 2. We can then apply Theorem 1. We introduce the attractors

∀n ∈ N\{0}, ∀j ∈ Z, H n j = 1 n 1 4 H β 4 j -nvλ n 1 4
. with Err(n, j) := a n j -H n j depending on n. As expected, the function seems to be bounded. On figure b : We fixed n = 500 and represented j ∈ Z → √ nErr(n, j). We observe the exponential decay in j and a particular shape of curve that arises which can be explained by looking at the next order of the asymptotic expansion. where Err(n, j) := a n j -H n j . This behavior is represented on Figure 1 where we even see that the remainder √ n(a n j -H n j ) seems to scale like f j-nvλ n 1 4

. Hence, the 1 √ n pre-factor in (3.1) seems to be sharp. In [START_REF] Coeuret | Local Limit Theorem for Complex Valued Sequences[END_REF], we find a reliable way to compute the terms of the asymptotic expansion up to any order.

  j∈Z |u j |. We define the convolution a * b of two elements a and b of ℓ 1 (Z) by ∀j ∈ Z, (a * b) j := l∈Z a l b j-l .

√Figure 1 :

 1 Figure 1: For these figures, we chose vλ = 1/2. On figure a : A representation of √ n max j∈{-2n,...,n} |Err(n, j)|

  Theorem 1 then states that there exist two constants C, c > 0 such that ∀n ∈ N\{0}, ∀j ∈ Z, |Err(n, j)| ≤ C
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We say that a sequence a is the probability distribution of a random variable X with values in Z when P(X = j) = a j for all j ∈ Z.
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