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A PHENOTYPE-STRUCTURED MODEL FOR THE

TUMOUR-IMMUNE RESPONSE

Zineb Kaid1, Camille Pouchol2,* and Jean Clairambault3

Abstract. This paper presents a mathematical model for tumour-immune response interactions in
the perspective of immunotherapy by immune checkpoint inhibitors (ICIs). The model is of the nonlo-
cal integro-differential Lotka-Volterra type, in which heterogeneity of the cell populations is taken into
account by structuring variables that are continuous internal traits (aka phenotypes) present in each
individual cell. These represent a lumped “aggressiveness”, i.e., for tumour cells, malignancy under-
stood as the ability to thrive in a viable state under attack by immune cells or drugs – which we propose
to identify as a potential of de-differentiation –, and for immune cells, ability to kill tumour cells, in
other words anti-tumour efficacy. We analyse the asymptotic behaviour of the model in the absence
of treatment. By means of two theorems, we characterise the limits of the integro-differential system
under an a priori convergence hypothesis. We illustrate our results with a few numerical simulations,
which show that our model reproduces the three Es of immunoediting: elimination, equilibrium, and
escape. Finally, we exemplify the possible impact of ICIs on these three Es.
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1. Introduction

In the field of oncology, several clinical and experimental studies concur to show that the immune system plays
a decisive role, providing tumour control, long-term clinical benefits and prolonged survival [35]. Nevertheless,
the anti-tumour immune response is an extremely complex process that depends on many factors. In this context,
mathematical models can help understand the interactions between tumour growth and the immune response.

In the present article, we propose an integro-differential equations based model, designed to analyse tumour-
immune interactions between cell populations and the asymptotic behaviours of these populations. We follow
the principle of modelling cell population heterogeneity by structuring them by relevant internal traits (aka cell
phenotypes), as initiated in [22] and partially reviewed in [11].

Deterministic phenotype-structured models, which are usually stated in terms of non-local partial differential
equations or integro-differential ones have been widely used to describe phenotype heterogeneity in tumour
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cell populations. In these models, the phenotypic state is represented by a continuous real variable, modelling
different biological characteristics such as viability and fecundity, see [2, 3, 20, 28] and the references therein.

To the best of our knowledge, the first phenotype-structured model for tumour-immune interactions was
proposed by Delitala and Lorenzi [14], where a tumour cell population characterised by heterogeneous antigenic
expressions is exposed to the action of antigen-presenting cells and immune T-cells. More precisely, their model
incorporates five populations of cells. All populations but one are assumed in [14] to be structured by a real
continuous variable in [0, 1] representing an internal phenotypic state of the cell. Their model reproduces well
the selective recognition and learning processes in which immune cells are involved. Our model, which belongs
to the category of non-local Lotka-Volterra systems, has been designed to offer a rationale for the use of immune
checkpoint inhibitors [32].

Such models, which can be derived from stochastic individual-based models [7], are known to possibly lead
to the concentration of populations on one or several phenotypes, which will be shown in the model described
below for the tumour cell population, under restrictive assumptions. The original motivation for this work is the
article [28], in which an integro-differential system for the time evolution of densities of cancer and healthy cells,
structured by a continuous phenotypic variable, representing their level of resistance to chemotherapy to which
they are exposed, is studied. In a completely different context, which is the application to ICI immunotherapy,
we will here make use of similar methods of asymptotic analysis.

Main theoretical and numerical results. In summary, we identify the possible (generally unique) non-
trivial limits the solution to the integro-differential system may have. More precisely, under the strong a priori
assumption that the density of cancer cells converges, we prove that its limit, when non-zero, is a weighted
Dirac mass. We provide in Section 4 a formula to compute the weight and location.

Moreover, we present simulation results that show how our model illustrates the three Es of immunoediting
(elimination, equilibrium, and escape) and that it may also exhibit oscillatory solutions. We mention that,
in the context of our model, which is of the nonlocal Lotka-Volterra type, it may be difficult to distinguish
between equilibrium and escape. Nevertheless, we propose to interpret solutions for which the system reaches
its carrying capacity as tumour escape, whereas solutions for which the tumour cell population is contained
below its carrying capacity may be interpreted as an equilibrium between tumour and immune cells.

Outline of the paper. The paper is organised as follows. In Section 2, we start by introducing biological
motivations for the development of the model under study. The integro-differential model itself is presented in
detail in Section 3. We then analyse the model and prove some asymptotic properties in Section 4. In Section 5,
we present some numerical results. In Section 6, we conclude with several comments and open questions.

2. Biological background

When a cancer cell population thrives, the immune response, and essentially its part that is constituted of
CD8+ T-lymphocytes (for the adaptive response) and NK-lymphocytes (for the innate response), consists in
recognising as foe elements and killing these cancer cells. This has been called immunosurveillance, later immu-
noediting [6, 30, 32], which may consist of three different configurations: eradication, equilibrium or escape. If
this process is performed during the early stages of tumour initiation, the tumour is quickly and successfully
eradicated. The immune response may also only contain the development of tumour, stabilising it at an equilib-
rium mass between eradication and maximum tumour carrying capacity, without eliminating it. However, cancer
cells can escape these innate NK-cell and adaptive specific T-cell immune responses in the course of genetic
and phenotypic evolution at the time scale of a cancer disease, and lead the total tumour mass to its maximum
carrying capacity. More precisely, phenotypic1 heterogeneity in the cancer cell population, involving its possible

1The term phenotype means here the set of characteristics of an individual (a cell, represented by a population density function
taking a given value, in our model), resulting from the interaction of its genotype with the environment; ‘observable’ characteristics
are not necessarily visibly observed, but may be internal traits, e.g., related to some epigenetic, reversible, modification by graft of
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internal invasion by secondarily mutated, robust, cells, may be responsible for both tumour escape and treat-
ment failure. Here, a focus is set on immunotolerance [30, 32], which renders cancer cells able to evade immune
detection and elimination. Indeed, cancer cells have the resource to weaken the immune response by emitting
molecules such as PD-L1 (i.e., PD-1 ligand) and CTLA-42 which can respectively bind to the PD-1 and B7
receptors on activated T-cells, inhibiting their cytotoxic activity and reducing their own immunogenicity. This
is represented in the model by direct competition between cancer cells and T-lymphocytes. As regards innate
immunity, the role of NK-lymphocytes (readily effective on cancer cells with lacking MHC-I surface antigens [24],
not the same mechanism as in the case of CD8+ T-cells, that are activated by tumour antigen-presenting cells,
APCs), has recently gained more consideration, in particular, because a role for anti-PD1/anti-PDL1 has been
suspected for them in cancer immunotherapies [27].

Immunotherapy with immune checkpoint inhibitors [32] (hereafter noted ICIs) is a recently introduced class
of drugs (aiming at being less toxic than the classical anti-cancer therapies, chemotherapy and radiation therapy)
that inhibit such cancer cell-produced inactivation of T- and NK-lymphocytes, either at the receptor sites on
lymphocytes or by inhibiting the ligands themselves. The clinical use, firstly of anti-CTLA4 drug Ipilimumab,
which has been shown to mainly target the priming lymphocyte response at the level of lymphoid organs [41],
and later of direct (at the tumour site) antagonisers of PD-L1 to PD-1 binding, drugs Nivolumab and Pem-
brolizumab [15]3, has drastically modified the prognosis of several advanced cancers that were until recently
out of reach (e.g., melanoma, a skin cancer with very bad prognosis [31]), offering sustained positive responses
(about 20% of complete cures, the remaining 80% consisting of non- or partial responders with relapse). How-
ever, not all cancer types respond as well as melanoma. To the best of our knowledge, the reasons for successes
or failures are still unknown. Moreover, there is no clear dose-response relationship and a maximum tolerated
dose, for checkpoint inhibitors, has not been identified as yet [19].

3. The model

3.1. Continuous phenotype-structured model for tumour-immune interactions

The main interest of structuring a cell population dynamic model with continuous phenotypes is to take
into account the continuously evolving phenotypes of interest in each individual cell, responsible for their
heterogeneity and plasticity [12, 13] in the cell population, with respect to relevant functional traits determining
their adaptation to changing conditions in the tumour micro-environment (such as externally control delivery
of drugs) and to their mutual interactions. In our case, we consider as relevant to represent in the NK- and
T-lymphocyte population a phenotype y coding continuously for their anticancer predating power, that can
be considerably weakened by PD-L1 ligands emitted by tumour cells, and, as regards tumour cells, a lumped
phenotype x coding for their malignancy, which may be evaluated by their ability to de-differentiate. Such ability
for individual cancer cells to de-differentiate, i.e., to gain a status closer to so-called stem cells by swimming
upstream in their normally unique-sense maturation stream within their cell lineage is well known in cancer [34].
It allows cancer cells to gain plasticity and thus, by reactivating defence mechanisms that are normally silenced
in healthy cells, to escape the predation of NK- and T-lymphocytes at a tumour site.

To grab more precisely the idea of de-differentiation, one must have in mind that normal cells differentiate
(i.e., mature) within their lineage from pluripotent, immature, stem cells to terminally differentiated, fully
functional, cells, and that such differentiation is physiologically irreversible (however not any more in cancer
cells, in which mutations are not at all necessary for such reversal mechanism, which relies on fast hijacking of
epigenetic enzymes [33] or transcription factors [18]). The best studied cases (documented in any textbook of
cell biology, see, e.g., [42] for haematopoiesis and [39] for epithelial cells) of such physiological maturation are,

a chemical radical (methyl, acetyl...) on some base of the DNA before transcription, or on some amino acid in a histone protein,
such traits being possibly evidenced after some dynamic stimulation only.

2PD-1: programmed cell death protein 1, a receptor located on NK- and T-lymphocytes; CTLA-4: cytotoxic T lymphocyte
antigen 4 for the adaptive response of T-lymphocytes.

3Note that in the sequel, as our model aims at representing direct tumour-immune interactions and their possible enhancing by
immunotherapy, the term ICIs represents this second class of drugs, anti-PD1 anti-PDL1 drugs.
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in the bone marrow, the haemotopoietic lineages from pluripotent haematopoietic stem cells to, e.g., mature
granulocytes or lymphocytes, and, in the gastrointestinal tract, the enterocyte lineage from crypt cells to mature
enterocytes of villi in the jejunum. The ability of cancer cells to swim up this normally one-way maturation
stream is one of the main phenomena referred to when mentioning their plasticity. Another well-known case
of plasticity in cancer is transdifferentiation (i.e., jumping directly from one cell phenotype to another one
without following any upstream way), in particular epithelial to mesenchymal transition (EMT, and its reverse
MET), by which epithelial cells acquire a mesenchymal phenotype, moving in a fibroblast-like way far from their
normal layers, a fundamental process for making cancer metastases [17]. In phenotype-structured cell population
dynamic models, as in [3], a continuous plasticity phenotype will more generally quantify the ability of a cell to
change its phenotype in an adaptive response to changes in its environment.

Such representation by phenotype-structured cell population models of the adaptation of individual cells to
a changing environment is not new, and it has already been studied in depth, from the mathematical point
of view, in a book by B. Perthame [26] and illustrated in a variety of articles in the last decade [3–5, 8–
11, 14, 20–22, 28]. Of note, the consideration of heterogeneity and plasticity in cancer cell populations has lately
become of high interest to cancer biologists [23, 36, 40], and we suggest that a proper way to take them into
account in mathematical models is by studying such adaptive phenotype-structured cell population dynamic
equations, as proposed, e.g., in [13, 34]. We do not contend that such modelling is universally popular in the
community of cancer biologists, of course, but that at least some of them consider these models with interest and
feed mathematicians with the physiological and physiopathological knowledge they need to design biologically
relevant mathematical models (that the converse feedback from mathematics towards experimental biology and
clinical therapeutics is still in its infancy is another story).

Clearly, direct biological measurements of the expression of such traits as the ones mentioned above are
usually lacking (and the same is true about the expression of traits of drug resistance), so that they may be
assessed, in the best cases, only by indirect concentrations of proteins [18] (or of their activity when they are
enzymes or transcription factors), or expression of genes [38], indeed not easy to measure experimentally, or
else they must be taken as hidden variables of functional nature, such as viability, fecundity, plasticity, motility,
that determine cell population fate. Here, we choose to structure our equations representing the dynamics of
cell populations under study by the hidden continuous functional variables x (malignancy in tumour cells) and
y (anti-tumour aggressiveness, i.e., efficacy, in immune cells) presented above.

3.2. Biological motivations

In the model relying on the system of three phenotype-structured equations shown in Subsection 3.4:

� For the tumour cell population of density n(t, x), a cell of phenotype x is all the more malignant, i.e.,
able to thrive, as x is close to 1, and conversely less malignant when x is close to 0. More precisely, the
malignancy trait x represents a progression potential towards stemness (ability to de-differentiate, aka
plasticity).

Let us mention that the malignancy trait x might in principle be measured in single cells by assessing
the expression of genes like the Yamanaka genes, identified in 2006, that enable de-differentiation, yielding
induced pluripotent stem cells from embryonic or even mature mouse fibroblasts [37]. More recently, a de-
differentiated phenotype MIT low/AXLhigh phenotype, defined by the concomitant downregulation of the
transcription factor MIT and accumulation of the tyrosine kinase receptor AXL, has been evidenced in
immunotherapy-resistant melanoma cells [18], which could provide a measurable basis for such continuous
malignancy trait x identified as a potential for tumour cells to de-differentiate in response to deadly attacks
coming from the immune response or more generally from the tumour microenvironment, including drugs.
Importantly, we assume in this model that both the density of a loss-of-self in tumour cells sensed by
NK-cells (made precise in the next paragraph) and the density of specific tumour antigens sensed by
APCs reflect the level of the hidden tumour aggressiveness, or malignancy, phenotype x in the tumour
cell population, even though the anti-tumour action of lymphocytes will be directed towards the manifest
general loss-of-self (for NK-cells) or specific tumour antigen-bearing cells (for T-cells).
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� For the T-lymphocyte population and for the non-adaptive NK-lymphocyte population, `(t, y) for effector
cells and p(t, y) for näıve cells in the system of equations (3.8) shown in Section 3.4 below, in a similar way,
we structure it by a phenotype y of anti-tumour aggressiveness, or efficacy, which may be defined as the
reverse of the ‘dysfunction’ or ‘exhaustion’ phenotype that has been observed in CD8+ T-cells exhibiting
incapacity to efficaciously fight tumour cells. In our model, the difference between NK-lymphocytes and
effector (CD8+) T-cells consists in the nature of their action on tumour cells, either independent of the
tumour phenotype x for NK-cells represented below by a function ϕ(t), or highly dependent on it for
T-cells, represented by a function ϕ(t, x). In the analysis of our model, we will study separately the
case of innate (function ϕ(t)) and adaptive (function ϕ(t, x)) immune response, and also a mix of these
two cases. To identify and measure in single cells such dysfunction or exhaustion in T-cells, different
biological markers have been proposed; they have been recently reviewed in [38] (an article in which it is,
in particular, noted that “T cell dysfunctionality is a gradual, not a binary, state”, which fully justifies
the continuous character of our structure variable y). The closer the phenotype y approaches 0, the less
aggressive are T- and NK-lymphocytes, i.e., less competent to kill cancer cells (complete exhaustion),
whereas if y approaches 1, they are highly aggressive (full competence) against the targeted tumour cells,
an aggressiveness identified by their competence as immune cells due to the tumour antigen recognition
performed by the APCs and transmitted to näıve T-cells in lymphoid organs, or to the absence of MHC-
I4 antigens (loss-of-self) in tumour cells in the case of NK-cells. The principle of immune checkpoint
inhibitor (ICI) immunotherapy is to boost CD8+ T-lymphocytes and NK-lymphocytes in their efficacy by
antagonising such tumour-emitted inhibitory mechanisms, mainly, in the modelling framework presented
here, PD-L1 to PD-1 binding on T-cells and on NK-cells.

3.3. Modelling choices for the mathematical functions of phenotypes x and y

In the absence of experimental data, the precise choices for functions r, d,µ, ν, ϕ, used in the system (3.8)
shown in Subsection 3.4 below, are largely arbitrary, only guided by physiological considerations on an assumed
monotonicity. They are listed in Table 1 of Section 5 for simulations, reflecting such monotonicity: non-increasing
for r, d,µ, ν, non-decreasing for the weight function ψ that defines the immune response ϕ in the case of innate
immunity by NK-cells (see below). The biological background for these functions is as follows.

� We assume that in the absence of immune response, tumour cells undergo logistic growth, with a net
growth rate (aka fitness) defined by

r(x)− d(x)ρ(t). (3.1)

Here, the function r(x) stands for the intrinsic proliferation rate. As x stands for a de-differentiation,
stem-like, cell phenotype, admitting that a stem-like status does not favour replication velocity, r will
typically be assumed to be a positive, decreasing function of x on [0, 1], e.g., of the form r(x) = r0 − ηx2

where the parameter r0 > 0 corresponds to the maximum fitness of cancer cells, while η > 0 provides
a measure of the strength of natural selection in the absence of the immune response, with r0 − η > 0.
The term d(x)ρ(t) models the intrinsic death rate due to within-population competition for space and
resources, assumed to be proportional to the total population mass of tumour cells ρ(t). The function
d will typically be taken to be a positive, decreasing function of x on [0, 1] (in the same way as for the
replication function r, a de-differentiated, stem-like, status is admitted to protect cells from the natural
death term represented by the function d).
The fitness structure chosen here for the tumour and for the immune cell population is of the nonlocal
Lotka-Volterra type. It has been in particularly used in [26] to model the adaptation of individuals to
their environment.

4The Major Histocompatility Complex I, MHC-I, is present in all jawed vertebrates, hence in Man, species to which we will
limit the scope of our model, which is intended to pave the way for cancer immunotherapy.
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� We assume that, once an immune response has been activated, the tumour cells interact with NK-cells as
an added death term at a rate which is proportional to the product of the tumour cell population density
by a weighted integral ϕ(t) given by

ϕ(t) =

∫ 1

0

ψ(y)`(t, y) dy, (3.2)

where ψ is a positive function, which we will take to be non-decreasing on [0, 1], µ(x) being a sensitivity
function. We note that in this formulation, the immune response ϕ(t), emitted by NK-cells present at
the tumour site, is non-specific, only the tumoral sensitivity function µ(x) makes it somehow specific; the
function ϕ(t) then stands for a response in which the phenotype y in lymphocytes is averaged over all the
population of activated NK-cells, that are sensitive to to the loss-of-self in tumour cells, ϕ(t) representing
a sort of “mass immune response”.

� In order to account for an adaptive, specific, immune response which is the one of T-cells, we more generally
consider the immune reaction function ϕ to be of the form

ϕ(t, x) =

∫ 1

0

Ψ(x, y)`(t, y) dy. (3.3)

Here, the weight function ψ(y) of the innate response is replaced by Ψ(x, y), which we typically take to
be the product of a function ψ(y) by a localisation kernel, e.g.,

Ψ(x, y) =
ψ(y)

v
e−|x−y|/v, (3.4)

in which ψ will again be a positive function, non-decreasing on [0, 1], assumed for simplicity to be the same
as in the innate, non-adaptive case (3.2). Parameter v is the precision with which the immune response
targets the cancer cell population (as identified by its malignancy trait x, representing specific tumour
antigens borne by the cancer cells).
We will in fact in simulations consider separately these two cases, native non-specific (NK-cells: ϕ(t)
given by (3.2)) and adaptive specific (T-cells: ϕ(t, x) given by (3.3)) anti-tumour immune response, and
also a mixed case, convex combination of the two immune responses, non-specific (NK-cells) and specific
(T-cells):

Ψλ(x, y) =

(
(1− λ) + λ

1

v
e−|x−y|/v

)
ψ(y), λ ∈ [0, 1], (3.5)

corresponding to simultaneous and independent activation of NK-cells and T-cells by loss-of-self (NK-
cells) and specific tumour antigen (T-cells) stimuli. This choice interpolates (function ψ being fixed)
between (3.2) obtained with λ = 0 (for NK-cells), and (3.3), with the choice (3.4), obtained with λ = 1
(for T-cells).

� The function µ(x) mentioned above represents a factor of sensitivity to the effects of the immune response.
As de-differentiation is supposed to protect tumour cells from these effects (e.g., by hiding tumoral
antigens, targets of lymphocytes), µ will be a positive decreasing function of x.

� The amplification of the näıve T-lymphocytes p(t, y) at lymphoid organs is related to the mean x malig-
nancy value through a weighted integral χ(t, y) of the tumour cell population, representing the message
borne by APCs to initiate the adaptive anti-tumour immune response produced in the lymphoid organs.
When an APC detects a tumour cell, the related antigen is presented to näıve T-cells in lymphoid organs.
Thus, näıve T-cells that recognise this antigen as their cognate one become activated and start their
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ammplification, ie., they start to proliferate and, through a complex process chain, they become able to
recognise and attack tumour cells that express the cognate antigen. The function χ(t, y) is defined as

χ(t, y) =

∫ 1

0

ω(x, y)n(t, x) dx, (3.6)

where ω is another localisation kernel such as ω(x, y) = α 1
se−|x−y|/s, so as to represent a more or less

faithful tumour antigen detection message transmitted by the APCs (whose mission is to activate näıve
T-lymphocytes) to the lymphoid organs about both the size and malignancy of the tumour. The efficacy
of activated T-lymphocytes in killing tumour cells depends on the initial size of the tumour and on how
localised the kernel is (i.e., on the width of the range of phenotypes y concerned by their detected tumour
cognates x, which can be measured by the value of the parameter s in the proposed function ω(x, y)).
The parameter α represents the strength of the immune response. In the present model, communication
between recognition at the contact of tumour cells and activation of näıve T-lymphocytes at the site
of lymphoid organs will be represented, for the sake of simplicity without considering any delay, by the
shortcut of the function ω(x, y). In this localisation kernel function, the parameter s may be seen as
the precision (all the higher as s is lower) of the detection of the malignancy trait x in the cancer cell
population by APCs or circulating NK-cells.

� We consider a similar mechanism for NK-lymphocytes, that are known to proliferate and amplify not only
in the bone marrow but also in lymphoid organs, in the same way as T-lymphocytes do [1]. In the case of
this innate immune response, there are no APCs, but the message from sensor patrolling NK-lymphocytes
to proliferating NK-lymphocytes in lymphoid organs is assumed to be of (coarse, quantitative) humoral
nature, carrying a message on the density of loss-of-self loci in the tumour cell population. The same
function χ(t, y) with the same localisation kernel ω(x, y) will be used for the activation of NK-lymphocytes.

� In the second equation of (3.8) for the competent NK- and T-lymphocytes `(t, y), the sensitivity function
ν(y) of the anti-tumour aggressiveness phenotype y represents the weakening of both categories of lym-
phocytes (immunotolerance) induced by PD-1 ligands, this sensitivity function multiplying the total mass
of tumour cells ρ(t); note that it is also assumed to be decreased by ICIs present at the denominator.
As the function ν stands for a sensitivity factor in lymphocytes to the weakening reaction molecules (in
this model, mainly PD-L1) emitted by tumour cells or produced in the tumour microenvironment, it will
be chosen to be a positive, decreasing function of y, which in this case reflects the fact that cells in the
phenotypic state y = 1 are fully aggressive on contact with tumour cells and, for cells in phenotypic states
other than the most aggressive one, the inhibition term induced by the tumour cells decreases with the
drug dose.

� The population of NK-lymphocytes and näıve T-lymphocytes residing in the lymphoid organs is supposed
to be regulated in a logistic way by a logistic term k1p(t, y), where the parameter k1 stands for the
natural death rate of the population of lymphocytes imposed by carrying capacity constraints (e.g., limited
availability of space and resources in lymphoid organs).

� The input of external control targeting immune checkpoints inhibitors is represented by the function ICI(t)
that enhances anti-tumour CD8+ T-lymphocyte and NK-lymphocyte responses by boosting the exhausted
immune cells, which helps them to respond strongly to the presence of the tumour, by “weakening the
weakening” immunotolerance induced by the tumour cells. We assume that

0 ≤ ICI(t) ≤ ICImax. (3.7)

for some maximum tolerated dose ICImax. The factor 1
1+hICI(t) , with h > 0, tunes the decrease in the

immunotolerance rate, decrease due to the immune checkpoints inhibitors therapy. We note that fine
details of clinical administration protocols are not meant to be described here. We also mention that ICI
is a quantitative dose function, and is APC-independent.
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3.4. An adaptive cell population dynamic model

To describe tumour-immune interactions, we consider three different cell population densities:

� a heterogeneous cancer cell population n(t, x) with continuous aggressiveness (or malignancy) trait
x ∈ [0, 1] linked to their stemness (i.e., their ability to de-differentiate, allowing them to re-differentiate
with adapted phenotypes); they are endowed with a natural (logistic and nonlocal) death term d(x)ρ(t)
representing within cell population competition for space and d nutrients, and an added death term due
to anti-tumour immune cell predation µ(x)ϕ(t, x), where µ(x) µ(x) and ϕ(t, x) are the sensitivity function
and the immune predation function described above, with the target localisation kernel for T-lymphocytes
included in the function Ψλ for λ 6= 0 .

� a heterogeneous population of mixed competent T-lymphocytes and NK-lymphocytes `(t, y) endowed
with continuous anti-tumour aggressiveness trait y ranging from 0 (exhausted) to 1 (highly aggressive)
interacting with cancer cells n(t, x) at the tumour site. Here, function ν(y) tunes the immunoediting
function from tumour cells, that weakens the aggressivity of NK- and T-lymphocytes by PD-L1 on PD1
receptors on both lymphocyte populations.

� a heterogeneous population of näıve T-lymphocytes and inactive NK-lymphocytes p(t, y), either resident
and present at the tumour site (for NK-cells, particularly activated by their sensing lack of MHC-I surface
antigens in tumour cells, so-called “loss-of-self”), or present in distant lymphoid organs, informed there of
the presence of tumour cells of malignancy phenotype x by patrolling NK-lymphocytes – or by humoral
messages – for inactive NK-lymphocytes, and for näıve T-lymphocytes by APCs (antigen-presenting
cells, here represented by a weighted integral of the cancer cell population involving the localisation
kernel ω(x, y). Both “näıve” cell populations are represented by the lumped (i.e., gathering NK- and T-
lymphocytes in a population of still inactive immune cells) population density p(t, y). In our asymptotic
analysis and in simulations, we consider separately the three cases: innate, adaptive, and a combination
of the two immune responses.

Our model is given by the following system of integro-differential equations (IDEs):





∂n

∂t
(t, x) = [r(x)− d(x)ρ(t)− µ(x)ϕ(t, x)]n(t, x), for t > 0, x ∈ [0, 1],

∂`

∂t
(t, y) = p(t, y)−

(
ν(y)ρ(t)

1 + hICI(t)
+ k1

)
`(t, y), for t > 0, y ∈ [0, 1],

∂p

∂t
(t, y) = χ(t, y)p(t, y)− k2p

2(t, y), for t > 0, y ∈ [0, 1].

(3.8)

with total mass of cancer cells at time t

ρ(t) :=

∫ 1

0

n(t, x) dx. (3.9)

The initial value function n(0, x) is chosen to represent the assumed initial malignancy of the tumour, and in
the same way, the initial value functions `(0, y) and p(0, y) will be chosen to represent the initial host’s immune
response.

Having this model in mind, our goals in the present study are

� to analyse the asymptotic properties of the model, as we want to understand how the interaction between
tumour cells and T cells leads to the selection (or not) of some traits, which are considered as dominant
traits by the environment;

� to numerically investigate if and how our model captures the three Es of immunoediting, i.e., eradication,
equilibrium and escape.
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Figure 1. ODE reduction (adapted from [16]): Plots displaying the time evolution of total
masses ρ(t) (left panel), activated NK-cells and competent T-cells σ(t) (central panel), and
näıve T-cells or inactive NLK-cells γ(t) (right panel) as defined by system (3.11) in two different
cases: stationary and periodic solutions [16]. Upper row. The solution shows stability of the
interior equilibrium (0.6257, 1.1436, 0.746), for k = 0.8514. Lower row. The solution shows
instability of the interior equilibrium (0.5204, 1.1699, 0.7115) with limit cycle (Hopf bifurcation),
for k = 0.7314. For all plots, r = 1.3, d = 0.25, ν = 0.4, and initial conditions are (ρ0, σ0, γ0) =
(1.5, 0.5, 3).

3.5. Comparison with an ODE-reduced system

In order to exploit useful ideas to guide our study of the dynamics of the above integro-differential system,
we mention that a simplified version of (4.1), reduced to an ODE system, has been analysed in [16]. Assuming
that all functions are constant in x and y, and denoting

σ(t) :=

∫ 1

0

`(t, y) dy, and γ(t) :=

∫ 1

0

p(t, y) dy, (3.10)

the system (3.8) boils down to the dynamics of t 7→ (ρ(t), σ(t), γ(t)), which after integration solves the following
ODE system:





dρ(t)

dt
= [r − dρ(t)− µσ(t)] ρ(t),

dσ(t)

dt
= γ(t)− (k1 + νρ(t))σ(t),

dγ(t)

dt
= γ(t) (ωρ(t)− k2γ(t)) .

(3.11)

The mathematical analysis of these equations has been performed in [16], in the particular case where k1 = ν,
µ = ω = 1. The existence of the steady states has been characterised and analysed with respect to their local
asymptotic stability. Regions of the parameter space have also been identified, in which a Hopf bifurcation exists.
The ODE system (3.11) reproduces a tumour equilibrium (second situation of the immunoediting process),
which corresponds either to a stable steady state or to a stable limit cycle, characterised by a sustained periodic
behaviour of alternating growth and decay (without extinction) of both tumour and immune T cells. For
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particular choices of initial conditions, the ODE model also captures either tumour eradication or tumour
immune escape.

4. Asymptotic analysis

4.1. Asymptotics in the absence of treatment: innate, non-adaptive response

We study the asymptotic properties of the system (3.8) in the absence of treatment, i.e., with ICI(t) = 0.
Of course, upon changing the function ν, our study also encompasses the case where the dose ICI is taken to
be constant with time.
The evolution of the population densities is then governed by the following integro-differential system:





∂n
∂t (t, x) = [r(x)− d(x)ρ(t)− µ(x)ϕ(t)]n(t, x), for t > 0, x ∈ [0, 1],

∂`
∂t (t, y) = p(t, y)− (ν(y)ρ(t) + k1) `(t, y), for t > 0, y ∈ [0, 1],

∂p
∂t (t, y) = χ(t, y)p(t, y)− k2p

2(t, y), for t > 0, y ∈ [0, 1],

(4.1)

the above system starting from initial conditions

n(0, x) = n0(x) ≥ 0, `(0, y) = `0(y) ≥ 0, p(0, y) = p0(y) ≥ 0. (4.2)

Main assumptions on the functions and initial conditions. For the remaining part of this section, we
assume that the initial conditions n0, `0 and p0 are all in C([0, 1]), and whenever necessary, we will assume that

n0 > 0 and p0 > 0 on [0, 1], (4.3)

and we will work with the following regularity assumptions:

r, d,µ, ψ, ν ∈ C([0, 1]), and ω ∈ C([0, 1]2), (4.4)

and all the above functions are assumed to be positive. In the more general adaptive case, the assumption
ψ ∈ C([0, 1]) is replaced by Ψ ∈ C([0, 1]2). We note that all proposed functions in the introduction and those
used in simulations do satisfy these regularity and positivity hypotheses.

We also stress that no monotonicity assumptions whatsoever are required for the results of this section to
hold true.

The existence and uniqueness of global classical (nonnegative) solutions in C0([0,+∞), L1(0, 1)3) is standard
and follows from using the Banach fixed point theorem, see [26]. Given our regularity hypotheses for initial
conditions, it is then clear that functions n(t, ·), `(t, ·) and p(t, ·) are all continuous on [0, 1], at all times t ≥ 0.

4.1.1. Asymptotics for tumour cells alone

In the absence of immune response (for instance, assuming either that there are no competent immune cells
initially, i.e., `0 = 0, or that immune cells are inefficient in interacting with cancer cells through either ψ = 0
or µ = 0), the first equation of (4.1) boils down to a standard logistic integro-differential model, namely





∂n
∂t (t, x) = [r(x)− d(x)ρ(t)]n(t, x), n(t = 0, x) = n0(x) ≥ 0,

ρ(t) =
∫ 1

0
n(t, x) dx.

(4.5)

The asymptotic behaviour of this equation is well known [21, 26, 28]. For any positive continuous initial condition
n0, the total population of tumour cells ρ(t) converges to ρ? := max( rd ) as t→ +∞.
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This asymptotic cell population mass, which is its maximal value, is readily interpreted, as for all logistic models
of tumour growth, as the tumour carrying capacity. Furthermore, the density n(t, ·) viewed as a Radon measure
supported on [0, 1] concentrates on the set

A := {x ∈ [0, 1], r(x)− d(x)ρ? = 0} = arg max
x∈[0,1]

r(x)

d(x)
(4.6)

as t→ +∞. If A is reduced to a singleton x?, then in particular n(t, ·) ⇀ ρ?δx? as t→ +∞ in M([0, 1]).

4.1.2. A priori bounds

We first indicate the derivation of an upper bound for ρ. Integrating the first equation of system (4.1) with
respect to x, we find using ϕ ≥ 0:

dρ

dt
=

∫ 1

0

[r(x)− d(x)ρ− µ(x)ϕ(t)]n(t, x) dx ≤ max
x∈[0,1]

(r(x)− d(x)ρ) ρ.

The right-hand side is negative as soon as max
x∈[0,1]

(r(x)− d(x)ρ) < 0, i.e., as soon as ρ > max r
d . Hence

lim
t→+∞

ρ(t) ≤ max
x∈[0,1]

r(x)

d(x)
= ρ?. (4.7)

Let us fix y ∈ [0, 1]. Denoting ωM (y) := max{x∈[0,1]} ω(x, y), the previous bound yields

∀y ∈ [0, 1], lim
t→+∞

χ(t, y) ≤ ωM (y)ρ. (4.8)

Using the equation satisfied by t 7→ p(t, y), we find

lim
t→+∞

p(t, y) ≤ p(y) :=
ωM (y)ρ?

k2
. (4.9)

Using the same arguments, one can prove that the population density ` is bounded from above. Indeed,

d

dt
`(t, y) = p(t, y)− (ν(y)ρ(t) + k1) `(t, y) ≤ p(t, y)− k1`(t, y) (4.10)

and we are led to

lim
t→+∞

`(t, y) ≤ `(y) :=
p(y)

k1
. (4.11)

As a result, we obtain

lim
t→+∞

ϕ(t) ≤ ϕ :=

∫ 1

0

ψ(y)`(y) dy. (4.12)

Finally, we may argue as above for a lower bound for ρ (on top of nonnegativity ρ ≥ 0). Indeed, from

dρ

dt
≥ min
x∈[0,1]

(r(x)− d(x)ρ− µ(x)ϕ) ρ, (4.13)
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it follows that

lim
t→+∞

ρ(t) ≥ min
x∈[0,1]

(
r(x)− µ(x)ϕ

d(x)

)
. (4.14)

We accordingly consider an assumption leading to non-extinction, given by

min
x∈[0,1]

(r(x)− µ(x)ϕ) > 0, (4.15)

which depends only on the parameters r, d, µ, ψ, ω, k1 and k2. If this assumption is satisfied, eradication is
impossible.

4.1.3. Asymptotics for the complete model, innate, non-adaptive response

This section is devoted to analysing the asymptotic behaviour of the model (4.1) in the non-adaptive case,
particularly represented by NK-lymphocytes rather than by T-lymphocytes, where ϕ does not depend on x.

As already mentioned in Section 3, assuming all functions to be constant, the IDE system has the ODE (3.11)
as a particular case. For that ODE, it has been proved that all three behaviours can occur: convergence to a
(unique) trivial stable point (extinction or escape), convergence to a (unique) non-trivial stable point (equilib-
rium) and convergence to a limit cycle. The existence of such periodic solutions means that there is no hope of
deriving any unconditional result of convergence to steady states for the IDE model.

In what follows, we prove a partial result, which makes the strong a priori assumption that n converges. We
then establish that the limit either equals 0 or can precisely be characterised, see Theorem 4.3.

Lemma 4.1. Suppose that the density n weakly converges in M([0, 1]), and denote n∞ the limit measure.

Setting ρ∞ :=
∫ 1

0
dn∞(x), and under the assumptions (4.3)–(4.4), both densities ` and p converge respectively

to `∞, p∞ ∈ C0([0, 1]) given by

`∞(y) = p∞(y)
ν(y)ρ∞+k1

,

p∞(y) = 1
k2

∫ 1

0
ω(x, y) dn∞(x).

(4.16)

Proof. We let y ∈ [0, 1] be fixed. First remark that χ(t, y) converges to χ̄(y) given by

χ̄(y) :=

∫ 1

0

ω(x, y) dn∞(x). (4.17)

Hence p(·, y) satisfies a non-autonomous logistic ODE, given by

dp(t, y)

dt
= [χ(t, y)− k2p(t, y)] p(t, y). (4.18)

For any given ε > 0 and t large enough (say t ≥ t0) such that χ(t, y) ≤ χ̄(y) + ε, we can write

dp(t, y)

dt
≤ [χ̄(y) + ε− k2p(t, y)] p(t, y), (4.19)

p is thus a sub-solution of the equation

du

dt
(t) = [χ̄(y) + ε− k2u(t)]u(t), (4.20)
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with initial condition chosen to be u(t0) = p(t0, y). The solution of the latter logistic autonomous equation

converges to χ̄(y)+ε
k2

as t→ +∞, since p(t0, y) > 0 by the assumption (4.3). We conclude that

∀ε > 0, lim
t→+∞

p(t, y) ≤ lim
t→+∞

u(t) =
χ̄(y) + ε

k2
. (4.21)

Therefore, we may pass to the limit ε→ 0 in inequality (4.21) to obtain

lim
t→+∞

p(t, y) ≤ χ̄(y)

k2
. (4.22)

Using a similar argument, we can obtain a bound from below, and then prove that

∀y ∈ [0, 1], lim
t→+∞

p(t, y) =
χ̄(y)

k2
=

1

k2

∫ 1

0

ω(x, y) dn∞(x) = p∞(y). (4.23)

Turning to the limit for `, we fix y in [0, 1]. Letting Ly(t) := `(t, y), we have

dLy(t)

dt
= Ay(t)−By(t)Ly(t), (4.24)

which is a non-autonomous linear differential equation, with





lim
t→+∞

Ay(t) = lim
t→∞

p(t, y) = p∞(y) =: Āy,

lim
t→+∞

(ν(y)ρ(t) + k1) = ν(y)ρ∞ + k1 =: B̄y.
(4.25)

For ε > 0 small enough (such that ε < By) and t large enough (say t ≥ t0) such that Ay(t) ≤ Āy + ε and
By(t) ≥ B̄y − ε, we can write

dLy
dt
≤
(
Āy + ε

)
−
(
B̄y − ε

)
Ly, (4.26)

Ly is thus a sub-solution of the autonomous equation given by

dv

dt
=
(
Āy + ε

)
−
(
B̄y − ε

)
v, (4.27)

with v(t0) = Ly(t0), hence

∀ε > 0, lim
t→+∞

Ly(t) ≤ lim
t→+∞

v(t) =
Āy + ε

B̄y − ε
. (4.28)

We then let ε go to 0 to get

∀y ∈ [0, 1], lim
t→+∞

Ly(t) ≤ Āy
B̄y

=
p∞(y)

ν(y)ρ∞ + k1
. (4.29)
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Arguing in a similar manner to get a lower bound, we find

∀y ∈ [0, 1], lim
t→+∞

`(t, y) =
p∞(y)

k1 + ν(y)ρ∞
= `∞(y). (4.30)

Let us now explain how to determine the only possible limits for the system, still making the strong a priori
assumption that n(t, ·) converges. We shall need a technical (but rather weak) assumption, namely

∀0 < ρ ≤ ρ, ∀0 < ϕ ≤ ϕ, arg max
x∈[0,1]

(r(x)− d(x)ρ− µ(x)ϕ) =: {x(ρ, ϕ)}. (4.31)

Remark 4.2. One sufficient but more workable condition to have (4.31) is for the function r − dρ− µϕ to be
strictly concave over [0, 1], for all 0 < ρ ≤ ρ, 0 < ϕ ≤ ϕ, which assuming that all functions are smooth is verified
as soon as r′′ − ρd′′ − ϕµ′′ < 0 on [0, 1] for all such values.

We also note that (4.31) can be restricted to values 0 < ρ ≤ ρ, 0 < ϕ ≤ ϕ such that the function x 7→
r(x)− d(x)ρ− µ(x)ϕ has maximum zero, as the proof below shows.

Theorem 4.3. Suppose that the density n weakly converges in M([0, 1]), and denote n∞ the limit measure.
Under the assumptions (4.3)-(4.4)-(4.31), then either n∞ = 0 or n∞ is of the form

n∞ = ρ∞δx∞ ,

where x∞ = x(ρ∞, ϕ∞) and (ρ∞, ϕ∞) solves the following system over (ρ, ϕ) ∈ R2





ρ = max
x∈[0,1]

(
r(x)− µ(x)ϕ

d(x)

)
,

ϕ =
ρ

k2

∫ 1

0

ψ(y)ω(x(ρ, ϕ), y)

ν(y)ρ+ k1
dy.

(4.32)

Remark 4.4. If one makes the additional assumption (4.15), ρ is bounded away from 0 and hence we must
have n∞ 6= 0. In other words, the only possible limits are of the form given by the above result if (4.15) holds.

Proof. We assume that n∞ 6= 0. According to Lemma 4.1, both t 7→ `(t, ·) and t 7→ p(t, ·) converge pointwise to
`∞ and p∞ implicitly given by formulae (4.16).

Let us justify that ϕ converges. The bound (4.11) shows that the function (t, y) 7→ ψ(y)`(t, y) is dominated
by the continuous function y 7→ ψ(y)`(y), hence by the dominated convergence theorem, we have

lim
t→+∞

ϕ(t) = ϕ∞ :=

∫ 1

0

ψ(y)`∞(y) dy =
1

k2

∫ 1

0

[
ψ(y)

ν(y)ρ∞ + k1

∫ 1

0

ω(x, y) dn∞(x)

]
dy. (4.33)

For a fixed x ∈ [0, 1], t 7→ n(t, x) solves an exponential ODE (i.e, of the form z′(t) = a(t)z(t)), whose time-
dependent rate asymptotically approaches r(x)− d(x)ρ∞ − µ(x)ϕ∞. We may hence analyse its sign as follows.

i) If r(x0) − d(x0)ρ∞ − µ(x0)ϕ∞ > 0 for some x0 ∈ [0, 1], then by continuity there exists an nontrivial
interval I ⊂ [0, 1] containing x0, along which r(x)− d(x)ρ∞ − µ(x)ϕ∞ ≥ 2ε for ε small enough. Since the
convergence of r(x) − d(x)ρ(t) − µ(x)ϕ(t) towards r(x) − d(x)ρ∞ − µ(x)ϕ∞ as t → ∞ is uniform with
respect to x ∈ [0, 1], there exists t0 > 0 such that r(x)− d(x)ρ(t)− µ(x)ϕ(t) ≥ ε for all t ≥ t0 and x ∈ I.
Writing the solution (4.1) in implicit form gives for all t ≥ 0

n(t, x) = n(t0, x) e
∫ t
t0

(r(x)−d(x)ρ(s)−µ(x)ϕ(s)) ds
,
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which after integration over [0, 1] leads to

ρ(t) =

∫ 1

0

n(t, x) dx ≥
∫

I

n(t0, x) e
∫ t
t0

(r(x)−d(x)ρ(s)−µ(x)ϕ(s)) ds
dx ≥ |I| inf

x∈I
n(t0, x) eε(t−t0).

with |I| the Lebesgue measure of I. Recalling the assumption (4.3), the continuous function n(t0, ·) is also
positive, which shows that inf

x∈I
n(t0, x) > 0. Since the right-hand side goes to +∞, we obtain a contradiction

with the convergence of ρ.
ii) If r−dρ∞−µϕ∞ < 0 on the whole of [0, 1], one readily proves that ρ converges to 0 which is incompatible

with the convergence of ρ to a positive limit (since n∞ 6= 0).

The function r − dρ∞ − µϕ∞ is thus non positive on [0, 1], and its maximum equals 0. This is equivalent to

saying that ρ∞ = max( r−µϕ
∞

d ).
Assumption (4.31) ensures that the maximum point x∞ := x(ρ∞, ϕ∞) is unique. Furthermore, the first

statement i) further shows that n(t, x) vanishes at any other point x than x 6= x∞. We have thus proved that
n concentrates at x∞, hence n∞ = ρ∞δx∞ .

Finally, inserting n∞ = ρ∞δx∞ into the formula (4.33), we obtain the second equation, concluding the proof.

Remark 4.5. In general, there is no close formula for the solutions of (4.32), which may not be unique. In
practice, this system may be solved numerically by any method aiming at finding fixed points of the underlying
mapping. Hence, assuming convergence of n, this theorem does provide a rather complete picture of the possible
non-trivial limits the system may reach. When there exists a unique solution to (4.32), a single such limit is
characterised.

4.1.4. Asymptotics in the adaptive and mixed innate-adaptive response case

We now sketch the extension of Theorem 4.3 to the (more general) case where ϕ depends on x. In this case,
we may obtain a result similar to Theorem 4.3, but at the expense of an assumption stronger than (4.31) and
a more intricate system solved by the stationary state.

Indeed, keeping the same notations, we make the assumption that for all 0 < ρ ≤ ρ and for all functions
` ∈ C([0, 1]) satisfying 0 ≤ `(y) ≤ `(y) for all y ∈ [0, 1],

arg max
x∈[0,1]

(
r(x)− d(x)ρ− µ(x)

∫ 1

0

Ψ(x, y)`(y) dy

)
=: {x(ρ, `)}. (4.34)

Following the proof of Theorem 4.3, one can then prove in exactly the same way:

Theorem 4.6. Under the assumptions (4.3)-(4.4)-(4.34), supposing that n converges weakly in M([0, 1]) to
some n∞, then either n∞ = 0 or n∞ is of the form

n∞ = ρ∞δx∞ ,

where x∞ = x(ρ∞, `∞) and (ρ∞, `∞) solves the following system over (ρ, `) ∈ R× C([0, 1])





ρ = max
x∈[0,1]

(
r(x)− µ(x)

∫ 1

0
Ψ(x, y)`(y) dy

d(x)

)
,

`(y) =
ρ

k2

ω(x(ρ, `), y)

ν(y)ρ+ k1
, y ∈ [0, 1].

(4.35)
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Table 1. Values of the model parameters/functions used to carry out numerical simulations.

Parameter/function Biological meaning Value

r(x) Proliferation rate of tumour cells 0.666− 0.132x2

d(x) Death rate of tumour cells 0.5(1− 0.3x)
µ(x) Sensitivity to the effects of the immune response 1− 0.1x2

ψ(y) Efficacy of the immune response 0.5y2

ν(y) Immunotolerance of immune cells induced by tumour cells 0.5− 0.1y (in Sect. 5.3)
1− 0.1y (in Sect. 5.4)

k1 Natural death rate of competent immune cells 0.5 (in Sect. 5.3)
0.01 (in Sect. 5.4)

k2 Strength of logistic death rate of näıve immune cells 1.5
α Strength of the immune response 1
h Strength of treatment with ICIs 10

5. Numerical simulations

In this section, we present some numerical simulations of system (3.8).

5.1. Numerical approach and parameters

We follow the numerical method given in [29] and we select a discretisation of phenotype intervals [0, 1]
consisting of 1000 points for the computational domain of the independent variables x and y and let t ∈ [0, T ],
unless otherwise specified, we choose the final time to be T = 100 or T = 1000. Time-discretisation is made
with time step equal to 0.1 except for the extensive simulations of Figure 6 where it is set equal to 1.

The function Ψ = Ψλ underlying ϕ in (3.3) is chosen to be of the form (3.5), and the kernel ω underlying χ
in (3.6) is given by ω(x, y) = α 1

se−|x−y|/s. Parameters λ and v (for Ψ), and s (for ω) may vary across simulations.
Unless otherwise specified, all other parameters take values as presented in Table 1.

We emphasise that parameters have been chosen arbitrarily in the absence of suitable experimental data, in
order to reproduce different biological scenarios.

To define the initial density of tumour cells, we use a Gaussian profile, and a homogeneous condition for
competent immune cells `, while the näıve immune cells p are distributed over the whole interval [0, 1]:





n0(x) = n(0, x) = C√
2πσ2

0

exp(−(x−m)2

2e2 ),

`0(y) = `(0, y) = 0,

p0(y) = p(0, y) = 1− y2,

(5.1)

with m = 0.5, e = 0.1, and a normalisation constant C > 0 chosen so that ρ(0) = 1. Thus, we start with a total
tumour cell mass equal to 1, and the phenotype x is initially concentrated at 0.5.

We thus assume that activated NK-cells and competent T-cells `(t, y) are absent at time t = 0, and that the
most aggressive inactive NK-cells and näıve T-cells p(t, y) have been duly informed by circulating NK-cells and
by APCs and present themselves at time t = 0 at the tumour site to activate the immune response by `(t, y)
cells.

5.2. Tumour development in the absence of the immune response

We begin by establishing a baseline scenario in which tumour cells proliferate and die according to the
modelling approach described in Section 3, i.e., in the absence of the immune response, logistic growth of the



A PHENOTYPE-STRUCTURED MODEL FOR THE TUMOUR-IMMUNE RESPONSE 17

Figure 2. Numerical simulation of the solution to (4.5) (complete absence of immune response).
Left panel, plots of cell densities n(t, ·) at different times up to T = 1000 (in red): the pheno-
type x evolves towards more and more malignancy. Right panel, initial dynamics of the total
mass of tumour cells ρ(t) for t between 0 and 100. The black dashed line highlights a numerical
estimation of the tumour cell carrying capacity ρ? and the parameter values are as listed on
Table 1, with ρ(0) = 1.

tumour cell population. According to Section 4, we expect convergence of ρ and weak convergence of n to a
weighted Dirac mass. Moreover, the limit for ρ is ρ? = max( rd ), which corresponds to the carrying capacity
of the tumour, i.e., the saturation term reached by the total mass of tumour cells due to within-population
competition for space and resources. Here, ρ? ≈ 1.53 and this is what we observe on Figure 2 to the right. On the
other hand, the phenotype at which the density concentrates is located at arg max( rd ) = {x?} with x? ≈ 0.86,
which becomes apparent on Figure 2 to the left (and would be seen even more clearly if the simulations were
run longer).

As already mentioned in the introduction, we will from now on, when the immune response is activated,
interpret solutions for which the total mass of tumour cells approaches this carrying capacity ρ? as “tumour
escape”. This represents one case of the three Es in which the immune cells are present at the tumour site but
are inefficient in interacting with the tumour cells.

5.3. Simulations in the mixed innate-adaptive case (0 < λ < 1), no treatment

We have explored in simulations separately the innate, adaptive and mixed innate-adaptive cases, which all
can lead to the three Es. No treatment with ICIs is considered here, ensured by setting ICI = 0. In agreement
with Theorems 4.3 and 4.6, if convergence of the density of cancer cells occurs, we find that tumour cells
asymptotically concentrate on a single phenotype, and total masses of cells all converge. Furthermore, the
phenotype on which the cancer cell density concentrates as well as the asymptotic masses of cells have been
checked to match the specific values uncovered by Theorems 4.3 and 4.6.
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s and v, respectively, are associated with low masses of immune cells and less effective immune response, which
may enhance tumour development.

Dynamics of tumour cells, effector and nave lymphocytes with (s, v) = (1, 0.1)

Figure 3. Eradication. Mixed innate/adaptive case (λ = 0.5). Numerical simulations of (12) with

(s, v) = (1, 0.1) at different times up to T = 1000 in red (upper row) and initial evolution with time

t from 0 to 100 of the total masses of cells
∫ 1

0
n(t, x) dx,

∫ 1

0
`(t, y) dy,

∫ 1

0
p(t, y) dy. As one can see on

the right panels, eradication comes quickly with this highly precise value of the targeting parameter v.

As shown on Figures 3-5, for an intermediate value of the parameter λ in [0, 1] and a rather imprecise value
of the detection parameter s, here fixed at s = 1, we can see that for low values of the targeting parameter
v (i.e., high precision of targeting), the specific anti-tumour immune response involving CD8+ T-lymphocytes
is relatively high, leading to the total eradication of tumour cells; that intermediate values of v lead to a co-
existence state representing tumour-immune response equilibrium; and finally, that high values of v (i.e., poor
precision of targeting) decrease the efficacy of the specific immune response.

This is also illustrated on Figure 6 by a heatmap representation, where we plot the asymptotic tumour

mass relative to the tumour carrying capacity (i.e.,ρ
∞

ρ? ) as a function of the parameter (s, v), with a mixed

innate/adaptive immune response (λ = 0.5). The value ρ∞ is estimated by the value ρ(T ) with T = 500.
One can in particular see (left part of the heatmap figure) that whatever the value of the detection parameter

v is, the model still yields low values of the total mass of tumour cells, i.e., efficacy of the immune response,
provided that the precision of targeting is high enough (i.e., s is small enough). On the right lower part

Figure 3. Eradication. Mixed innate/adaptive case (λ = 0.5). Numerical simulations of (4.1)
with (s, v) = (1, 0.1) at different times up to T = 1000 in red (upper row) and initial evolution

with time t from 0 to 100 of the total masses of cells
∫ 1

0
n(t, x) dx,

∫ 1

0
`(t, y) dy,

∫ 1

0
p(t, y) dy. As

one can see on the right panels, eradication comes quickly with this highly precise value of the
targeting parameter v.

To avoid repetitive figures, we have chosen to focus mostly on the mixed innate-adaptive case: Figures 3, 4
and 5 illustrate different possible asymptotic behaviours with λ = 0.5. Let us mention that simulations run with
λ = 1 lead to qualitatively similar results.

For simulations illustrated on Figures 3–5:

Upper row. Evolution in time t of the densities x 7→ n(t, x) (left panel); y 7→ `(t, y) (central panel), and
y 7→ p(t, y) (right panel), with the initial conditions in blue, and the final ones in red.
Lower row. Initial time dynamics of the total mass of tumour cells ρ(t) (left panel), of the total mass

of competent immune cells
∫ 1

0
`(t, y) dy (central panel), and of the total mass of näıve immune cells∫ 1

0
p(t, y) dy (right panel).

We insist that the final time shown for densities and total numbers of cells might not be the same in a given
plot. This is because total numbers of cells rapidly reach equilibrium while densities may converge slowly to
their limit, at least when the limit is a Dirac mass.
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Dynamics of tumour cells, effector and nave lymphocytes with (s, v) = (1, 0.5)

Figure 4. Equilibrium. Mixed innate/adaptive case (λ = 0.5). Numerical simulations of (12)

with (s, v) = (1, 0.5), plots of the population densities n, `, p at different times up to T = 1000

in red (upper row) and initial evolution with time t from 0 to 100 of the total masses of cells∫ 1

0
n(t, x) dx,

∫ 1

0
`(t, y) dy,

∫ 1

0
p(t, y) dy (lower row). Note that the total mass of tumour cells stabilises

at an intermediate value between extinction and the tumour carrying capacity, and that the malignancy

phenotype x concentrates on the phenotype 0.

corresponding to s and v close to 1, escape is the outcome, which corresponds to the immune system failing to
control the tumour.
Non-extinction condition. Part of these results can be interpreted in light of our non-extinction condition (26),
which leaves only equilibrium and escape as possible outcomes. The corresponding assumption in the adaptive
case reads

min
x∈[0,1]

(r(x)− µ(x)ϕ(x)) > 0, ϕ(x) =
ρ?

k1k2

∫ 1

0

Ψ(x, y)ωM (y) dy.

Hence, one can see that if ϕ is sufficiently small on the whole of [0, 1], this condition is satisfied. Given our
choice of functions Ψ, ω, we have wM = α

s , which leads to

ϕ(x) =
1

s

αρ?

k1k2

∫ 1

0

(
(1− λ) + λ

1

v
e−|x−y|/v

)
Ψ(y) dy.

Figure 4. Equilibrium. Mixed innate/adaptive case (λ = 0.5). Numerical simulations of (4.1)
with (s, v) = (1, 0.5), plots of the population densities n, `, p at different times up to T = 1000
in red (upper row) and initial evolution with time t from 0 to 100 of the total masses of cells∫ 1

0
n(t, x) dx,

∫ 1

0
`(t, y) dy,

∫ 1

0
p(t, y) dy (lower row). Note that the total mass of tumour cells

stabilises at an intermediate value between extinction and the tumour carrying capacity, and
that the malignancy phenotype x concentrates on the phenotype 0.

Results. When the parameter s is small enough, and for all considered values of the parameter v, the total
mass of tumour cells decreases steadily over time until the tumour cell population is completely eradicated.
This is due to the fact that precise detection and transmission of the malignancy phenotype x by circulating
NK-cells and by APCs (i.e., small values of the parameter s in the function χ(t, y)) promotes the eradication
of tumour cells by CD8+ T-cells.

Eradication also occurs for larger values of s (here s = 1) as long as v is small enough, see Figure 3. In
fact, numerical results not displayed here show that for the same value for s but with an innate immune
response (λ = 0), one can obtain escape rather than eradication, highlighting the importance of adaptive immune
responses.

Fixing the value s = 1, the results displayed on Figure 4 show that intermediate values of the parameter v
(which measures the precision of the targeting of cancer cells by the immune response) facilitate the coexistence
between tumour and immune CD8+ T-lymphocytes, while the total mass of tumour cells remains at a low level.

Finally, still with s = 1, Figure 5 shows that a large value of the parameter v leads to tumour escape. Taken
together, these results suggest the idea that the efficacy of the anti-tumour immune response is affected by
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Dynamics of tumour cells, effector and nave lymphocytes with (s, v) = (1, 1)

Figure 5. Escape. Mixed innate/adaptive case (λ = 0.5). Numerical simulations of (12)

with (s, v) = (1, 1), plots of the population densities n, `, p at different times up to T =

1000 in red (upper row) and initial evolution with time t from 0 to 100 of the total masses∫ 1

0
n(t, x) dx,

∫ 1

0
`(t, y) dy,

∫ 1

0
p(t, y) dy (lower row). Note that the total mass of tumour cells stabilises

to a value close to the tumour carrying capacity ρ? and that the malignancy phenotype x concentrates

around a phenotype close to 1.

Consequently, the non-extinction condition will become valid for s sufficiently large. This observation is coherent
with the results obtained above. In view of Figure 3, s = 1 is not large enough a value for the non-extinction
condition to be satisfied when v = 0.1, since one obtains eradication in this case. Note that if λ = 1, v sufficiently
large also enforces the non-extinction condition, making extinction impossible.
Asymptotic reduction to the ODE (11). As can be seen for most simulations, both immune cell densities
converge to equilibrium distributions that are close to constant functions, while the cancer cell density ei-
ther converges to 0 or to a Dirac mass. Asymptotically, one can hence approximate the IDE system by the
ODE system (11). More precisely, denoting x? the phenotype on which the cancer cell density concentrates,

t 7→ (ρ(t),
∫ 1

0
`(t, y) dy,

∫ 1

0
p(t, y) dy) is asymptotically close to solving (11) with parameter values r = r(x?),

d = d(x?), µ = µ(x?)
∫ 1

0
Ψ(x?, y) dy, ν =

∫ 1

0
ν(y) dy, ω =

∫ 1

0
ω(x?, y) dy. This result is obtained by integrating

each equation of (12) with respect to the structuring variable.

Figure 5. Escape. Mixed innate/adaptive case (λ = 0.5). Numerical simulations of (4.1)
with (s, v) = (1, 1), plots of the population densities n, `, p at different times up to T = 1000
in red (upper row) and initial evolution with time t from 0 to 100 of the total masses∫ 1

0
n(t, x) dx,

∫ 1

0
`(t, y) dy,

∫ 1

0
p(t, y) dy (lower row). Note that the total mass of tumour cells

stabilises to a value close to the tumour carrying capacity ρ? and that the malignancy phenotype
x concentrates around a phenotype close to 1.

the specificity of the anti-tumour immune response and also by the specificity of the message transmitted by
circulating NK-cells to inactive NK-cells and by APCs to näıve T cells. Additionally, high values of parameters
s and v, respectively, are associated with low masses of immune cells and less effective immune response, which
may enhance tumour development.

As shown on Figures 3–5, for an intermediate value of the parameter λ in [0, 1] and a rather imprecise value
of the detection parameter s, here fixed at s = 1, we can see that for low values of the targeting parameter
v (i.e., high precision of targeting), the specific anti-tumour immune response involving CD8+ T-lymphocytes
is relatively high, leading to the total eradication of tumour cells; that intermediate values of v lead to a co-
existence state representing tumour-immune response equilibrium; and finally, that high values of v (i.e., poor
precision of targeting) decrease the efficacy of the specific immune response.

This is also illustrated on Figure 6 by a heatmap representation, where we plot the asymptotic tumour
mass relative to the tumour carrying capacity (i.e.,ρ

∞

ρ? ) as a function of the parameter (s, v), with a mixed

innate/adaptive immune response (λ = 0.5). The value ρ∞ is estimated by the value ρ(T ) with T = 500.
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Figure 6. Precision of detection parameter s vs. precision of targeting parameter v.
(Here again, λ = 0.5). Heatmap representation of the contribution of the two localisation kernel

parameters s and v to the relative density ρ∞

ρ? of total tumour cells at the end of simulations

(T = 500), in the case without treatment. Recall that ρ? is the maximum possible density (the
carrying capacity) of tumour cells. Of note, as already mentioned above, one can see that,
provided that the precision of detection is high enough (low values of the parameter s, between
0.1 and 0.25), whatever the precision of the targeting parameter v in a wide range between 0.1
and 1, the immune response yields extinction or quasi-extinction of the tumour mass (deep blue
rectangular zone on the left). Conversely, for values of poor precision of s and v, here (s, v) in a
neighbourhood of (1, 1), one can see that anti-tumour efficacy of the immune response is poor.

One can in particular see (left part of the heatmap figure) that whatever the value of the detection parameter
v is, the model still yields low values of the total mass of tumour cells, i.e., efficacy of the immune response,
provided that the precision of targeting is high enough (i.e., s is small enough). On the right lower part
corresponding to s and v close to 1, escape is the outcome, which corresponds to the immune system failing to
control the tumour.

Non-extinction condition. Part of these results can be interpreted in light of our non-extinction condi-
tion (4.15), which leaves only equilibrium and escape as possible outcomes. The corresponding assumption in
the adaptive case reads

min
x∈[0,1]

(r(x)− µ(x)ϕ(x)) > 0, ϕ(x) =
ρ?

k1k2

∫ 1

0

Ψ(x, y)ωM (y) dy.

Hence, one can see that if ϕ is sufficiently small on the whole of [0, 1], this condition is satisfied. Given our
choice of functions Ψ, ω, we have wM = α

s , which leads to

ϕ(x) =
1

s

αρ?

k1k2

∫ 1

0

(
(1− λ) + λ

1

v
e−|x−y|/v

)
Ψ(y) dy.
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Consequently, the non-extinction condition will become valid for s sufficiently large. This observation is coherent
with the results obtained above. In view of Figure 3, s = 1 is not large enough a value for the non-extinction
condition to be satisfied when v = 0.1, since one obtains eradication in this case. Note that if λ = 1, v sufficiently
large also enforces the non-extinction condition, making extinction impossible.

Asymptotic reduction to the ODE (3.11). As can be seen for most simulations, both immune cell densities
converge to equilibrium distributions that are close to constant functions, while the cancer cell density either
converges to 0 or to a Dirac mass. Asymptotically, one can hence approximate the IDE system by the ODE
system (3.11). More precisely, denoting x? the phenotype on which the cancer cell density concentrates, t 7→
(ρ(t),

∫ 1

0
`(t, y) dy,

∫ 1

0
p(t, y) dy) is asymptotically close to solving (3.11) with parameter values r = r(x?), d =

d(x?), µ = µ(x?)
∫ 1

0
Ψ(x?, y) dy, ν =

∫ 1

0
ν(y) dy, ω =

∫ 1

0
ω(x?, y) dy. This result is obtained by integrating each

equation of (4.1) with respect to the structuring variable.
Taken together, the numerical results that we have presented in the previous subsections suggest that

the model has validity for providing a consistent qualitative description of the anti-tumour immune response
involving both NK cells and CD8+ T-lymphocytes.

5.4. From escape to eradication with ICIs, strictly adaptive response (λ = 1)

Starting from a situation in which we have tumour escape without ICIs, we show how introducing them may
lead the tumour cell population to equilibrium, and by increasing the drug dose, to elimination. We consider
the strictly adaptive case where Ψ is given by (3.4), i.e., Ψλ with λ = 1 (T-cells only).

We fix (s, v) = (1, 2), the other parameter values being as listed in Table 1. The drug dose is successively
set to ICI = 0, to ICI = 1 and to ICI = 10, with h = 10. As Figure 7 shows, these choices lead to escape,
equilibrium and eradication, respectively. Escape is associated with a distribution of the malignancy phenotype
moving to the right (with eventual concentration towards a Dirac mass located on the right), while equilibrium
is associated with a phenotype remaining at around x = 0.5, and eradication occurs without any visible density
shift to either side (eventually yielding 0 – formally, as this value corresponds to a vanished cell population).
This last point, in apparent contradiction with the situation illustrated on Figure 4, where a clear shift to the
left is apparent, may be interpreted in light of the high value of parameter v in the present case, i.e., of a low
precision of the targeted immune response.

5.5. Periodic solutions

We can also numerically address the existence of periodic solutions. We first take all the parameters and
functions to be equal to those chosen for the ODE model in the periodic case, i.e., leading to Figure 1. Then, we
perturb them by a small parameter 0 < δ � 1. In this case, an oscillatory behaviour also emerges, corresponding
to a co-existence state representing a time-dependent periodic solution, see Figure 8. We have not been able to
analytically address the existence of periodic solutions, except for the very specific case where all functions are
constant, in which case we recover the model (3.11), for which we know that periodic solutions do exist [16].

6. Conclusions and research perspectives

6.1. Summary of the mathematical results

We have proposed a new mathematical model of tumour-immune interactions in which cell populations are
structured by continuous phenotype variables representing their aggressiveness. Despite its simplicity, our model
features some relevant phenomena, and it captures the three Es of immunoediting – eradication, equilibrium
and escape. In particular, it reproduces the formation of an equilibrium, which characterises the capacity of the
immune system to contain tumour growth.
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(a) Escape. Simulation with ICI = 0. (b) Equilibrium. Simulation with ICI = 1.

(c) Eradication. Simulation with ICI = 10.

Figure 7. Numerical simulations of (3.8) with λ = 1 (T-cells only), (s, v) = (1, 2), and increas-
ing levels of ICIs. Plots of the population density of tumour cells n at different times up to
T = 1000 in red (left panel) and initial evolution with time t from 0 to 100 of the total mass∫ 1

0
n(t, x) dx (right panel). The black dashed line stands for the tumour carrying capacity ρ?.

In Section 4, we showed through an asymptotic analysis of the model that under the a priori assumption that
the population of tumour cells converges to a certain measure, such a measure can precisely be characterised
when it is not the trivial measure.

We explained why convergence cannot be the general outcome: our model does have the ODE system (3.11),
with known possible periodic behaviour, as a particular case. Finding which parameters lead to convergence or
to oscillatory behaviours is a completely open question.

Our model can incorporate three different types of anti-tumour immune responses: innate, adaptive, and a
combination of both immune responses. By numerically comparing these three cases in Section 5, the outcomes
are as follows:
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Figure 8. Evolution with time of the tumour total density ρ(t) (in blue), competent T cells

total density σ(t) =
∫ 1

0
`(t, y) dy (in magenta), and the total density of näıve T cells

∫ 1

0
p(t, y) dy

(in black) for T = 5000.

Innate anti-tumour immune response. If the parameter s, which determines how localised the phenotype
x is with respect to the phenotype y, is small enough, then the tumour is always eliminated. For intermediate
values of s, we obtain convergence to a limit coherent with Theorem 4.3: a coexistence state occurs, yielding
a persistent tumour cell population at a controlled level. Finally, high values of the parameter s reduce the
efficacy of the anti-tumour immune response and lead to tumour escape. For particular choices of the model
parameters, the numerical results also show periodic solutions, characterised by periodic alternating growth and
decay of all the immune and tumour cell populations.

Adaptive anti-tumour immune response. The situations that we have numerically explored in the adap-
tive anti-tumour response, showed that both the specificity of the response of competent immune cells (i.e.,
the parameter v) and the specificity of the message transmitted by APCs (i.e., the parameter s) play a key
role in the tumour-immune interactions. In fact, when s and v are both small, our results indicate that tumour
eradication can occur, while higher values of s or v may result in tumour escape.

Combination of the innate and the adaptive anti-tumour immune responses. Increasing the speci-
ficity of the adaptive immune response (low values of the parameter v) has a beneficial effect on the immune
response to tumours, whereas higher values of the parameter v can be detrimental to the anti-tumour immune
action.

Simulations of the effect of constant drug doses. Our numerical simulations show that a constant con-
trol allows to maintain the total density of tumour cells below its carrying capacity and prevents malignant
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tumour cells from taking over the whole population. We have also shown that slightly changing the immunotol-
erance rate along with the natural death rate of competent T cells improves the immune check-point inhibitor
immunotherapy efficacy and that it can bring tumours from escape to eradication.

6.2. Biological interpretations

Taking for granted the existence of a continuous malignancy trait in tumour cells, that we relate to a
‘degree of stemness’ or de-differentiation potential, and similarly, of a continuous potential of tumour cell-kill in
lymphocytes at the contact of tumour cells, we have qualitatively produced scenarios that reproduce the three
Es of immunoediting. We have shown that the initial malignancy trait of tumour cells is affected by the immune
response, with or without boosting by ICI therapy, and that it will typically concentrate on a pointwise value,
meaning that tumour cells as a population organise their stemness trait around a fixed dominant characteristic.
Note that this concentration effect is an expected consequence of the choice of a Lotka-Volterra, here non local,
model for the cancer cell population dynamics.

Whether this sharp malignancy trait is increased or decreased by the immune response cannot a priori be
decided, as its determinants depend in a complex way on the entangled functions d, r, µ and ϕ that govern
the proliferation of the tumour cell population. If this model has some relevance with the reality of antitumoral
immune response, it means that the effect of lymphocytes attacking a tumour may as well increase or decrease
its stemness, which to the best of our knowledge is not inconsistent with biological observations so far. From a
therapeutic point of view, we have shown, as proofs of concept, numerical case studies in which a tumour can
be brought from escape to extinction, or at least equilibrium, by continuous delivery of ICIs.

It should also be mentioned that the design of this model, its characteristics and the results of its mathematical
analysis can be enlightened by informal opinions heard in conversations or oral reports among oncologists, such
as “This is a very aggressive tumour, very undifferentiated and escaping all drugs” for tumour cell populations,
or “Initially vigorous immune cells can, under the influence of immunotolerance induced by tumour cells, lose
their vigor and become exhausted” for immune cell populations. Such informal representation of a common
aggressiveness potential in cell populations may be seen as tentatively formalised by the present phenotype-
structured model of tumour-immune interactions.

6.3. Possible generalisations

Firstly, we plan to extend the model considered in this paper to carry out a mathematical study of tumour-
response interactions, taking into account non-genetic instability, which may be considered as mediated by
random epimutations in populations of tumour cells. In this respect, a modelling approach analogous to the one
presented in [20], would consist in modifying system (3.8) as follows:





∂n

∂t
(t, x) = [r(x)− d(x)ρ(t)− µ(x)ϕ(t, x)]n(t, x) + β

∂2n

∂x2
(t, x),

∂`

∂t
(t, y) = p(t, y)− (ν(y)ρ(t) + k1) `(t, y),

∂p

∂t
(t, y) = χ(t, y)p(t, y)− k2p

2(t, y),

(6.1)

with Neumann boundary conditions at x = 0 and x = 1 for the cancer cell density n(t, ·). The linear diffusion

operator β ∂
2n
∂2x (t, x), with 0 < β � 1, represents here a malignancy phenotype lability (uncertainty) linked to

the extreme plasticity of cancer cells [34], that are able to vary their phenotype in response to any (drug or
other environmental) insult.

Another natural way to extend our work would be to introduce a population of antigen-presenting cells
(APCs), that recognises a tumour antigen as their cognate one to activate näıve T-cells, instead of the
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time-independent shortcut function ω(x, y) (see Sect. 3). Delays might also naturally be introduced in this
bidirectional communication process.

Future research perspectives, from the point of view of confronting the model to data, are to identify its
parameters, making use of preclinical and clinical data on the growth of in-vivo tumours in laboratory rodents
and in melanoma patients exposed to ICI therapies. This, however, will necessarily rely on long-term collab-
orations with teams of laboratory experimentalists and clinicians, towards whom we have here only set this
physiologically based model as a basis for interactive discussions to assess it qualitatively.

Finally, as exemplified in [25, 28], it would be relevant to address the numerical optimal control of model (3.8)
in order to identify possibly optimal delivery schedules for the ICI therapies, which will also be intended in the
framework of an interactive collaboration with experimentalists and clinicians.

Acknowledgements. The authors are gratefully indebted to Benôıt Perthame and Luis Almeida for enriching discussions
about model design, and to Alexandre Poulain for both model design and advice in the simulations in Matlab.
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