Enhancing Stormwater Control Measures Using Real-Time Control Technology: A Review

Wei D. Xu^{a*}, Matthew J. Burns^a, Frédéric Cherqui^{a,b} and Tim D. Fletcher^a

^aSchool of Ecosystem and Forest Sciences, The University of Melbourne, 500 Yarra

Boulevard, Burnley, Victoria 3121 Australia;^bUniv. Lyon, INSA Lyon, DEEP EA 7429, F-

69621, Villeurbanne cedex, France

@gmail. 705-7383 *Correspondence: danielweixu@gmail.com; Tel.: +61-422-737-411; ORCID:

https://orcid.org/0000-0002-1705-7383

9 Enhancing Stormwater Control Measures Using Real-Time Control 10 Technology: A Review

Abstract

Stormwater Control Measures (SCMs) are increasingly applied to capture and utilize urban runoff to augment water supply, reduce flood risk, and to restore natural flow regimes in receiving waters. New advances in Real-Time Control (RTC) technology offer the potential to dynamically optimise SCM performance to meet multi-objectives, without the need for major structural upgrades. This paper reviews the application of RTC applied to different types of SCMs at a range of scales, revealing both the benefits and challenges. RTC can improve urban water management both now and into the future, and the applications are vast. SCM performance can be optimised at a single site scale, but its real utility will be in larger collaborative systems, and its potential will increase with improved forecast capability and decreased costs of sensors and control elements. There is a critical need for creating new regulatory environments, governance and business models, to facilitate widespread implementation.

> Key Words: Real-Time Control (RTC), Urban Water Management, Stormwater Control Measures, Flow Regime, Smart Control Technology, Water Sensitive Urban Design

1. Introduction

Despite recent advances in urban water management, many old challenges remain, and new ones are emerging. Dwindling freshwater resources threaten human water security (Vörösmarty et al. 2000; Vörösmarty et al. 2010). Flooding is still a major social and economic hazard in many cities (Jongman et al. 2012) and urban stream channels are eroding at alarming rates, driven by excessive flows from urban runoff (Russell et al. 2019; Hawley et al. 2013; Vietz et al. 2017). Untreated impervious runoff contaminates downstream receiving waters through either sewer overflows and exfiltration in combined sewer systems or through direct discharge in systems with separate stormwater and wastewater networks (Sercu et al. 2011; Divers et al. 2013; Kim et al. 2007; Ellis and Hvitved-Jacobsen 1996). These altered water cycles and flow regimes lead to ecological degradation in urban streams and a subsequent loss of ecosystem services (Walsh et al. 2012; Bunn and Arthington 2002; King et al. 2005; Wright et al. 2011).

For years, researchers and practitioners have promoted the use of Stormwater Control Measures (termed here as SCMs; for a full description of related terminology, see Fletcher et al. 2014a) to capture and utilize urban runoff to augment supplies and reduce flood risk and overall load on the combined sewer treatment plant, and to restore more natural flow regimes by promoting infiltration and groundwater recharge (Ashley et al. 2013; Marsalek and Chocat 2002; Hamel et al. 2013; Rhea et al. 2015). Common SCMs include infiltration-based systems (e.g. unlined biofilters, infiltration trenches, basins and porous pavement; Bhaskar et al. 2016; Shuster and Rhea 2013; Bell et al. 2016; Rhea et al. 2015) and retention-based systems (e.g. rainwater harvesting systems, wetlands and green roofs; Burns et al. 2015b; Askarizadeh et al. 2015; Al-Rubaei et al. 2016). Despite the intentions of this move towards more water-sensitive approaches to stormwater management, change to date has arguably been limited (Bedan and Clausen 2009; Bell et al. 2016; Hur et al. 2008), with SCM implementation constrained by a

53 range of factors (Farrelly and Brown 2011; Brown et al. 2011). Given additional stressors of 54 future climate change and population growth, there is a real need to enhance both the 55 performance and adaptability of Stormwater Control Measures.

Novel advances in Real-Time Control (RTC) technology offer great promise to improve conventional urban water management. RTC is a collection of sensors, communication devices, actuators and software (Bennett 1994; Brogan 1991), which can be used to actively and automatically operate components of the urban water cycle. RTC can modify the passive operation of conventional SCMs by actively controlling the system processes, including inflow, outflow and detention time, allowing them to cope better with the stochastic nature of stormwater quantity and quality. For a new system, RTC could potentially allow it to be built at a smaller size while delivering the same level of service as a conventional larger design. For existing systems, RTC could improve current performance, without requiring system capacity to be upgraded. Most importantly, RTC could change the way people and organizations manage urban water at a range of scales. Doing so could transform individuals to become active providers of urban water services, utilising new governance models inspired by the increasingly-decentralised energy market (Mah et al. 2012).

Applications of real-time control technology in urban water management are numerous. However, harnessing the potential of such technologies requires 1) greater trust in the technology, 2) development and testing of case studies, and 3) overcoming of social, institutional and economical barriers. In this paper we aim to examine use of RTC technology in urban water management by reviewing its application to different types of infrastructure: nature-based SCMs (including wetlands, biofilters and vegetated swales), detention basins and rainwater harvesting systems. Building on this new understanding, we consider how the technology could be used to transform the current urban water management.

Page 5 of 99

Urban Water Journal

This review consists of two principal components. The first part discusses how RTC could enhance the hydrologic performance of different types of SCMs-e.g. their ability to improve water quality and attenuate peak flows locally. While the benefits of control might depend on the particular context, several studies suggest that RTC can improve the performance of SCMs at the site scale, but further empirical validation is required to be confident in this hypothesis. The second part investigates the potential of RTC technology to play a major role at larger scales, by operating a range of distributed small-scale systems as a coordinated system. This envisions a future intelligent water management network, where all water related assets will be cooperatively operated. Application across these scales will likely face a number of technical and also social-economic challenges. Without such understanding, adoption may fail due to the inertia inherent in urban water management.

88 2. Real-time control in stormwater control measures

Real-time control technology is not novel to urban water management. Application can be seen
extensively in wastewater systems to monitor and manage sewer overflows (Campisano et al.
2016; Dirckx et al. 2011; Ly 2019; Vezzaro et al. 2014; Piro et al. 2019; Ibrahim 2020) or to
control water quality (Schütze et al. 2004; Mollerup et al. 2017; Campisano and Modica 2002).
Recent advances in sensor technology, however, makes RTC a cost-effective tool to enhance
operation of a range of systems (Chee-Yee and Kumar 2003) and scales.

95 Real-time control has been increasingly applied to SCMs. We summarize such 96 application based on the type of SCMs (e.g. detention basins or rainwater harvesting systems) 97 (Table 1). Current investigations predominantly focus on modelling studies, with only a few 98 empirical studies. Most studies to date have focused on single systems at either small or 99 catchment scale, without consideration of network interactions or cooperation. The details of 100 these studies will be discussed in the following sections. 101 Table 1. List of key studies on real-time controlled SCMs. The studies are classified according

102 to the type of SCM (nature-based solution, detention basin, or rainwater harvesting system),

103 the type of approach (modelling or empirical) and with a distinction between single and

104 multiple systems.

	Single system at small-/catchment scale	Multiple systems at catchment scale
-	Nature-based s	solutions
Modelling	Shen et al. (2018)	-
Empirical	Persaud et al. (2019), Shen et al. (2019)	-
	Detention E	Basins
Madalling	Gaborit et al. (2013), Muschalla et al. (2014), Carpenter et al. (2014), Gaborit et al. (2016),	
Modennig	Bilodeau et al. (2018), Shishegar et al. (2019a), Shishegar et al. (2019b) and Sharior et al. (2019)	-
Empirical	Jacopin et al. (2001), Middleton and Barrett (2008), Gilpin and Barrett (2014) and Poresky et al. (2015)	Mullapudi et al. (2018)
	Rainwater Harves	ting Systems
Modelling	Melville-Shreeve et al. (2016), Xu et al. (2018), Roman et al. (2017), Behzadian et al. (2017) and Oberascher et al. (2019)	Di Matteo et al. (2019)
Empirical	Han and Mun (2011), Gee and Hunt (2016)	-

106 2.1 Nature-Based Stormwater Control Measures

Nature-based SCMs are characterised by their use of soil and vegetation in the retention and treatment of stormwater. Structurally, they often employ stormwater storage and vegetation to enable ponding and biotreatment, with the nature of the water flow within the system varying according to design (Figure 1). For example, in biofilters, the treatment is primarily via vertical percolation through the vegetation-enhanced soil-based filter media (Davis et al. 2009). In surface wetlands, however, treatment occurs predominantly in the water column, where interactions with vegetation, the soil surface, and their associated biofilms, play an important role. Subsurface wetlands have a functioning between these two, with predominantly horizontal flow through the (typically coarse) filtration media.

Treatment in nature-based SCMs is provided through a combination of physical (Feng
 et al. 2012; Shrestha et al. 2018), chemical (Henderson et al. 2007) and biological processes
 (Payne et al. 2014; Chandrasena et al. 2012) (Figure 1). The ponding provided by nature-based

Urban Water Journal

SCMs acts to buffer the stormwater runoff, attenuating peak flows (e.g. wetland; Al-Rubaei et
al. 2016) and biofilters (Davis 2008; Hunt et al. 2012; Winston et al. 2016b)).

The effectiveness of such systems is closely linked to operating conditions, such as temperature, wetting and drying and the flow regime (Winston et al. 2016a; Ge et al. 2016; Yi et al. 2016). The treatment effect of abiotic and biotic reactions (e.g. anoxia, de-/nitrification and mineralization) largely depends on water level and retention time, which determines the extent and period of contact between the stormwater and the filter media, vegetation and biofilms which mediate treatment processes (Bratieres et al. 2008; Klocker et al. 2009). Hydrologic performance and pollutant removal are thus affected by inflow dynamics resulting from the variability of rainfall and runoff (Hunt et al. 2006). The wet-dry cycle and soil moisture are also critical for both treatment (e.g. nutrient leaching) and system health (e.g. survival of plants) (Afrooz and Boehm 2017; Hatt et al. 2008; Zinger et al. 2007b; Blecken et al. 2009b). Therefore, maximizing the performance of nature-based solutions depends on maintaining optimal detention time and moisture regime, to support physical and biological treatment processes.

Figure 1. Conceptual representation of conventional nature-based solution, adapted from Fletcher et al. (2013). The elements in brown are components dedicated to the real-time control (RTC) of the system. RTC of nature-based stormwater control measures generally control the inflows and/or outflows for a range of objectives.

System performance can be improved by system design. For example, the inclusion of a carbon-enriched saturated zone in biofilters can mitigate against the impacts of extended dry periods, providing a more stable anaerobic zone for better nutrient removal and reduced nutrient leaching after extended dry periods (Zinger et al. 2007b; Zinger et al. 2007a; Blecken et al. 2009a). Expanding system size could also increase the retention time, but may not always be feasible in space-constrained urban areas, and may also have the effect of accentuating impacts of long dry periods on system function. The passive nature of nature-based SCMs thus intrinsically limits their ability to respond to variations in operating conditions.

The effectiveness of such systems could also be enhanced using real-time control
 technology (Shen et al. 2017; Persaud et al. 2019; Shen et al. 2019). This involves the
 installation of sensors and actuators to monitor and control various system processes, such as

Page 9 of 99

Urban Water Journal

the *retention time*, for better treatment (elements in brown in Figure 1). Shen et al. (2017) modelled a controlled biofilter and predicted improved outflow quality when collected runoff was treated by batch. Inlet and outlet valves were kept shut when the system was full, bypassing any inflow, until the desired retention time was reached. This finding was later validated by Shen et al. (2019) through a long-term laboratory experiment. Persaud et al. (2019) experimentally tested similar control strategies in a column study over a 9-week period and concluded that the RTC system can better remove heavy metals and ammonium. Both of the studies also identified the trade-off between retention time and overall capacity to receive inflow, thus requiring further optimisation.

The potential of real-time control in nature-based SCMs remains largely untested, in terms of delivering more natural flow regimes and improving the moisture regime. Systems could use a rainfall forecast to create sufficient storage for incoming events through a controlled outlet pre-storm discharge. This outflow could theoretically be regulated to match pre-development flow regimes using real-time flow monitoring of a nearby "reference" waterway (Rode et al. 2016). Furthermore, RTC could optimise the moisture regime of substrate-based SCMs (e.g. biofilter) for plant and microbial community survival during extended dry periods, and thus minimize subsequent impact on treatment effectiveness. This could be achieved by a controlled outlet to maintain sufficient water within the system (e.g. substrate in biofilter and permanent ponding in wetland) using real-time water monitoring (e.g. water level in wetland and soil moisture in biofilters) (Figure 1). While no studies to date have demonstrated this for SCMs, a similar idea has been used in operating natural wetlands (Lyons et al. 2008), to provide adequate aquatic habitat for native species and migratory waterbirds. By coupling with evolving real-time or surrogates quality monitoring (Zhang et al. 2015; Chandrasena et al. 2016; Wang et al. 2019), a more reliable nature-based SCM could be delivered for stormwater harvesting (Payne et al. 2019) or even greywater treatment potential

(Barron et al. 2019). Future study is required to further understand the effect of RTC on their performance, through both modelling and empirical proof-of-concept. This also includes the development of robust control models to provide accurate performance prediction and real-time operation.

<text>

179 2.2 Detention basins

180 A detention basin is a stormwater storage mainly designed to provide attenuation of
181 downstream peak flows. It temporarily stores runoff, discharging at the rates that is matched to
182 the capacity of downstream drainage networks (Figure 2).

Early use of real-time control in detention basins has been focussed on increasing the capacity of flooding control by reducing the frequency and volume of discharge. The outlet hydraulic valves are typically pre-programmed to close during the rain event and only open when storage exceeds a certain level (e.g. 70%), or stormwater has been held for a pre-set period (e.g. 12 hours) (Jacopin et al. 2001; Middleton and Barrett 2008). This results in decreased frequency and volume of runoff discharged to the downstream drainage network during storm events.

Several studies have demonstrated the use of control in real-time to adapt to predicted rainfall (Gaborit et al. 2013; Gilpin and Barrett 2014; Bilodeau et al. 2018; Sharior et al. 2019; Shishegar et al. 2019a; Shishegar et al. 2019b). Rainfall forecasts are used to predict the timing and volume of overflow by comparing incoming runoff and available capacity (Figure 2). This allows the system to perform a *pre-storm release* – creating sufficient room before storm events to avoid system overflow. The release rate (i.e. control valve opening percentage) is determined by the time before a forecasted overflow occurs and volume required to hold that inflow. Such modification further increases the detention performance, however, the effect of discharge rate on downstream erosion should also be considered.

Reducing channel erosion not only requires the reduction of runoff volume. It requires the attenuation of erosion-inducing flow (Vietz et al. 2017). Large SCMs, such as detention basins, can perversely intensify erosion, by increasing the time flows remain above the mobilisation threshold for downstream bed and bank sediments (Hawley et al. 2013). An appropriate design which limits flows below the threshold can effectively reduce erosion

Urban Water Journal

potential (Elliott et al. 2010). The addition of real-time control to an existing detention basin could help to achieve this result, without sacrificing performance in flood events. It can be configured to avoid wet-weather discharge (through both hydraulic valve and overflow) and mimic pre-development peak flow by adaptively limiting outflow, thus substantially reducing erosion potential. For example, Poresky et al. (2015) demonstrated that RTC can reduce the erosive flow by 50% to 60% more than a conventional configuration. Although erosion potential is highly related to a suite of physical attributes and might be ecologically important (Fletcher et al. 2014b), a single threshold is commonly adopted in current applications (Elliott et al. 2010; Poresky et al. 2015). Future design of RTC detention basins could consider multiple ecohydrological metrics to deliver better environmental outcomes for the stream.

Detention basins are also used to manage water quality. Temporarily holding stormwater can partially remove pollutants and achieve water quality improvement through sedimentation and biological conversion (Shammaa et al. 2002; Guo and Adams 1999; Carpenter et al. 2014). The treatment effectiveness depends on detention time and outflow rate (Muschalla et al. 2014). Water quality treatment performance can be improved using RTC technology. For example, the detention basin can purge the captured stormwater when the treatment desired is reached. Modulating discharge rate can also reduce the likelihood of pollutant resuspension. Both empirical and modelling evidence showed that, by employing real-time control, the removal efficiency of ammonia-nitrogen and total suspended solids (TSS) were increased by 80% and 50% respectively (Carpenter et al. 2014; Gaborit et al. 2013; Gaborit et al. 2016). The simulation results from Muschalla et al. (2014) also predicted that RTC detention basins improved the removal of small particles by up to 60% compared to the traditional design. Such benefits were also demonstrated for the removal of biological contaminants, such as Escherichia coli (Gilpin and Barrett 2014).

Figure 2. Conceptual representation of conventional storage-based stormwater control measure (i.e. detention basin and rainwater harvesting system) adapted from Fletcher et al. (2013). The elements in brown present the components required to enable the real-time control (RTC) of the system. RTC of storage-based stormwater control measures generally control the outflows for a range of objectives.

234 2.3 Rainwater Harvesting Systems

Rainwater harvesting systems are designed to capture surface runoff from impervious surfaces (e.g. roofs), to both provide a source of water and to mitigate stormwater runoff (Mikkelsen et al. 1999; Gardner and Vieritz 2010; Ward et al. 2012; Amos et al. 2016). Diversion of rainwater from direct runoff to water supply helps to reduce the excess runoff volume delivered to receiving waters (Fletcher et al. 2007). Deliberately releasing some of the retained water to the receiving water in a temporal pattern close to the natural flow regimes can help to return the hydrograph shape of the remaining runoff (Burns et al. 2012).

Reducing excess runoff requires adequate freeboard available to store incoming rainfall events, so that uncontrolled overflows to the downstream drainage network are avoided (Campisano and Modica 2016). In general, most conventional rainwater harvesting systems have frequent uncontrolled overflow (Jones and Hunt 2010; Burns et al. 2015a; Campisano and Modica 2012). This is because they often lack constant and high demand uses for their stored water, and thus often remain at or near full (Burns et al. 2015a; DeBusk et al. 2013).

Increasing the type of end-uses (e.g. laundry or hot water usage) may help address the problem, but may not always be feasible. For example, public perceptions of rainwater quality might limit connected end-uses (Gwenzi et al. 2015; Ward et al. 2010), as may cost (Roebuck et al. 2011; Rahman et al. 2011).

Uncontrolled overflow could be reduced further using RTC technology, both in new and retrofit situations (Gee and Hunt 2016; Han and Mun 2011). The technology enables the system to receive information on operating conditions (e.g. water level) and weather forecast. This allows pre-storm release before a rainfall event to ensure sufficient storage for incoming runoff (Figure 2). One commonly applied control strategy, for example, opens the valve until enough room is made to contain predicted rainfall. Page 15 of 99

Urban Water Journal

Such a logic can enhance the runoff retention, without substantially compromising water supply performance. Modelling studies predicted that RTC technology reduced uncontrolled overflows by 10-35% (Behzadian et al. 2017; Roman et al. 2017; Oberascher et al. 2019). Han and Mun (2011) reported a 47% reduction of annual runoff at larger scale through empirical evidence. More importantly, Xu et al. (2018) predicted that the active system was able to limit loss of water supply yield to less than 2%, although this depends on the enduse profile of the stored water (Melville-Shreeve et al. 2016).

Actively-controlled rainwater harvesting systems are better able to control flow peaks, particularly for small rainfall events. For example, Roman et al. (2017) simulated RTC systems, finding that they could retain all the runoff generated during small events (< 5mm/hr). Similar results can be seen in empirical studies, where Gee and Hunt (2016) demonstrated an average of 93% peak flow rate reduction during 15-month period, including one event with an intensity higher than that of 2-year 5-min storm. Such levels of retention are likely to mitigate nuisance flooding (i.e. low-level inundation).

Such peak control by RTC can be extended to large rainfall events. Modelling results by Melville-Shreeve et al. (2016) reported a 33% greater runoff volume reduction compared to conventional systems for a rainfall with depth similar to a 20-year, 24 hour storm. This level of peak reduction could potentially allow the downstream drainage network originally designed for a 10-year rainfall to handle a 50-year rainfall event (Han and Mun 2011). Testing such models with empirical evidence is of course difficult, given the infrequent nature of such large rainfall events. Monitoring studies generally involve a single geographic location and set of design and operating parameters (Gee and Hunt 2016; Han and Mun 2011). There is a need for more empirical experiments to test the long-term ability of RTC in a wider variety of operating conditions, recognising that performance in extreme events may not be able to be observed within a reasonable timeframe.

Urban Water Journal

RTC may offer the important ability for multiple systems to operate in a coordinated way, thus overcoming the limitations of a single allotment scale system (Damodaram et al. 2010; Schubert et al. 2017). For example, Di Matteo et al. (2019) demonstrated a better peak flow mitigation in a 1 in 100-year, 24-hr storm. This requires two system orifices discharging at different rates and times throughout the event. Such a strategy can potentially be upscaled to deliver catchment-scale benefits, where small-scale systems within the catchments can be operated as an integrated network.

Real-time controlled systems are likely to retain more runoff than conventional approaches, such as passive 'trickle release' systems, where a slow-release outlet is provided at an intermediate depth to frequently empty the storage above. Both modelling (Xu et al. 2018) and empirical studies have shown that the RTC system (Gee and Hunt 2016) can deliver more natural flow regimes, ensuring that any release can be controlled to not only limit overflows, but to mimic more natural dry weather flows.

Both passive and active systems have the potential to address the baseflow component of flow regimes (Mitchell et al. 2007; Fletcher et al. 2007; Askarizadeh et al. 2015). To counter the common (but not ubiquitous) effect of lost baseflows in urban areas (Price 2011) release of tank water can be directed to the adjacent landscape (Walsh et al. 2015; Burns et al. 2012) or to infiltration systems (Hunt et al. 2006) to promote infiltration and thus groundwater recharge. Xu et al. (2018) explored this potential through a modelling study and concluded that the active release system is capable of simultaneously delivering baseflow contributions (i.e. persistent low rate discharge) and runoff retention (i.e. pre-storm release) with only minor reductions in the reliability of water supply. A similar level of baseflow emulation using passive systems required unrealistically small outlet diameters (Xu et al. 2018).

3. Effect of scale

307 3.1 Current decentralized control at local scales

Despite the increasing number of studies on real-time control for optimising stormwater control measures, the focus to date has mainly been on the decentralised control at local scales (Table 1), without consideration of network interactions or cooperation. In such an application, the information held by each system (e.g. water level and valve status) is not shared with other systems within the network. Therefore, control decisions are made independently at a local level, without considering a catchment-level context.

314 Decentralised control of SCMs is a robust solution, as its configuration will not require 315 complex communication and logic structures (Schütze et al. 2004). However, doing so 316 precludes the potential synergies of 'cooperation' achieved by network control (Petrucci et al.

317 2013; Emerson et al. 2005).

318 3.2 Distributed control at large scales

Distributed control of SCMs network needs to be implemented in a way that each system works collaboratively to meet the catchment-scale hydrological objective (Figure 3). The theory of such control has long been established (Bondy and Murty 1977; Camponogara et al. 2002; Dijkstra 1982) and has been demonstrated by a few preliminary studies. Di Matteo et al. (2019) modelled two coordinated rainwater harvesting systems using perfect rainfall forecasts. They concluded that the peak flow can be better mitigated by the centralised control than by the decentralized control. Mullapudi et al. (2018) reported that two cooperatively controlled detention basins could create a hydrograph that prevented erosion-induced flows. The common features for those control strategies are (1) operating multiple local-scale systems, (2) regulating the outflow based on hydrological and hydraulic metrics, and (3) releasing storage required in different patterns.

Real-time distributed control can also play a major role in providing necessary redundancy and increasing resilience. Sensors can detect and report in real-time systems being offline due to failure or maintenance. The underlying neighbouring systems can virtually replace the failed systems, and so remain a well-functioning network (e.g. distributed control in Figure 3). A similar strategy could be used in the case of RTC rainwater harvesting to ensure that adequate contributions are made to stream baseflow, even if some systems are empty at any given time. This might also be applied to RTC biofilters, where the emptying of the systems can start from those with longer treatment (i.e. detention time). Such an application offers a new possibility for real-time asset management, which could potentially address the major problem of poor system function due to inadequate maintenance of SCMs (Blecken et al. 2017).

Figure 3. Real-time control of SCMs network, including current decentralized control atsmall scale and future potential of distributed control at large scale.

343 3.3 Future vision of integrated water management

Overall, real-time control offers a real opportunity to advance conventional water systems (Table 2). The control of SCM networks could be jointly operated with other water systems, such as water distribution networks (Cembrano et al. 2000; Leirens et al. 2010) and combined sewer systems (Garofalo et al. 2017). For stormwater systems, SCMs could coordinate with the overall drainage network, and so manage storages and outflows to best use the capacity of all system nodes to avoid overflow (Lund et al. 2019). Future water supply could use a hybrid system that integrates stormwater harvesting to supplement mains water (or vice versa). The real-time prediction of spatial-temporal demand could inform optimal use of tank storage (i.e. rather than using when needed by each household) and mains water at a system level to ensure overall water network reliability. Improved monitoring and removal of contaminants could promote such hybrid supply and even achieve on-site grey water reuse (Barron et al. 2019), thus significantly reducing the resources required for downstream centralized treatment (e.g.

356 wastewater treatment plant in combined systems). The states of all these assets could be 357 visualized and managed in a central control system, where a universally integrated water 358 system is then formed to deliver sustainable future in smart cities.

In addition to its impact on operation of the urban water system, real-time technology could change the relationship between people and water management. Real-time information triggers feedback from private householders, giving them the ability to proactively choose to coordinate their systems with the overarching network. This coordination can avoid major infrastructure upgrades and reduce problems of water scarcity. Financial incentives could be used to illicit such contributions, inspired, for example by economic innovations pioneered in the energy market (Giordano and Fulli 2012; Rodríguez-Molina et al. 2014). Doing so could transform the private householder from passive consumers to active providers of urban water service, envisioning new governance models. Such application will, however, be confronted by challenges from both technical and socio-economical perspectives.

370 Time Control

Objectives	Passive Control	Active (RTC) Control
	Design based solely on historical data	Real-time monitoring and anticipating flood hazard
Flooding and runoff control	Capacity matched to design event (thus over-designed for many situations)	Adaptive system to create storage for each storm event
	Each system works individually	Distributed control to enable synergy effect
	No ability to adapt to an event	Flow bypass the predicted overflow area
Combined sewer overflow	Require often overdesigned drainage network or detention basin	Enhance storage efficiency without structur change
Stream baseflow	No ability to ensure spatial and temporal variability of flow regimes	Emulate baseflow based on real-time river monitoring
Supply	Mains supply with passive supplement of rainwater. No mechanisms ensure the integration of hybrid system.	A monitored and controlled hybrid system that can be optimally integrated and coordinated. Rainwater supply can also optimised by other objectives, such as flooding mitigation.
	No ability to check remotely system state	Real-time monitoring and failure detection
Maintenance	Regular visit depending on expertise and diligent	Site visit only when maintenance is needed
	Manual maintenance	sediments using control valve)
	Irrigate on a routine base	Monitor soil moisture and irrigate wheneve
Irrigation	Require regular visit to adapt irrigation	needed
	to the need	Full remote control
Cyber Security	N/A	Need regulation and standard for privacy protection
	Higher capital expenditure due to oversized systems	Costs of monitoring and RTC to add but system size can be decrease with adapti response to events
Economics	Higher operational expenditure due to reactive maintenance and routine	Allows remote monitoring and proactive maintenance
	inspection	Increase of energy consumption
Redundancy and resilience	No mechanism to ensure resilience	High resilience and adaptative system(s)

4. Barriers to implementation of RTC on SCMs

373 4.1 Technical challenges

374 Model for Real-Time Control

Real-time control systems applied to SCMs (Stormwater Control Measures) can be based on pre-defined rules (termed here as heuristic algorithms; Persaud et al. 2019; Carpenter et al. 2014; García et al. 2015). Such rules are often expressed in the form of binary logic (i.e. "if-then-else") and generally require simple operational devices such as microcontrollers. However, the robustness of such control has not been appropriately tested. It might be robust in operating a small number of decentralised small-scale systems, but may demand a too complex number of rules and scenarios when operating complex multi-scale systems. Furthermore, the establishment of rules requires expertise on system mechanisms and operational context. The understanding of spatio-temporal dynamics that govern water quality and flow across different scales in the urban environment is the key to avoid perverse impacts introduced by real-time control when applied to SCMs (e.g. erosion-induced flow from controlled detention basins). Only a few preliminary studies have investigated the theoretical framework for such operation (Mullapudi et al. 2017; Rimer et al. 2019).

Future operation can be advanced using optimization-based control, especially for complex multi-scale SCMs networks. Compared to rule-based control, such a strategy turns the pre-defined logic into an objective function that is solved continuously to represent the desired system behaviour. This is generally achieved by a process model which anticipates the performance of a number of control scenarios. The optimal scenario is then selected, based on predefined objective metrics. The objectives often aim to minimize the resource cost when meeting the compulsory demand for operation, while simultaneously maximising the performance for the entire system. This approach can be seen in the operation of SCMs at site-

Page 23 of 99

Urban Water Journal

scale. For example, Shishegar et al. (2019a) and Shishegar et al. (2019b) utilized an optimisation-based control to minimize the total outflow discharge from a detention basin for flood control, while preventing unnecessary movement of the outlet gate. Therefore, such a control can also potentially operate complex distributed systems in a cooperative and optimised way, not only achieving optimal performance, but minimising long-term maintenance requirements by minimising operation of system components. Large-scale applications can be widely found in other water networks, such as water distribution networks (Cembrano et al. 2000; Miyaoka and Funabashi 1984; Joalland and Cohen 1980; Fallside and Perry 1975) and combined sewer networks (Garofalo et al. 2017).

Appropriate selection and design of control strategies is vital to the implementation of RTC-based SCMs. Control strategies have received significant attention in the urban drainage literature. Heuristic-based control can be appealing because no control-oriented model is required and the resulting control seems rational (García et al. 2015). However, as mentioned previously, heuristic-based control depends on expert knowledge, and so might not be considered formally as achieving an optimal solution (Cen and Xi 2009; Mollerup et al. 2013). One of the most common heuristic algorithms used in urban drainage systems is Rule-Based Control (Klepiszewski and Schmitt 2002), with increasing popularity of using a particular rule that specifies the output parameters in a non-binary way (i.e. ranging between 0 and 1, allowing partial states between true and false), known as Fuzzy Logic Control (Tang et al. 2010; Seggelke et al. 2013; Chiang et al. 2011). In contrast, while optimisation-based control delivers more objectivity, it can be difficult to implement due to more complex control-oriented models and consequential challenges in terms of the computational power required, especially in large-scale systems (García et al. 2015). Model Predictive Control, which recursively recalculates the optimal control using newly available information on system states and other data (e.g. rainfall forecast), has shown to be the most successful optimisation-based technique applied in

Urban Water Journal

urban drainage systems due to its capacity in handling multi-variable systems (for further detail, extensive review can be found in Lund et al. (2018)). Other approaches also include the linear-quadratic regulator (Bemporad et al. 2002; Marinaki and Papageorgiou 2003), evolutionary strategies (Savic and Walters 1997; Bernard et al. 2001; Martínez et al. 2007; Fu et al. 2008), and Population Dynamics-based control (Ramírez-Llanos and Quijano 2010; Barreiro-Gomez et al. 2015). Additionally, the type of RTC strategies (e.g. rule-based or optimisation-based) and process model used (e.g. fast or detailed, linear or non-linear, stochastic or deterministic) intimately link to the selection of controllers. Therefore, there is a critical need to test different control approaches in operating RTC SCMs. By improving such understanding, it will then be possible to posit the most robust ways to operate SCMs at a range of scales and levels of complexity.

Urban Water Journal

432 Role of Forecast Accuracy

When RTC is based on weather forecasts, there is the potential for performance loss due to inaccurate forecasts. The effectiveness of forecast accuracy on RTC has been considered in a range of studies in urban drainage systems (Löwe et al. 2016; Achleitner et al. 2009). This issue, however, has only been addressed by a few studies in RTC SCMs (Gee and Hunt 2016; Xu et al. 2018; Xu et al. 2020), and has generally been ignored in RTC modelling studies, where perfect forecasts (i.e. use of historical precipitation as forecast) are typically used (Roman et al. 2017; Di Matteo et al. 2019). This is widely recognized as a major knowledge gap for future investigation (Gee and Hunt 2016; Kerkez et al. 2016; Xu et al. 2018).

441 Several methods exist to mitigate the impact of forecast error on RTC performance. 442 There may, for example, be potential to improve performance by strategically using different 443 forecast horizons. The pre-storm release to avoid flooding could be determined based on both 444 long-term (e.g. weekly) forecasts, and then refined using short-term (e.g. sub-daily) rainfall 445 forecasts, taking advantage of improved forecast accuracy as the forecast window shortened. 446 Another approach to improve performance is to use accumulated knowledge on past forecasts 447 and their associated error to include them in the future management strategy.

448 Monitoring

Real-time control relies on the knowledge of the system and its surroundings. Such knowledge of the system includes input (inflows), output (outflows), but also its present state (pump flow, volume in storage, valve status) and environmental conditions (rainfall, streamflow, etc.). While economic and technological complexity have acted in the past as barriers to incorporation of sensors into RTC-based systems, the recent possibilities offered by new monitoring technologies are substantial: user-friendly deployment and interfaces, lower cost, lower power consumption, enhanced communication capabilities, open-source and high modularity (Cherqui et al. 2019). Such cost-effective technologies have been successfully
implemented in other fields such as agriculture (Fisher 2007) and air quality (Morawska et al.
2018). This technology is also increasing in the water sector, such as for water quality
monitoring (Rao et al. 2013), sewer overflow monitoring (Montserrat et al. 2013) and pipe
inspection (Romanova et al. 2012).

461 Data Platform and Communication

Future large-scale deployment of controlled SCMs networks will need to consider suitable data platforms and communications (Figure 3). Central to the question is how to collect, transmit, store and use the data. This has been extensively addressed in networked control systems (Yang 2006; Hespanha et al. 2007; Gupta and Chow 2010) and smart cities (Kitchin 2014; Cocchia 2014: Zanella et al. 2014). Such advances drive the technological movement of continuous environmental monitoring at large-scale (Crawford et al. 2015; Pellerin et al. 2016; Lefkowitz et al. 2016). Therefore, it is now feasible to build a platform that conducts environmental monitoring and control simultaneously (Bartos et al. 2018; Lefkowitz et al. 2016). Future work will be needed to develop agreed data exchange standards and different platform architecture to handle the operation of SCMs network. This need will become even greater as operations of water networks and other urban infrastructure become increasingly integrated.

473 4.2 Social-economic Challenges

474 Institutional Inflexibility

The broader adoption of RTC largely depends on the regulatory environment and whether it hinders or facilitates adoption. This is because water-related services are often centrally provided by government, semi-government agencies or private companies operating as natural monopolies (Marques 2010). The research on RTC is arguably focussed primarily on the technological invention, with less attention paid to the need for institutional innovation. Such a phenomenon can be widely found in the water sector (Mitchell 2006; Farrelly and Brown 2011; Kiparsky et al. 2013). This is likely to create inertia, impeding or delaying adoption (Brown and Farrelly 2009; Brown 2005). There will be a need to address the regulatory environment and governance of real-time controlled systems, so that innovation and competition are facilitated, but that the benefits of centralised control can be realised.

485 Ownership

One key tension impacting the adoption of RTC is who owns the right for control. Unlike wastewater systems, SCMs equipped with RTC are deployed at a variety of scales and on land owned by a variety of actors, therefore involving both public and private spaces and actors. Centralised control by a government agency could conflict with private property or interest, resulting in potential social impediments. Similarly, the distributed control may fail to deliver a collective optimal outcome due to simultaneous intervention from different stakeholders. Furthermore, there could be potential conflict of interests even within the public sector. Therefore, such an obscure ownership and operational jurisdiction could slow down the development of the investment model for the deployment and ongoing effort for maintenance.

Cyber insecurity

RTC potentially creates new concerns for cyber security and data privacy. Failure to identify, prevent and manage cyber attacks can lead to large-scale system disfunction (Ebersold and Glass 2016; Brous and Janssen 2015), introducing new risks to public health and safety. Vulnerabilities can also increase the risk of information leakage, resulting from potential exposure of private information (e.g. the diurnal pattern of rainwater usage). These consequences may also affect user risk perception and could undermine trust and usage behaviour. Future study must focus on the standards of data protection that minimize the risk of cyber security problems during system design.

Lack of market incentives

505 Investment in RTC-based SCM networks will only happen if there is regulatory obligation or 506 a market incentive. Research is needed to identify suitable business models to drive such 507 investment, potentially drawing on ideas that have been applied to increasingly decentralised 508 or hybrid energy markets (Giordano and Fulli 2012). This may include the positioning of RTC 509 in the existing water management market as well as an economic model that captures and 510 appropriately shares the benefits for different stakeholders.

2		
3 4	511	5. Conclusions
5 6 7	512	Use of RTC technology has the real potential to improve current urban water management and
, 8 9	513	overcome existing barriers. RTC can improve the performance of various type of SCMs at the
10 11	514	site scale, in terms of both runoff quality and quantity. There is an untested potential to tackle
12 13	515	the mix of scales, where RTC could gather the decentralised small-scale systems into a virtually
14 15 16	516	connected network, achieving much greater control of urban runoff at catchment scale. More
17 18	517	importantly, such a strategy could transform the relationship between people and the urban
19 20	518	water cycle, such that private householders could proactively supply urban water services in
21 22 23	519	coordination with major water companies, creating a new governance models for future urban
24 25	520	water management.
26 27	521	Applications of RTC technology in urban water management are vast. Building on the
28 29	522	previous research, we therefore suggest the following future exploration to underpin the use of
30 31 32	523	RTC:
33 34 35	524	(1) testing the effect of rule-based and optimization-based control in operating SCMs at
36 37	525	different scales;
38 39 40	526	(2) investigating the role of forecast accuracy;
41 42	527	(3) developing low-cost sensor technology and promoting widespread monitoring of
43 44	528	SCMs;
45 46 47	529	(4) developing agreed data exchange standards and different platform architecture to
48 49	530	handle the operation of SCMs network;
50 51	531	(5) creating new regulatory environment and governance models for implementation;
52 53 54	532	(6) identify ownership and operational jurisdiction for deployment and maintenance;
55 56	533	(7) developing data protection technique to minimize the risk of cyber security;
57 58	534	(8) developing a suitable business model to drive the investment.
59 60		

Urban Water Journal

1 2	
- 3 535 4	Acknowledgements
5 536	The author gratefully thank South East Water (especially David Bergmann and Jeddah Breman) and
7 537	Melbourne Water Corporation for support and input. The authors gratefully thank Hugh P. Duncan for
⁸ 538	contributing initial ideas about this paper.
10 11 539	Disclosure statement
12 13 540	No potential conflict of interest was reported by the authors.
14 15 541	Funding
16 17 542	This research received financial support from Melbourne Water, through the Melbourne Waterway
¹⁸ 543	Research-Practice Partnership (http://mwrpp.org) and from the European Union's Horizon 2020
20 544	research and innovation programme under Grant Agreement no. 786566 (https://mind4stormwater.org).
21 22 545	Wei D. Xu also received a Melbourne Research Scholarship provided by The University of Melbourne
23 546	and South East Water Corporation. South East Water Corporation also provided operating expenses
24 25 547	for this research. The support is gratefully acknowledged.
26 27 548	Reference
28 29 549	Achleitner, S., Fach, S., Einfalt, T., and Rauch, W. 2009. "Nowcasting of rainfall and of
³⁰ 550	combined sewage flow in urban drainage systems." Water Science and Technology
32 551	59 (6):1145-51. doi: 10.2166/wst.2009.098.
33 34 552	Afrooz, A. R. M. N., and Boehm, A. B. 2017. "Effects of submerged zone, media aging, and
³⁵ 553	antecedent dry period on the performance of biochar-amended biofilters in removing
37 554	fecal indicators and nutrients from natural stormwater." Ecological Engineering
38 39 555	102:320-30. doi: https://doi.org/10.1016/j.ecoleng.2017.02.053.
40 41 556	Al-Rubaei, A. M., Engström, M., Viklander, M., and Blecken, GT. 2016. "Long-term
42 557	hydraulic and treatment performance of a 19-year old constructed stormwater
44 558	wetland—Finally maturated or in need of maintenance?" Ecological Engineering
45 46 559	95:73-82. doi: https://doi.org/10.1016/j.ecoleng.2016.06.031.
47 48 560	Amos, C. C., Rahman, A., and Gathenya, J. M. 2016. "Economic Analysis and Feasibility of
49 561	Rainwater Harvesting Systems in Urban and Peri-Urban Environments: A Review of
51 562	the Global Situation with a Special Focus on Australia and Kenya." Water 8 (4):149.
52 53 563	doi: https://doi.org/10.3390/w8040149.
54 55 564	Ashley, R., Lundy, L., Ward, S., Shaffer, P., Walker, L., Morgan, C., Saul, A., Wong, T., and
56 565	Moore, S. 2013. "Water-sensitive urban design: opportunities for the UK."
57 58 566	Proceedings of the Institution of Civil Engineers-Municipal Engineer 166 (2):65-76.
59 60 567	doi: 10.1680/muen.12.00046.
55 564 55 565 56 565 57 566 58 566 59 567 60 567	Ashley, R., Lundy, L., Ward, S., Shaffer, P., Walker, L., Morgan, C., Saul, A., Moore, S. 2013. "Water-sensitive urban design: opportunities for the U <i>Proceedings of the Institution of Civil Engineers-Municipal Engineer</i> 1 doi: 10.1680/muen.12.00046.

1 2		
3	568	Askarizadeh, A., Rippy, M. A., Fletcher, T. D., Feldman, D. L., Peng, J., Bowler, P.,
5 6 7 8 9	569	Mehring, A. S., et al. 2015. "From Rain Tanks to Catchments: Use of Low-Impact
	570	Development To Address Hydrologic Symptoms of the Urban Stream Syndrome."
	571	Environmental Science & Technology 49 (19):11264-80. doi:
10	572	10.1021/acs.est.5b01635.
12	573	Barreiro-Gomez, J., Obando, G., Riaño-Briceño, G., Quijano, N., and Ocampo-Martinez, C.
13 14	574	2015. Decentralized Control for Urban Drainage Systems via population dynamics:
15 16	575	Bogotá case study. Paper presented at the 2015 European Control Conference (ECC),
17 18 19 20 21	576	15-17 July 2015. doi: 10.1109/ECC.2015.7330902
	577	Barron, N. J., Deletic, A., Jung, J., Fowdar, H., Chen, Y., and Hatt, B. E. 2019. "Dual-mode
	578	stormwater-greywater biofilters: The impact of alternating water sources on treatment
22 23	579	performance." Water Research 159:521-37. doi:
24	580	https://doi.org/10.1016/j.watres.2019.04.020.
25 26	581	Bartos, M., Wong, B., and Kerkez, B. 2018. "Open storm: a complete framework for sensing
27 28	582	and control of urban watersheds." Environmental Science: Water Research &
29	583	<i>Technology</i> 4 (3):346-58. doi: 10.1039/C7EW00374A.
31	584	Bedan, E. S., and Clausen, J. C. 2009. "Stormwater Runoff Quality and Quantity From
32 33	585	Traditional and Low Impact Development Watersheds1." JAWRA Journal of the
34 35	586	American Water Resources Association 45 (4):998-1008. doi: 10.1111/j.1752-
36	587	1688.2009.00342.x.
37 38	588	Behzadian, K., Kapelan, Z., Mousavi, S. J., and Alani, A. 2017. "Can smart rainwater
39 40	589	harvesting schemes result in the improved performance of integrated urban water
41 42	590	systems?" Environmental Science and Pollution Research. doi: 10.1007/s11356-017-
43	591	0546-5.
44 45	592	Bell, C. D., McMillan, S. K., Clinton, S. M., and Jefferson, A. J. 2016. "Hydrologic response
46 47	593	to stormwater control measures in urban watersheds." Journal of Hydrology
48 49	594	541:1488-500. doi: https://doi.org/10.1016/j.jhydrol.2016.08.049.
50 51 52	595	Bemporad, A., Morari, M., Dua, V., and Pistikopoulos, E. N. 2002. "The explicit linear
	596	quadratic regulator for constrained systems." Automatica 38 (1):3-20. doi:
53 54	597	https://doi.org/10.1016/S0005-1098(01)00174-1.
55	598	Bennett, S. 1994. Real-time computer control : an introduction. 2nd ed. ed, Prentice-Hall
57	599	international series in systems and control engineering: Prentice Hall.
58 59	600	Bernard, T., Sajidman, M., and Kuntze, HB. 2001. A New Fuzzy-Based Multi-Objective
60	601	Optimization Concept for Process Control Systems. Paper presented at the

3	602	Computational Intelligence. Theory and Applications, Berlin, Heidelberg. doi:
5	603	https://doi.org/10.1007/3-540-45493-4_66
6 7	604	Bhaskar, A. S., Hogan, D. M., and Archfield, S. A. 2016. "Urban base flow with low impact
8 9	605	development." Hydrological Processes 30 (18):3156-71. doi: 10.1002/hyp.10808.
10	606	Bilodeau, K., Pelletier, G., and Duchesne, S. 2018. "Real-time control of stormwater
12	607	detention basins as an adaptation measure in mid-size cities." Urban Water Journal
13 14	608	15 (9):858-67. doi: 10.1080/1573062X.2019.1574844.
15 16	609	Blecken, GT., Hunt, W. F., Al-Rubaei, A. M., Viklander, M., and Lord, W. G. 2017.
17	610	"Stormwater control measure (SCM) maintenance considerations to ensure designed
18 19	611	functionality." Urban Water Journal 14 (3):278-90. doi:
20 21	612	10.1080/1573062X.2015.1111913.
22	613	Blecken, GT., Zinger, Y., Deletić, A., Fletcher, T. D., and Viklander, M. 2009a. "Impact of
23 24	614	a submerged zone and a carbon source on heavy metal removal in stormwater
25 26	615	biofilters." Ecological Engineering 35 (5):769-78. doi:
27 28	616	https://doi.org/10.1016/j.ecoleng.2008.12.009.
29	617	Blecken, GT., Zinger, Y., Deletić, A., Fletcher, T. D., and Viklander, M. 2009b. "Influence
30 31	618	of intermittent wetting and drying conditions on heavy metal removal by stormwater
32 33	619	biofilters." Water Research 43 (18):4590-8. doi:
34 35	620	https://doi.org/10.1016/j.watres.2009.07.008.
36	621	Bondy, J. A., and Murty, U. S. R. 1977. Graph theory with applications. U.S.A.: Elseyier
37 38	622	Science Publishing Co., Inc.
39 40	623	Bratieres, K., Fletcher, T. D., Deletic, A., and Zinger, Y. 2008. "Nutrient and sediment
41 42	624	removal by stormwater biofilters: A large-scale design optimisation study." Water
43	625	Research 42 (14):3930-40. doi: https://doi.org/10.1016/j.watres.2008.06.009.
44 45	626	Brogan, W. L. 1991. Modern control theory. 3rd ed. ed: Prentice Hall.
46 47	627	Brous, P., and Janssen, M. 2015. A Systematic Review of Impediments Blocking Internet of
48	628	Things Adoption by Governments. Paper presented at the Open and Big Data
49 50	629	Management and Innovation, Cham. doi: https://doi.org/10.1007/978-3-319-25013-
51 52	630	7_7
53 54	631	Brown, R., Ashley, R., and Farrelly, M. 2011. "Political and Professional Agency
55	632	Entrapment: An Agenda for Urban Water Research." Water Resources Management
56 57	633	25 (15):4037-50. doi: 10.1007/s11269-011-9886-y.
58 59		
60		

1 2		
3 4 5	634	Brown, R. R. 2005. "Impediments to Integrated Urban Stormwater Management: The Need
	635	for Institutional Reform." Environmental Management 36 (3):455-68. doi:
6 7	636	https://doi.org/10.1007/s00267-004-0217-4.
8 9	637	Brown, R. R., and Farrelly, M. A. 2009. "Delivering sustainable urban water management: a
10 11	638	review of the hurdles we face." Water Science & Technology 59 (5):839-46. doi:
12	639	https://doi.org/10.2166/wst.2009.028.
13 14	640	Bunn, S. E., and Arthington, A. H. 2002. "Basic Principles and Ecological Consequences of
15 16	641	Altered Flow Regimes for Aquatic Biodiversity." Environmental Management 30
17 18 19	642	(4):492-507. doi: https://doi.org/10.1007/s00267-002-2737-0.
	643	Burns, M. J., Fletcher, T. D., Duncan, H. P., Hatt, B. E., Ladson, A. R., and Walsh, C. J.
20 21	644	2012. The stormwater retention performance of rainwater tanks at the landparcel
22 23	645	scale. Paper presented at the Proceedings of the 7th International Conference on
24	646	Water Sensitive Urban Design, Melbourne, Australia.
25 26	647	Burns, M. J., Fletcher, T. D., Duncan, H. P., Hatt, B. E., Ladson, A. R., and Walsh, C. J.
27 28	648	2015a. "The performance of rainwater tanks for stormwater retention and water
29 30	649	supply at the household scale: an empirical study." Hydrological Processes 29
31	650	(1):152-60. doi: 10.1002/hyp.10142.
32 33	651	Burns, M. J., Schubert, J. E., Fletcher, T. D., and Sanders, B. F. 2015b. "Testing the impact
34 35	652	of at-source stormwater management on urban flooding through a coupling of
36	653	network and overland flow models." Wiley Interdisciplinary Reviews: Water 2
38	654	(4):291-300. doi: 10.1002/wat2.1078.
39 40	655	Campisano, A., Creaco, E., and Modica, C. 2016. "Application of Real-Time Control
41 42	656	Techniques to Reduce Water Volume Discharges from Quality-Oriented CSO
43	657	Devices." Journal of Environmental Engineering 142 (1):1-8. doi:
44 45	658	https://doi.org/10.1061/(ASCE)EE.1943-7870.0001013.
46 47	659	Campisano, A., and Modica, C. 2002. "PID and PLC units for the real-time control of sewer
48 49	660	systems." Water Sci Technol 45 (7):95-104. doi:
50	661	https://doi.org/10.2166/wst.2002.0121.
51 52	662	Campisano, A., and Modica, C. 2012. "Optimal sizing of storage tanks for domestic
53 54	663	rainwater harvesting in Sicily." Resources, Conservation and Recycling 63:9-16. doi:
55 56	664	10.1016/j.resconrec.2012.03.007.
57	665	Campisano, A., and Modica, C. 2016. "Rainwater harvesting as source control option to
58 59	666	reduce roof runoff peaks to downstream drainage systems." Journal of
60	667	Hydroinformatics 18 (1):23-32. doi: 10.2166/hydro.2015.133.

2		
3 4 5 7 8 9 10 11	668	Camponogara, E., Jia, D., Krogh, B. H., and Talukdar, S. 2002. "Distributed model predictive
	669	control." IEEE Control Systems Magazine 22 (1):44-52. doi: 10.1109/37.980246.
	670	Carpenter, J. F., Vallet, B., Pelletier, G., Lessard, P., and Vanrolleghem, P. A. 2014.
	671	"Pollutant removal efficiency of a retrofitted stormwater detention pond." Water
	672	Quality Research Journal of Canada (IWA Publishing) 49 (2):124-34. doi:
12	673	https://doi.org/10.2166/wqrjc.2013.020.
13 14	674	Cembrano, G., Wells, G., Quevedo, J., Pérez, R., and Argelaguet, R. 2000. "Optimal control
15 16 17 18 19 20 21 22 22	675	of a water distribution network in a supervisory control system." Control
	676	Engineering Practice 8 (10):1177-88. doi: https://doi.org/10.1016/S0967-
	677	<u>0661(00)00058-7</u> .
	678	Cen, L., and Xi, Y. 2009. Aggregation-based model predictive control of urban combined
	679	sewer networks. Paper presented at the 2009 7th Asian Control Conference, 27-29
23 24	680	Aug. 2009.
25 26	681	Chandrasena, G. I., Deletic, A., Ellerton, J., and McCarthy, D. T. 2012. "Evaluating
27 28	682	Escherichia coli removal performance in stormwater biofilters: a laboratory-scale
29	683	study." Water Science and Technology 66 (5):1132-8. doi: 10.2166/wst.2012.283.
30 31	684	Chandrasena, G. I., Deletic, A., and McCarthy, D. T. 2016. "Biofiltration for stormwater
32 33	685	harvesting: Comparison of Campylobacter spp. and Escherichia coli removal under
34 25	686	normal and challenging operational conditions." Journal of Hydrology 537:248-59.
36	687	doi: https://doi.org/10.1016/j.jhydrol.2016.03.044.
37 38	688	Chee-Yee, C., and Kumar, S. P. 2003. "Sensor networks: evolution, opportunities, and
39 40	689	challenges." Proceedings of the IEEE 91 (8):1247-56. doi:
41	690	10.1109/JPROC.2003.814918.
42 43	691	Cherqui, F., Szota, C., James, R., Poelsma, P., Perigaud, T., Burns, M. J., Fletcher, T., and
44 45	692	Bertrand-Krajewski, JL. 2019. Toward proactive management of stormwater control
46 47	693	measures using low-cost technology. Paper presented at the 10th international
48	694	conference NOVATECH, 1-5 July, Lyon, France.
49 50 51 52 53	695	Chiang, Y. M., Chang, L. C., Tsai, M. J., Wang, Y. F., and Chang, F. J. 2011. "Auto-control
	696	of pumping operations in sewerage systems by rule-based fuzzy neural networks."
	697	Hydrol. Earth Syst. Sci. 15 (1):185-96. doi: 10.5194/hess-15-185-2011.
54 55	698	Cocchia, A. 2014. "Smart and Digital City: A Systematic Literature Review." In Smart City:
56 57	699	How to Create Public and Economic Value with High Technology in Urban Space,
58	700	edited by Dameri and Rosenthal-Sabroux, 13-43. Cham: Springer International
60	701	Publishing. doi: 10.1007/978-3-319-06160-3_2

1 2		
3	702	Crawford, J. T., Loken, L. C., Casson, N. J., Smith, C., Stone, A. G., and Winslow, L. A.
5	703	2015. "High-Speed Limnology: Using Advanced Sensors to Investigate Spatial
6 7	704	Variability in Biogeochemistry and Hydrology." Environmental Science &
8 9	705	Technology 49 (1):442-50. doi: 10.1021/es504773x.
10	706	Damodaram, C., Giacomoni, M. H., Prakash Khedun, C., Holmes, H., Ryan, A., Saour, W.,
12	707	and Zechman, E. M. 2010. "Simulation of Combined Best Management Practices and
13 14	708	Low Impact Development for Sustainable Stormwater Management." Journal of the
15 16	709	American Water Resources Association 46 (5):907-18. doi: 10.1111/j.1752-
17	710	1688.2010.00462.x.
18 19	711	Davis, A. P. 2008. "Field Performance of Bioretention: Hydrology Impacts." Journal of
20 21	712	Hydrologic Engineering 13 (2):90-5. doi: 10.1061/(ASCE)1084-0699(2008)13:2(90).
22 23	713	Davis, A. P., Hunt, W. F., Traver, R. G., and Clar, M. 2009. "Bioretention Technology:
23 24 25 26 27 28 29 30 31 32 33	714	Overview of Current Practice and Future Needs." Journal of Environmental
	715	Engineering 135 (3):109-17. doi: 10.1061/(ASCE)0733-9372(2009)135:3(109).
	716	DeBusk, K. M., Hunt, W. F., and Wright, J. D. 2013. "Characterizing Rainwater Harvesting
	717	Performance and Demonstrating Stormwater Management Benefits in the Humid
	718	Southeast USA." Journal of the American Water Resources Association 49 (6):1398-
	719	411. doi: <u>https://doi.org/10.1111/jawr.12096</u> .
34 35	720	Di Matteo, M., Liang, R., Maier, H. R., Thyer, M. A., Simpson, A. R., Dandy, G. C., and
36	721	Ernst, B. 2019. "Controlling rainwater storage as a system: An opportunity to reduce
37 38 39 40	722	urban flood peaks for rare, long duration storms." Environmental Modelling &
	723	Software 111:34-41. doi: https://doi.org/10.1016/j.envsoft.2018.09.020.
41 42	724	Dijkstra, E. W. 1982. "Self-Stabilization in Spite of Distributed Control." In Selected
43	725	Writings on Computing: A personal Perspective, 41-6. New York, NY: Springer New
44 45	726	York. doi: 10.1007/978-1-4612-5695-3_7
46 47	727	Dirckx, G., Schutze, M., Kroll, S., Thoeye, C., De Gueldre, G., and Van De Steene, B. 2011.
48 49	728	"Cost-efficiency of RTC for CSO impact mitigation." Urban Water Journal 8
49 50	729	(6):367-77. doi: 10.1080/1573062x.2011.630092.
51 52	730	Divers, M. T., Elliott, E. M., and Bain, D. J. 2013. "Constraining Nitrogen Inputs to Urban
53 54	731	Streams from Leaking Sewers Using Inverse Modeling: Implications for Dissolved
55	732	Inorganic Nitrogen (DIN) Retention in Urban Environments." Environmental Science
50 57	733	& Technology 47 (4):1816-23. doi: 10.1021/es304331m.
58 59	734	Ebersold, K., and Glass, R. 2016. "The Internet of Things: A Cause for Ethical Concern."
60	735	Issues in Information Systems 17 (4):145-51.

3 4 5 6 7 8 9 10 11	736	Elliott, A. H., Spigel, R. H., Jowett, I. G., Shankar, S. U., and Ibbitt, R. P. 2010. "Model
	737	application to assess effects of urbanisation and distributed flow controls on erosion
	738	potential and baseflow hydraulic habitat." Urban Water Journal 7 (2):91-107. doi:
	739	10.1080/15730620903447605.
	740	Ellis, J. B., and Hvitved-Jacobsen, T. 1996. "Urban drainage impacts on receiving waters."
12	741	Journal of Hydraulic Research 34 (6):771-83. doi: 10.1080/00221689609498449.
13 14	742	Emerson, C. H., Welty, C., and Traver, R. G. 2005. "Watershed-Scale Evaluation of a System
15 16	743	of Storm Water Detention Basins." Journal of Hydrologic Engineering 10 (3):237-
17 18 19 20 21	744	42. doi: doi:10.1061/(ASCE)1084-0699(2005)10:3(237).
	745	Fallside, F., and Perry, P. F. 1975. "Hierarchical optimisation of a water-supply network."
	746	Proceedings of the Institution of Electrical Engineers 122 (2):202-8. doi:
22 23	747	10.1049/piee.1975.0048.
24	748	Farrelly, M., and Brown, R. 2011. "Rethinking urban water management: Experimentation as
25 26	749	a way forward?" Global Environmental Change 21 (2):721-32. doi:
27 28	750	https://doi.org/10.1016/j.gloenvcha.2011.01.007.
29 30	751	Feng, W., Hatt, B. E., McCarthy, D. T., Fletcher, T. D., and Deletic, A. 2012. "Biofilters for
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 9 51 52 53 54 55 56 57	752	Stormwater Harvesting: Understanding the Treatment Performance of Key Metals
	753	That Pose a Risk for Water Use." Environmental Science & Technology 46 (9):5100-
	754	8. doi: 10.1021/es203396f.
	755	Fisher, D. K. 2007. "Automated Collection of Soil-Moisture Data with a Low-Cost
	756	Microcontroller Circuit." Applied Engineering in Agriculture 23 (4):493-500. doi:
	757	https://doi.org/10.13031/2013.23488.
	758	Fletcher, T. D., Mitchell, G. V., Deletic, A., Ladson, T. R., and Seven, A. 2007. "Is
	759	stormwater harvesting beneficial to urban waterway environmental flows?" Water
	760	Science and Technology 55 (4):265-72. doi: <u>https://doi.org/10.2166/wst.2007.117</u> .
	761	Fletcher, T. D., Shuster, W., Hunt, W. F., Ashley, R., Butler, D., Arthur, S., Trowsdale, S., et
	762	al. 2014a. "SUDS, LID, BMPs, WSUD and more – The evolution and application of
	763	terminology surrounding urban drainage." Urban Water Journal 12 (7):525-42. doi:
	764	10.1080/1573062x.2014.916314.
	765	Fletcher, T. D., Vietz, G., and Walsh, C. J. 2014b. "Protection of stream ecosystems from
	766	urban stormwater runoff: The multiple benefits of an ecohydrological approach."
	767	Progress in Physical Geography 38 (5):543-55. doi: 10.1177/0309133314537671.
58 59		
00		

3 4	768	Fu, G., Butler, D., and Khu, ST. 2008. "Multiple objective optimal control of integrated
5	769	urban wastewater systems." Environmental Modelling & Software 23 (2):225-34. doi:
6 7	770	https://doi.org/10.1016/j.envsoft.2007.06.003.
8 9	771	Gaborit, E., Anctil, F., Pelletier, G., and Vanrolleghem, P. A. 2016. "Exploring forecast-
10 11	772	based management strategies for stormwater detention ponds." Urban Water Journal
12	773	13 (8):841-51. doi: 10.1080/1573062X.2015.1057172.
13 14	774	Gaborit, E., Muschalla, D., Vallet, B., Vanrolleghem, P. A., and Anctil, F. 2013. "Improving
15 16	775	the performance of stormwater detention basins by real-time control using rainfall
17	776	forecasts." Urban Water Journal 10 (4):230-46. doi:
19	777	10.1080/1573062x.2012.726229.
20 21	778	García, L., Barreiro-Gomez, J., Escobar, E., Téllez, D., Quijano, N., and Ocampo-Martinez,
22 23	779	C. 2015. "Modeling and real-time control of urban drainage systems: A review."
24	780	Advances in Water Resources 85:120-32. doi:
25 26	781	https://doi.org/10.1016/j.advwatres.2015.08.007.
27 28	782	Gardner, T., and Vieritz, A. 2010. "The role of rainwater tanks in Australia in the twenty first
29	783	century." Architectural Science Review 53 (1):107-25. doi:
30 31	784	http://dx.doi.org/10.3763/asre.2009.0074.
32 33	785	Garofalo, G., Giordano, A., Piro, P., Spezzano, G., and Vinci, A. 2017. "A distributed real-
34 35	786	time approach for mitigating CSO and flooding in urban drainage systems." Journal
36	787	of Network and Computer Applications 78 (Supplement C):30-42. doi:
37 38	788	https://doi.org/10.1016/j.jnca.2016.11.004.
39 40	789	Ge, Z., Feng, C., Wang, X., and Zhang, J. 2016. "Seasonal applicability of three vegetation
41 42	790	constructed floating treatment wetlands for nutrient removal and harvesting strategy
43	791	in urban stormwater retention ponds." International Biodeterioration &
44 45	792	Biodegradation 112:80-7. doi: https://doi.org/10.1016/j.ibiod.2016.05.007.
46 47	793	Gee, K. D., and Hunt, W. F. 2016. "Enhancing stormwater management benefits of rainwater
48 40	794	harvesting via innovative technologies." Journal of Environmental Engineering 142
49 50 51 52 53 54 55	795	(8):04016039. doi: https://doi.org/10.1061/(ASCE)EE.1943-7870.0001108.
	796	Gilpin, A., and Barrett, M. 2014. "Interim Report on the Retrofit of an Existing Flood Control
	797	Facility to Improve Pollutant Removal in an Urban Watershed." In World
	798	Environmental and Water Resources Congress 2014, 65-74. doi:
50 57	799	10.1061/9780784413548.009
58 59 60		

3 ⊿	800	Giordano, V., and Fulli, G. 2012. "A business case for Smart Grid technologies: A systemic
5	801	perspective." Energy Policy 40:252-9. doi:
6 7	802	https://doi.org/10.1016/j.enpol.2011.09.066.
8 9	803	Guo, Y., and Adams, B. J. 1999. "Analysis of detention ponds for storm water quality
10	804	control." Water Resources Research 35 (8):2447-56. doi:
12	805	doi:10.1029/1999WR900124.
13 14	806	Gupta, R. A., and Chow, M. 2010. "Networked Control System: Overview and Research
15 16	807	Trends." IEEE Transactions on Industrial Electronics 57 (7):2527-35. doi:
17	808	10.1109/TIE.2009.2035462.
18 19	809	Gwenzi, W., Dunjana, N., Pisa, C., Tauro, T., and Nyamadzawo, G. 2015. "Water quality and
20 21	810	public health risks associated with roof rainwater harvesting systems for potable
22 23	811	supply: Review and perspectives." Sustainability of Water Quality and Ecology
24	812	6:107-18. doi: https://doi.org/10.1016/j.swaqe.2015.01.006.
25 26	813	Hamel, P., Daly, E., and Fletcher, T. D. 2013. "Source-control stormwater management for
27 28	814	mitigating the impacts of urbanisation on baseflow: A review." Journal of Hydrology
29 30	815	485:201-11. doi: 10.1016/j.jhydrol.2013.01.001.
31	816	Han, M. Y., and Mun, J. S. 2011. "Operational data of the Star City rainwater harvesting
32 33	817	system and its role as a climate change adaptation and a social influence." Water
34 35	818	Science & Technology 63 (12):2796-801. doi: 10.2166/wst.2011.597.
36 37	819	Hatt, B. E., Fletcher, T. D., and Deletic, A. 2008. "Hydraulic and Pollutant Removal
38	820	Performance of Fine Media Stormwater Filtration Systems." Environmental Science
39 40	821	& Technology 42 (7):2535-41. doi: <u>https://doi.org/10.1021/es071264p</u> .
41 42	822	Hawley, R., R. MacMannis, K., and S. Wooten, M. 2013. "How Poor Stormwater Practices
43	823	Are Shortening the Life of Our Nation's InfrastructureRecalibrating Stormwater
44 45	824	Management for Stream Channel Stability and Infrastructure Sustainability." In World
46 47	825	Environmental and Water Resources Congress 2013, 193-207. American Society of
48 49	826	Engineers, Reston, Virginia, USA, Cincinnati, Ohio, May 19-23. doi:
50	827	10.1061/9780784412947.019
51 52	828	Henderson, C., Greenway, M., and Phillips, I. 2007. "Removal of dissolved nitrogen,
53 54	829	phosphorus and carbon from stormwater by biofiltration mesocosms." Water Science
55 56	830	and Technology 55 (4):183-91. doi: 10.2166/wst.2007.108.
57	831	Hespanha, J. P., Naghshtabrizi, P., and Xu, Y. 2007. "A Survey of Recent Results in
58 59	832	Networked Control Systems." Proceedings of the IEEE 95 (1):138-62. doi:
60	833	10.1109/JPROC.2006.887288.

1 2		
3	834	Hunt, W. F., Davis, A. P., and Traver, R. G. 2012. "Meeting Hydrologic and Water Quality
5	835	Goals through Targeted Bioretention Design." Journal of Environmental Engineering
6 7	836	138 (6):698-707. doi: 10.1061/(ASCE)EE.1943-7870.0000504.
8 9	837	Hunt, W. F., Jarrett, A. R., Smith, J. T., and Sharkey, L. J. 2006. "Evaluating Bioretention
10 11	838	Hydrology and Nutrient Removal at Three Field Sites in North Carolina." Journal of
12	839	Irrigation and Drainage Engineering 132 (6):600-8. doi: 10.1061/(ASCE)0733-
13 14	840	9437(2006)132:6(600).
15 16	841	Hur, J., Schlautman, M. A., Templeton, S. R., Karanfil, T., Post, C. J., Smink, J. A., Song, H.,
17	842	Goddard, M. A., Klaine, S. J., and Hayes, J. C. 2008. "Does current management of
18 19	843	storm water runoff adequately protect water resources in developing catchments?"
20 21	844	Journal of Soil and Water Conservation 63 (2):77-90. doi: 10.2489/jswc.63.2.77.
22 23	845	Ibrahim, Y. A. 2020. "Real-Time Control Algorithm for Enhancing Operation of Network of
24	846	Stormwater Management Facilities." Journal of Hydrologic Engineering 25
25 26	847	(2):04019065. doi: doi:10.1061/(ASCE)HE.1943-5584.0001881.
27 28	848	Jacopin, C., Lucas, E., Desbordes, M., and Bourgogne, P. 2001. "Optimisation of operational
29 30	849	management practices for the detention basins." Water science and technology : a
31	850	journal of the International Association on Water Pollution Research 44 (2-3):277-
32 33	851	85. doi: 10.2166/wst.2001.0780.
34 35	852	Joalland, G., and Cohen, G. 1980. "Optimal control of a water distribution network by two
36 37	853	multilevel methods." Automatica 16 (1):83-8. doi: https://doi.org/10.1016/0005-
38	854	<u>1098(80)90089-8</u> .
39 40	855	Jones, M. P., and Hunt, W. F. 2010. "Performance of rainwater harvesting systems in the
41 42	856	southeastern United States." Resources, Conservation and Recycling 54 (10):623-9.
43	857	doi: https://doi.org/10.1016/j.resconrec.2009.11.002.
44 45	858	Jongman, B., Ward, P. J., and Aerts, J. C. J. H. 2012. "Global exposure to river and coastal
46 47	859	flooding: Long term trends and changes." Global Environmental Change 22 (4):823-
48 ⊿o	860	35. doi: https://doi.org/10.1016/j.gloenvcha.2012.07.004.
50	861	Kerkez, B., Gruden, C., Lewis, M., Montestruque, L., Quigley, M., Wong, B., Bedig, A., et
51 52	862	al. 2016. "Smarter Stormwater Systems." Environmental Science & Technology 50
53 54	863	(14):7267-73. doi: <u>https://doi.org/10.1021/acs.est.5b05870</u> .
55	864	Kim, G., Yur, J., and Kim, J. 2007. "Diffuse pollution loading from urban stormwater runoff
50 57	865	in Daejeon city, Korea." Journal of Environmental Management 85 (1):9-16. doi:
58 59	866	https://doi.org/10.1016/j.jenvman.2006.07.009.
60		

2		
5 4	867	King, R. S., Baker, M. E., Whigham, D. F., Weller, D. E., Jordan, T. E., Kazyak, P. F., and
5 6	868	Hurd, M. K. 2005. "Spatial Considerations for Linking Watershed Land Cover to
7	869	Ecological Indicators in Streams." <i>Ecological Applications</i> 15 (1):137-53. doi:
8 9	870	https://doi.org/10.1890/04-0481
10 11	871	Kiparsky, M., Sedlak, D. L., Barton H. Thompson , J., and Truffer, B. 2013. "The Innovation
12	872	Deficit in Urban Water: The Need for an Integrated Perspective on Institutions,
13 14	873	Organizations, and Technology." Environmental Engineering Science 30 (8):395-
15 16	874	408. doi: 10.1089/ees.2012.0427.
17	875	Kitchin, R. 2014. "The real-time city? Big data and smart urbanism." GeoJournal 79 (1):1-
18 19	876	14. doi: 10.1007/s10708-013-9516-8.
20 21	877	Klepiszewski, K., and Schmitt, T. G. 2002. "Comparison of conventional rule based flow
22	878	control with control processes based on fuzzy logic in a combined sewer system."
23 24	879	Water Science and Technology 46 (6-7):77-84. doi: 10.2166/wst.2002.0665.
25 26	880	Klocker, C. A., Kaushal, S. S., Groffman, P. M., Mayer, P. M., and Morgan, R. P. 2009.
27 28	881	"Nitrogen uptake and denitrification in restored and unrestored streams in urban
29	882	Maryland, USA." Aquatic Sciences 71 (4):411-24. doi: 10.1007/s00027-009-0118-y.
30 31	883	Lefkowitz, J. R., Sarmanian, A. K., and Quigley, M. 2016. "Continuous monitoring and
32 33	884	adaptive controlthe internet of things transforms stormwater management." Journal
34	885	of New England Water Environment Association 50 (1):44-51.
35 36	886	Leirens, S., Zamora, C., Negenborn, R. R., and Schutter, B. D. 2010. Coordination in urban
37 38	887	water supply networks using distributed model predictive control. Paper presented at
39 40	888	the Proceedings of the 2010 American Control Conference, 30 June-2 July 2010. doi:
41	889	10.1109/ACC.2010.5530635
42 43	890	Löwe, R., Vezzaro, L., Mikkelsen, P. S., Grum, M., and Madsen, H. 2016. "Probabilistic
44 45	891	runoff volume forecasting in risk-based optimization for RTC of urban drainage
46 47	892	systems." Environmental Modelling & Software 80:143-58. doi:
48	893	https://doi.org/10.1016/j.envsoft.2016.02.027.
49 50	894	Lund, N. S. V., Borup, M., Madsen, H., Mark, O., Arnbjerg-Nielsen, K., and Mikkelsen, P. S.
51 52	895	2019. "Integrated stormwater inflow control for sewers and green structures in urban
53	896	landscapes." Nature Sustainability. doi: 10.1038/s41893-019-0392-1.
54 55	897	Lund, N. S. V., Falk, A. K. V., Borup, M., Madsen, H., and Steen Mikkelsen, P. 2018.
56 57	898	"Model predictive control of urban drainage systems: A review and perspective
58	899	towards smart real-time water management." Critical Reviews in Environmental
27	0,,	

Page 41 of 99

1

2		
3 4	901	Ly, D. K. 2019. "Water Quality-Based Real Time Control of Combined Sewer Systems."
5	902	Université de Lyon - INSA Lyon.
7	903	Lyons, J. E., Runge, M. C., Laskowski, H. P., and Kendall, W. L. 2008. "Monitoring in the
8 9	904	Context of Structured Decision-Making and Adaptive Management." The Journal of
10 11	905	Wildlife Management 72 (8):1683-92. doi: 10.2193/2008-141.
12	906	Mah, D. Ny., van der Vleuten, J. M., Hills, P., and Tao, J. 2012. "Consumer perceptions of
13 14	907	smart grid development: Results of a Hong Kong survey and policy implications."
15 16	908	Energy Policy 49:204-16. doi: https://doi.org/10.1016/j.enpol.2012.05.055.
17	909	Marinaki, M., and Papageorgiou, M. 2003. Linear-quadratic regulators applied to sewer
18	910	network flow control. Paper presented at the 2003 European Control Conference
20 21	911	(ECC), 1-4 Sept. 2003. doi: 10.23919/ECC.2003.7085327
22 23	912	Marques, R. C. 2010. Regulation of water and wastewater services : an international
24	913	comparison: IWA Publishing. doi: 10.2166/9781780401492
25 26	914	Marsalek, J., and Chocat, B. 2002. "International Report: Stormwater management." Water
27 28	915	Science and Technology 46 (6-7):1-17. doi: 10.2166/wst.2002.0657.
29	916	Martínez, F., Hernández, V., Alonso, J. M., Rao, Z., and Alvisi, S. 2007. "Optimizing the
30 31	917	operation of the Valencia water-distribution network." Journal of Hydroinformatics 9
32 33	918	(1):65-78. doi: <u>https://doi.org/10.2166/hydro.2006.018</u> .
34 35	919	Melville-Shreeve, P., Ward, S., and Butler, D. 2016. "Rainwater Harvesting Typologies for
36	920	UK Houses: A Multi Criteria Analysis of System Configurations." Water 8 (4):129.
37 38	921	doi: 10.3390/w8040129.
39 40	922	Middleton, J. R., and Barrett, M. E. 2008. "Water Quality Performance of a Batch-Type
41 42	923	Stormwater Detention Basin." Water Environment Research 80 (2):172-8. doi:
42	924	10.2175/106143007X220842.
44 45	925	Mikkelsen, P., Adeler, O., Albrechtsen, H., and Henze, M. 1999. "Collected rainfall as a
46 47	926	water source in danish households — what is the potential and what are the costs?"
48	927	Water Science and Technology 39 (5):49-56. doi: 10.1016/s0273-1223(99)00086-4.
49 50	928	Mitchell, V. G. 2006. "Applying Integrated Urban Water Management Concepts: A Review
51 52	929	of Australian Experience." Environmental Management 37 (5):589-605. doi:
53 54	930	10.1007/s00267-004-0252-1.
55	931	Mitchell, V. G., Deletic, A., Fletcher, T. D., Hatt, B. E., and McCarthy, D. T. 2007.
56 57	932	"Achieving multiple benefits from stormwater harvesting." Water Science &
58 59	933	Technology 55 (4):135-44. doi: https://doi.org/10.2166/wst.2007.103.
60		

2		
3 4	934	Miyaoka, S., and Funabashi, M. 1984. "Optimal control of water distribution systems by
5	935	network flow theory." IEEE Transactions on Automatic Control 29 (4):303-11. doi:
7	936	10.1109/TAC.1984.1103524.
8 9	937	Mollerup, A. L., Mikkelsen, P. S., Thornberg, D., and Sin, G. 2017. "Controlling sewer
10 11	938	systems - a critical review based on systems in three EU cities." Urban Water
12	939	Journal 14 (4):435-42. doi: https://doi.org/10.1080/1573062X.2016.1148183.
13 14	940	Mollerup, A. L., Thornberg, D., Mikkelsen, P. S., Johansen, N. B., and Sin, G. 2013. 16
15 16	941	Years of Experience with Rule Based Control of Copenhagen's Sewer System. Paper
17	942	presented at the Proceedings of the 11th International Conference on Instrumentation,
18 19	943	Control and Automation (ICA), Narbonne, France, 18 September 2013 - 20
20 21	944	September 2013.
22 23	945	Montserrat, A., Gutierrez, O., Poch, M., and Corominas, L. 2013. "Field validation of a new
24	946	low-cost method for determining occurrence and duration of combined sewer
25 26	947	overflows." Science of The Total Environment 463-464:904-12. doi:
27 28	948	https://doi.org/10.1016/j.scitotenv.2013.06.010.
29	949	Morawska, L., Thai, P. K., Liu, X., Asumadu-Sakyi, A., Ayoko, G., Bartonova, A., Bedini,
31	950	A., et al. 2018. "Applications of low-cost sensing technologies for air quality
32 33	951	monitoring and exposure assessment: How far have they gone?" Environment
34 35	952	International 116:286-99. doi: https://doi.org/10.1016/j.envint.2018.04.018.
36 27	953	Mullapudi, A., Bartos, M., Wong, B., and Kerkez, B. 2018. "Shaping Streamflow Using a
37 38	954	Real-Time Stormwater Control Network." Sensors 18 (7):2259. doi:
39 40	955	https://doi.org/10.3390/s18072259.
41 42	956	Mullapudi, A., Wong, B., and Kerkez, B. 2017. "Emerging investigators series: building a
43	957	theory for smart stormwater systems." Environmental Science: Water Research &
44 45	958	<i>Technology</i> 3 (1):66-77. doi: 10.1039/C6EW00211K.
46 47	959	Muschalla, D., Vallet, B., Anctil, F., Lessard, P., Pelletier, G., and Vanrolleghem, P. A. 2014.
48 40	960	"Ecohydraulic-driven real-time control of stormwater basins." Journal of Hydrology
49 50	961	511:82-91. doi: https://doi.org/10.1016/j.jhydrol.2014.01.002.
51 52	962	Oberascher, M., Zischg, J., Palermo, S. A., Kinzel, C., Rauch, W., and Sitzenfrei, R. 2019.
53 54	963	Smart Rain Barrels: Advanced LID Management Through Measurement and Control.
55	964	Paper presented at the UDM2018, Cham. doi: https://doi.org/10.1007/978-3-319-
56 57	965	<u>99867-1_134</u>
58 59	966	Payne, E. G. I., Fletcher, T. D., Cook, P. L. M., Deletic, A., and Hatt, B. E. 2014. "Processes
60	967	and Drivers of Nitrogen Removal in Stormwater Biofiltration." Critical Reviews in

2		
3 4	968	Environmental Science and Technology 44 (7):796-846. doi:
5 6 7 8 9	969	10.1080/10643389.2012.741310.
	970	Payne, E. G. I., McCarthy, D. T., Deletic, A., and Zhang, K. 2019. "Biotreatment
	971	technologies for stormwater harvesting: critical perspectives." Current Opinion in
10 11	972	Biotechnology 57:191-6. doi: https://doi.org/10.1016/j.copbio.2019.04.005.
12	973	Pellerin, B. A., Stauffer, B. A., Young, D. A., Sullivan, D. J., Bricker, S. B., Walbridge, M.
13 14 15 16 17	974	R., Clyde, G. A., and Shaw, D. M. 2016. "Emerging Tools for Continuous Nutrient
	975	Monitoring Networks: Sensors Advancing Science and Water Resources Protection."
	976	Journal of the American Water Resources Association 52 (4):993-1008. doi:
18 19	977	https://doi.org/10.1111/1752-1688.12386.
20 21	978	Persaud, P. P., Akin, A. A., Kerkez, B., McCarthy, D. T., and Hathaway, J. M. 2019. "Real
22	979	time control schemes for improving water quality from bioretention cells." Blue-
24	980	Green Systems. doi: 10.2166/bgs.2019.924.
25 26	981	Petrucci, G., Rioust, E., Deroubaix, JF., and Tassin, B. 2013. "Do stormwater source control
27 28	982	policies deliver the right hydrologic outcomes?" Journal of Hydrology 485:188-200.
29	983	doi: <u>https://doi.org/10.1016/j.jhydrol.2012.06.018</u> .
30 31	984	Piro, P., Turco, M., Palermo, S. A., Principato, F., and Brunetti, G. 2019. "A Comprehensive
32 33	985	Approach to Stormwater Management Problems in the Next Generation Drainage
34 35	986	Networks." In The Internet of Things for Smart Urban Ecosystems, edited by Cicirelli,
36	987	Guerrieri, Mastroianni, Spezzano and Vinci, 275-304. Cham: Springer International
37 38	988	Publishing. doi: 10.1007/978-3-319-96550-5_12
39 40	989	Poresky, A., Boyle, R., and Cadwalader, O. 2015. "Piloting Real Time Control Retrofits of
41	990	Stormwater Facilities: Two Oregon Case Studies and Beyond." In Proceedings of the
42 43	991	Pacific Northwest Clean Water Association.
44 45	992	Price, K. 2011. "Effects of watershed topography, soils, land use, and climate on baseflow
46 47	993	hydrology in humid regions: A review." Progress in Physical Geography: Earth and
48 49 50	994	Environment 35 (4):465-92. doi: https://doi.org/10.1177/0309133311402714.
	995	Rahman, A., Dbais, J., Mitchell, C., Ronaldson, P., and Shrestha, S. 2011. "Study of
51 52	996	Rainwater Tanks as a Source of Alternative Water Supply in a Multistory Residential
53 54 55	997	Building in Sydney, Australia." In World Environmental and Water Resources
	998	Congress 2007, 1-10. doi:10.1061/40927(243)596
56 57	999	Ramírez-Llanos, E., and Quijano, N. 2010. "A population dynamics approach for the water
58 59	1000	distribution problem." International Journal of Control 83 (9):1947-64. doi:
60	1001	10.1080/00207179.2010.501389.

3 4	1002	Rao, A. S., Marshall, S., Gubbi, J., Palaniswami, M., Sinnott, R., and Pettigrovet, V. 2013.
5	1003	Design of low-cost autonomous water quality monitoring system. Paper presented at
6 7	1004	the 2013 International Conference on Advances in Computing, Communications and
8 9	1005	Informatics (ICACCI), 22-25 Aug. 2013. doi: 10.2166/hydro.2006.015
10	1006	Rhea, L., Jarnagin, T., Hogan, D., Loperfido, J. V., and Shuster, W. 2015. "Effects of
12	1007	urbanization and stormwater control measures on streamflows in the vicinity of
13 14	1008	Clarksburg, Maryland, USA." Hydrological Processes 29 (20):4413-26. doi:
15 16	1009	doi:10.1002/hyp.10505.
17	1010	Rimer, S. P., Mullapudi, A., Troutman, S. C., and Kerkez, B. 2019. "A benchmarking
18 19	1011	framework for control and optimization of smart stormwater networks: demo
20 21	1012	abstract." In Proceedings of the 10th ACM/IEEE International Conference on Cyber-
22 23	1013	Physical Systems, 350–1. Montreal, Quebec, Canada: Association for Computing
24	1014	Machinery. doi: 10.1145/3302509.3313336
25 26	1015	Rode, M., Wade, A. J., Cohen, M. J., Hensley, R. T., Bowes, M. J., Kirchner, J. W.,
27 28	1016	Arhonditsis, G. B., et al. 2016. "Sensors in the Stream: The High-Frequency Wave of
29	1017	the Present." Environmental Science & Technology 50 (19):10297-307. doi:
30 31	1018	10.1021/acs.est.6b02155.
32 33	1019	Rodríguez-Molina, J., Martínez-Núñez, M., Martínez, JF., and Pérez-Aguiar, W. 2014.
34 35	1020	"Business Models in the Smart Grid: Challenges, Opportunities and Proposals for
36	1021	Prosumer Profitability." Energies 7 (9):6142-71. doi:
37 38	1022	https://doi.org/10.3390/en7096142.
39 40	1023	Roebuck, R. M., Oltean-Dumbrava, C., and Tait, S. 2011. "Whole life cost performance of
41 42	1024	domestic rainwater harvesting systems in the United Kingdom." Water and
43	1025	Environment Journal 25 (3):355-65. doi: 10.1111/j.1747-6593.2010.00230.x.
44 45	1026	Roman, D., Braga, A., Shetty, N., and Culligan, P. 2017. "Design and Modeling of an
46 47	1027	Adaptively Controlled Rainwater Harvesting System." Water 9 (12):974. doi:
48 40	1028	https://doi.org/10.3390/w9120974.
49 50	1029	Romanova, A., Tait, S., and Horoshenkov, K. V. 2012. "Local head loss monitoring using
51 52	1030	acoustic instrumentation in partially full sewer pipes." Water Science and Technology
53 54	1031	65 (9):1639-47. doi: 10.2166/wst.2012.058.
55	1032	Russell, K. L., Vietz, G. J., and Fletcher, T. D. 2019. "Urban sediment supply to streams from
56 57	1033	hillslope sources." Science of The Total Environment 653:684-97. doi:
58 59 60	1034	https://doi.org/10.1016/j.scitotenv.2018.10.374.

3 4	1035	Savic, D. A., and Walters, G. A. 1997. "Genetic Algorithms for Least-Cost Design of Water
5 6 7	1036	Distribution Networks." Journal of Water Resources Planning and Management 123
	1037	(2):67-77. doi: 10.1061/(ASCE)0733-9496(1997)123:2(67).
8 9	1038	Schubert, J. E., Burns, M. J., Fletcher, T. D., and Sanders, B. F. 2017. "A framework for the
10 11	1039	case-specific assessment of Green Infrastructure in mitigating urban flood hazards."
12	1040	Advances in Water Resources 108:55-68. doi:
13 14	1041	https://doi.org/10.1016/j.advwatres.2017.07.009.
15 16	1042	Schütze, M., Campisano, A., Colas, H., Schilling, W., and Vanrolleghem, P. A. 2004. "Real
17 12	1043	time control of urban wastewater systems—where do we stand today?" Journal of
19	1044	Hydrology 299 (3–4):335-48. doi: http://dx.doi.org/10.1016/j.jhydrol.2004.08.010.
20 21 22 23	1045	Seggelke, K., Löwe, R., Beeneken, T., and Fuchs, L. 2013. "Implementation of an integrated
	1046	real-time control system of sewer system and waste water treatment plant in the city
24 25	1047	of Wilhelmshaven." Urban Water Journal 10 (5):330-41. doi:
25 26	1048	10.1080/1573062X.2013.820331.
27 28	1049	Sercu, B., Van De Werfhorst, L. C., Murray, J. L. S., and Holden, P. A. 2011. "Sewage
29 30	1050	Exfiltration As a Source of Storm Drain Contamination during Dry Weather in Urban
31	1051	Watersheds." Environmental Science & Technology 45 (17):7151-7. doi:
32 33	1052	10.1021/es200981k.
34 35	1053	Shammaa, Y., Zhu, D. Z., Gyürék, L. L., and Labatiuk, C. W. 2002. "Effectiveness of dry
36 37	1054	ponds for stormwater total suspended solids removal." Canadian Journal of Civil
38	1055	Engineering 29 (2):316-24. doi: 10.1139/102-008.
39 40	1056	Sharior, S., McDonald, W., and Parolari, A. J. 2019. "Improved reliability of stormwater
41 42	1057	detention basin performance through water quality data-informed real-time control."
43	1058	Journal of Hydrology 573:422-31. doi: https://doi.org/10.1016/j.jhydrol.2019.03.012.
44 45	1059	Shen, P., Deletic, A., Bratieres, K., and McCarthy, D. T. 2019. "Real time control of
46 47	1060	biofilters delivers stormwater suitable for harvesting and reuse." Water
48 40	1061	Research:115257. doi: https://doi.org/10.1016/j.watres.2019.115257.
50	1062	Shen, P., Deletic, A., and McCarthy, D. T. 2018. Model testing and laboratory validation of
51 52	1063	real-time control strategy for stormwater biofilters. Paper presented at the 11th
53 54	1064	International Conference on Urban Drainage Modelling. 2018.
55	1065	Shen, P., Deletic, A., Urich, C., and McCarthy, D. T. 2017. A preliminary study of real-time
56 57	1066	monitoring and control of biofilters for stormwater harvesting. Paper presented at the
58 59	1067	12th IWA Specialized Conference on Instrumentation, Control & Automation,
60	1068	Québec, Canada.

2		
3 4	1069	Shishegar, S., Duchesne, S., and Pelletier, G. 2019a. "An Integrated Optimization and Rule-
5	1070	based Approach for Predictive Real Time Control of Urban Stormwater Management
7	1071	Systems." Journal of Hydrology:124000. doi:
8 9	1072	https://doi.org/10.1016/j.jhydrol.2019.124000.
10 11 12 13 14 15 16 17	1073	Shishegar, S., Duchesne, S., and Pelletier, G. 2019b. Predictive Real-Time Control
	1074	Optimization of a Stormwater Management System. Paper presented at the 2019
	1075	IEEE 15th International Conference on Control and Automation (ICCA), 16-19 July
	1076	2019. doi: 10.1109/ICCA.2019.8899726
	1077	Shrestha, P., Hurley, S. E., and Wemple, B. C. 2018. "Effects of different soil media,
19	1078	vegetation, and hydrologic treatments on nutrient and sediment removal in roadside
20 21	1079	bioretention systems." Ecological Engineering 112:116-31. doi:
22 23	1080	https://doi.org/10.1016/j.ecoleng.2017.12.004.
24	1081	Shuster, W., and Rhea, L. 2013. "Catchment-scale hydrologic implications of parcel-level
25 26	1082	stormwater management (Ohio USA)." Journal of Hydrology 485:177-87. doi:
27 28	1083	https://doi.org/10.1016/j.jhydrol.2012.10.043.
29	1084	Tang, W., Wang, Z., Feng, Q., and Wang, M. 2010. Application of fuzzy expert control to
31	1085	APMP Pulping Wastewater treatment process of aerobic. Paper presented at the 2010
32 33	1086	IEEE International Conference on Mechatronics and Automation, 4-7 Aug. 2010. doi:
34 35 36	1087	10.1109/ICMA.2010.5589054
	1088	Vezzaro, L., Christensen, M. L., Thirsing, C., Grum, M., and Mikkelsen, P. S. 2014. "Water
37 38	1089	Quality-based Real Time Control of Integrated Urban Drainage Systems: A
39 40	1090	Preliminary Study from Copenhagen, Denmark." Procedia Engineering 70:1707-16.
41 42	1091	doi: <u>https://doi.org/10.1016/j.proeng.2014.02.188</u> .
43	1092	Vietz, G. J., Lintern, A., Webb, J. A., and Straccione, D. 2017. "River Bank Erosion and the
44 45	1093	Influence of Environmental Flow Management." Environmental Management. doi:
46 47 48	1094	10.1007/s00267-017-0857-9.
	1095	Vörösmarty, C. J., Green, P., Salisbury, J., and Lammers, R. B. 2000. "Global Water
49 50	1096	Resources: Vulnerability from Climate Change and Population Growth." Science 289
51 52	1097	(5477):284-8. doi: 10.1126/science.289.5477.284.
53 54	1098	Vörösmarty, C. J., McIntyre, P. B., Gessner, M. O., Dudgeon, D., Prusevich, A., Green, P.,
54 55	1099	Glidden, S., et al. 2010. "Global threats to human water security and river
56 57	1100	biodiversity." Nature 467 (7315):555-61. doi: https://doi.org/10.1038/nature09440.
58 59 60		

Page 47 of 99

2		
3 4 5 6 7 8 9	1101	Walsh, C. J., Fletcher, T. D., Bos, D. G., and Imberger, S. J. 2015. "Restoring a stream
	1102	through retention of urban stormwater runoff: a catchment-scale experiment in a
	1103	social-ecological system." Freshwater Science 34 (3):1161-8. doi: 10.1086/682422.
	1104	Walsh, C. J., Fletcher, T. D., and Burns, M. J. 2012. "Urban Stormwater Runoff: A New
10 11	1105	Class of Environmental Flow Problem." PLoS ONE 7 (9):1-10. doi:
12 13 14	1106	https://doi.org/10.1371/journal.pone.0045814.
	1107	Wang, R., Zhang, X., and Li, MH. 2019. "Predicting bioretention pollutant removal
15 16	1108	efficiency with design features: A data-driven approach." Journal of Environmental
17	1109	Management 242:403-14. doi: https://doi.org/10.1016/j.jenvman.2019.04.064.
18 19	1110	Ward, S., Memon, F. A., and Butler, D. 2010. "Harvested rainwater quality: the importance
20 21	1111	of appropriate design." Water Science and Technology 61 (7):1707-14. doi:
22	1112	10.2166/wst.2010.102.
24	1113	Ward, S., Memon, F. A., and Butler, D. 2012. "Performance of a large building rainwater
25 26	1114	harvesting system." Water Res 46 (16):5127-34. doi: 10.1016/j.watres.2012.06.043.
27 28	1115	Winston, R. J., Davidson-Bennett, K. M., Buccier, K. M., and Hunt, W. F. 2016a. "Seasonal
29	1116	Variability in Stormwater Quality Treatment of Permeable Pavements Situated Over
30 31	1117	Heavy Clay and in a Cold Climate." Water, Air, & Soil Pollution 227 (5):140. doi:
32 33	1118	10.1007/s11270-016-2839-6.
34 35	1119	Winston, R. J., Dorsey, J. D., and Hunt, W. F. 2016b. "Quantifying volume reduction and
36	1120	peak flow mitigation for three bioretention cells in clay soils in northeast Ohio."
37 38	1121	Science of The Total Environment 553:83-95. doi:
39 40	1122	https://doi.org/10.1016/j.scitotenv.2016.02.081.
41	1123	Wright, I. A., Davies, P. J., Findlay, S. J., and Jonasson, O. J. 2011. "A new type of water
42 43	1124	pollution: concrete drainage infrastructure and geochemical contamination of urban
44 45	1125	waters." Marine and Freshwater Research 62 (12):1355-61. doi:
46 47	1126	https://doi.org/10.1071/MF10296.
48	1127	Xu, W., Fletcher, T., Duncan, H., Bergmann, D., Breman, J., and Burns, M. 2018.
49 50	1128	"Improving the Multi-Objective Performance of Rainwater Harvesting Systems Using
51 52	1129	Real-Time Control Technology." Water 10 (2):147. doi:
53 54 55	1130	https://doi.org/10.3390/w10020147.
	1131	Xu, W. D., Fletcher, T. D., Burns, M. J., and Cherqui, F. 2020. "Real Time Control of
56 57	1132	Rainwater Harvesting Systems: The Benefits of Increasing Rainfall Forecast
58	1133	Window." Water Resources Research 56 (9):e2020WR027856. doi:
60	1134	10.1029/2020wr027856.

1135	Yang, T. C. 2006. "Networked control system: a brief survey." IEE Proceedings - Control
1136	Theory and Applications 153 (4):403-12. doi: http://dx.doi.org/10.1049/ip-
1137	<u>cta:20050178</u> .
1138	Yi, XH., Jing, DD., Wan, J., Ma, Y., and Wang, Y. 2016. "Temporal and spatial variations
1139	of contaminant removal, enzyme activities, and microbial community structure in a
1140	pilot horizontal subsurface flow constructed wetland purifying industrial runoff."
1141	Environmental Science and Pollution Research 23 (9):8565-76. doi: 10.1007/s11356-
1142	016-6083-9.
1143	Zanella, A., Bui, N., Castellani, A., Vangelista, L., and Zorzi, M. 2014. "Internet of Things
1144	for Smart Cities." IEEE Internet of Things Journal 1 (1):22-32. doi:
1145	10.1109/JIOT.2014.2306328.
1146	Zhang, K., Deletic, A., Page, D., and McCarthy, D. T. 2015. "Surrogates for herbicide
1147	removal in stormwater biofilters." Water Research 81:64-71. doi:
1148	https://doi.org/10.1016/j.watres.2015.05.043.
1149	Zinger, Y., Fletcher, T., and Deletic, A. 2007a. "The effect of various intermittent dry-wet
1150	cycles on nitrogen removal capacity in biofilters systems." In Proceedings of the 13th
1151	International Conference on Rain Water Catchment Systems, edited by Dahlenburg.
1152	Australia: University of Newcastle.
1153	Zinger, Y., Fletcher, T., Deletic, A., Blecken, GT., and Viklander, M. 2007b. "Optimisation
1154	of the nitrogen retention capacity of stormwater biofiltration systems." In
1155	NOVATECH 2007 : 24/06/2007 - 29/06/2007. Villeurbanne: Graie.
1156	
	1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155