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Abstract

Background: Electroencephalography (EEG) is increasingly used for monitoring the depth of general anaesthesia, but EEG

data from general anaesthesia monitoring are rarely reused for research. Here, we explored repurposing EEG monitoring

from general anaesthesia for brain-age modelling using machine learning. We hypothesised that brain age estimated

from EEG during general anaesthesia is associated with perioperative risk.

Methods: We reanalysed four-electrode EEGs of 323 patients under stable propofol or sevoflurane anaesthesia to study

four EEG signatures (95% of EEG power <8e13 Hz) for age prediction: total power, alpha-band power (8e13 Hz), power

spectrum, and spatial patterns in frequency bands. We constructed age-prediction models from EEGs of a healthy

reference group (ASA 1 or 2) during propofol anaesthesia. Although all signatures were informative, state-of-the-art age-

prediction performance was unlocked by parsing spatial patterns across electrodes along the entire power spectrum

(mean absolute error¼8.2 yr; R2¼0.65).

Results: Clinical exploration in ASA 1 or 2 patients revealed that brain age was positively correlated with intraoperative

burst suppression, a risk factor for general anaesthesia complications. Surprisingly, brain age was negatively correlated

with burst suppression in patients with higher ASA scores, suggesting hidden confounders. Secondary analyses revealed

that age-related EEG signatures were specific to propofol anaesthesia, reflected by limited model generalisation to

anaesthesia maintained with sevoflurane.

Conclusions: Although EEG from general anaesthesia may enable state-of-the-art age prediction, differences between

anaesthetic drugs can impact the effectiveness and validity of brain-age models. To unleash the dormant potential of

EEG monitoring for clinical research, larger datasets from heterogeneous populations with precisely documented drug

dosage will be essential.
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Electroencephalography (EEG) is often used during general

anaesthesia for monitoring anaesthetic depth and adjusting

drug dosage.1e5 The increasing availability of EEG recordings

from general anaesthesia has stimulated cross-cutting

research linking anaesthesiology and neuroscience.6e8 EEG

dynamics during general anaesthesia and the drug dosage

required for achieving stable anaesthesia can depend on age

and general health.9 Cognitive decline has been associated

with reduced drug requirement and EEG power changes in

the alpha frequency band (8e13 Hz).10,11 These recent results

raise the possibility that brain health may be reflected in EEG

signals observed during general anaesthesia.12

It follows that EEG during general anaesthesia might be

used as a screening tool to assess the risk of developing

neurodegenerative diseases. Several factors are favourable to

this idea. First, EEG signals during stable anaesthesia can be of

high signal quality, as neuromuscular block minimises

movement artifacts. Second, the availability of EEG recordings

from general anaesthesia keeps growing, as general anaes-

thesia is conducted worldwide in all age groups, potentially

avoiding selection bias, which may be a factor in laboratory

research.13,14 Third, recent progress in advanced analytics and

machine learning for EEG has led to the development of novel

biomarkers of cognition, brain function, and health.15e17

When combined, these factors could turn EEG monitoring

data obtained during general anaesthesia into a valuable tool

for clinical research.

In this study, we explore the possibility of repurposing

existing EEG monitoring data from general anaesthesia for

building data-driven measures of brain ageing.18 Specifically,

we propose to translate the previously developed brain-age

framework19 to the context of general anaesthesia. By using

machine learning, brain age can capture individual ageing.

This framework provides quantitative comparisons of the

chronological age of a person against their statistically ex-

pected age given their brain data (‘this brain looks older/

younger’).20,21 Over recent years, numerous studies19,20,22,23

have found that brain-age estimates from the general popu-

lation yield sensitive measures of neurodegenerative risk and

disease severity in clinical populations.24

The bulk of the brain-age literature is based on MRI,23,25e27

and brain age is believed to mainly reflect cortical atrophy.

Although MRI-based brain age shows leading state-of-the-art

performance (age prediction with 2e5 yr mean absolute error

[MAE]), the present focus on MRI hampers exploration of brain

age in situations in which MRI is not available. A promising

line of research has demonstrated that brain age can be esti-

mated from EEG (current state-of-the-art age prediction with

around 8 yr MAE) and can even contribute additional infor-

mation to MRI20,28,29 by providing insights into neuronal

activity.

Applied to general anaesthesia, EEG-derived brain age

could help develop a real-time intraoperative biomarker of

brain health, facilitating individualised treatment. Brain age

estimated during an intervention could also be used as a

postoperative indicator to systematically assess the risk of

abnormal cognition and identify patients who may benefit

from a consultation with a neurologist (e.g. a memory

consultation).

It is currently unknownwhether brain age can be estimated

from EEG during general anaesthesia. Most EEG approaches for

brain-age modelling have relied on fine-grained spatial infor-

mation provided by dozens to hundreds of electrodes and data
collected in the laboratory setting.17,28 However, brain age has

recently been estimated from sleep EEG with fewer elec-

trodes.18,30 Another source of potential complications for

estimating brain age from EEG during general anaesthesia is

related to the type of anaesthetic drug. For example, compared

with propofol anaesthesia, inhalation anaesthesia can shape

EEG activity differently, increasing modelling complexity.

Moreover, the amount of anaesthetic drug given to a patient to

achieve stable anaesthesia may by itself reflect the patient’s

cognitive health,10 potentially inducing confounding effects.

Our primary objective was to demonstrate the feasibility of

modelling chronological age as a function of EEG power from

intraoperative recordings in ASA 1 or 2 patients for whom the

perioperative risk should be relatively low. We used state-of-

the-art machine learning methods to estimate model predic-

tion performance and hypothesised that the entire power

spectrum was informative rather than specific frequency

bands commonly used for monitoring anaesthetic depth. Our

secondary objective was to investigate the association be-

tween chronological age, EEG-derived brain age, and intra-

operative burst suppression in patients with ASA scores of 1 or

2 and those with higher scores (ASA 3) and hence higher

perioperative risk. Finally, we investigated the specificity of

the propofol-induced EEG signature of brain age through

generalisation testing against EEG collected under sevoflurane

anaesthesia.
Methods

We reanalysed EEG and clinical data from the Brain Power

Spectral Density Under Propofol (PROBRAIN) study registered

under the ID NCT03876379 and approved by the Soci�et�e de

R�eanimation de Langue Française (SRLF; Paris, France) Ethics

Advisory Committee (chairperson: Dr Jean Reignier) on 5

January 2016, under the reference CE SRLF 11e356. SRLF is the

French national academic society for anaesthesia and critical

care consulted by the Department of Anaesthesiology at the

Lariboisi�ere Hospital (Paris, France). Patients were provided

with an information letter. Verbal consent was recorded from

every patient before anaesthesia.
Patient selection

Between September 2017 and January 2020, patients under-

going an elective interventional procedure under general

anaesthesia (for orthopaedic surgery or neuroradiology inter-

vention for asymptomatic aneurysm) were selected to partic-

ipate in the prospective, observational, monocentric

PROBRAIN study at the Lariboisi�ere Hospital. This sample was

built by opportunistically including all EEG monitoring data

available and compatible with the data collection procedure.

The following exclusion criteria applied: pregnant women, age

below 18 yr, patients receiving sedation and mechanical

ventilation of the lungs before the procedure, history of

bleeding aneurysm, neurodegenerative disease, neurological

disorders, and untreated depression. The patient selection is

illustrated with a flowchart (Fig. 1).
Anaesthetic protocol

General anaesthesia was administered according to standard

practices. An opioid was administered (sufentanil 0.2 mg kg�1

h�1 for orthopaedic patients and remifentanil 3e5 ng ml�1 for



518 patients
included

473 patients
with general anaesthesia

435 patients
known anaesthestic drug

345 patients
exploitable EEGs

323 patients
propofol or sevoflurane

249 patients
ASA 1 and 2

(model construction)

68 patients
ASA 3

(clinical exploration)

170 patients
propofol

167 patients
with BS annotations

37 patients
with BS annotations

204 patients
propofol with BS annotations

79 patients
sevoflurane

40 patients
propofol

28 patients
sevoflurane

3+3 excluded: No BS annotations

6 missing: ASA score absent

38 excluded: Unknown anaesthetic drug

45 excluded: Loco-regional anaesthesia

87 excluded: Missing EEG files
3 excluded: Unexploitable EEG files

3 excluded: Patient younger than 18 yr
4 excluded: Pre-processing failed (data quality)

15 excluded: Desflurane anaesthetic drug

DS3 DS4

DS1 DS2

DS5

Fig. 1. Flowchart illustrating patient selection and distinct data subsets used for data analysis. BS, burst suppression.
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neuroradiology patients) followed by i.v. induction of anaes-

thesia using propofol. Atracurium was used for neuromus-

cular block, and anaesthesia wasmaintained using propofol or

sevoflurane at the discretion of the anaesthesiologist in

charge. Propofol was administered using a target-controlled

infusion (TCI) system with a brain effect-site concentration

ranging from 3 to 3.5 mg ml�1 according to the Schnider

model,31 whereas the end-tidal sevoflurane concentration was

typically 1.5e2%. Propofol and sevoflurane doses were

adjusted to maintain a spectral edge frequency 95 (SEF95) be-

tween 8 and 13 Hz during anaesthetic maintenance. For

comparability, we used this frequency range as the definition

of stable anaesthesia for all analyses in this study. The MAP

during the entire intervention was maintained at 90% of its

reference value and always above 65 mm Hg.
Data collection

Cerebral activity during general anaesthesia was monitored

using a Masimo™ SedLine® device with a four-frontal elec-

trode EEG montage (Fp1, Fp2, F7, and F8, referenced on Cz),

sampled at 63 Hz by default. EEG sub-hairline electrodes were

placed a few minutes before general anaesthesia induction

and removed shortly after recovery of consciousness. Intra-

operative EEG data were then extracted from the device,

anonymised, cleaned from burst suppression and artifacts,

and stored on a file server in enhanced disk format (EDF). In

other words, EEG segments containing burst suppression were

never used for model construction. We retrieved patient

characteristics (age, gender, weight, height, and BMI) and

clinical information (type of anaesthetic drug and ASA score)

from the anaesthetic assessment consultation.
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EEG processing, model construction, and clinical
exploration

The EEG processing and feature extraction is outlined in Figure

2. In summary, the signal from each patient was divided into

epochs using 60-s sliding windows with a 10-s shift. For every

epoch, we computed two different types of power spectral

features. First, we estimated the power spectral density (PSD)

between 0 and 30 Hz using Welch’s method. Second, we

computed the 4 � 4 covariance matrices between all four

electrodes, in five frequency bands, leading to five 4 � 4

matrices per epoch. Each of these five matrices contains the

corresponding band powers of the EEG signal of a particular

electrode in its diagonal and the cross-powers between elec-

trodes in its off-diagonal terms. Compared with PSD, the

covariancematrices encapsulate additional information about

the spatial distribution of the power spectrum. After
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Table 1 Patient characteristics. Data are presented as median
[25the75th percentiles].

Variable Number of patients or median

Female/male 211/112
Age (yr) 57 [39e70]
Body weight (kg) 74 [61e85]
BMI (kg m�2) 25 [22e29]
Propofol/sevoflurane 216/107
ASA 1 or 2/ASA 3 249/68
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representing the hypothesis of spectrally uniform informa-

tion. Second, the ‘alpha power’ model added EEG power

averaged between 8 and 13 Hz across all four electrodes (one

additional feature; two features total), representing the hy-

pothesis of a local spectral effect in the frequency range used

for monitoring anaesthetic depth. Third, the ‘power spectrum’

model added the PSD at uniformly spaced frequencies be-

tween 1 and 30 Hz averaged across all four electrodes (16

features), representing the hypothesis of distributed spectral

effects. Finally, the ‘spatial patterns’ model used the 4 � 4

covariances in five frequency bands (low [0.1e1.5 Hz], delta

[1.5e4 Hz], theta [4e8 Hz], alpha [8e15 Hz], and beta [15e30

Hz]), representing the hypothesis of distributed spatio-

spectral effects (50 features). The first three models used

only the PSD, and the last used the covariance matrices.

By performing model comparisons, we can understand the

relative merit of these increasingly complex features and

assess their complementarity. For statistically balanced com-

parisons between models based on different numbers of fea-

tures, the stacking method was used as in previous brain-age

publications.20,22 This approach integrates the different sets

of features through a second-level model, which gets one

input per feature set. The prediction performance between the

different stacking models preserves the performance of the

simpler model. Hence, improved performance can only be

attributed to additional information while reducing the risk of

overfitting by representing every feature set with one single

input (first-level model prediction). Ridge regression was used

for both the first-level and second-level prediction algorithms

with 100 (Monte Carlo) cross-validation (CV) splits. This design

choice uses stacking simply to decorrelate the inputs and

represent every feature set by one component while not add-

ing any non-linearity.

To date, no generally accepted procedure exists for defining

statistically justified null-hypothesis significance tests of

observed performance rankings between pairs of prediction

models. However, the CV distribution itself provides valuable

uncertainty estimates. To gauge practical significance, we

followed the strategy from previous work20,28 and plotted or

reported percentiles of the CV distribution (P2.5, P25, P75, and

P97.5) alongside rank statistics counting on how many splits

one model was better than the other. Model superiority was

then assessed via pair-wise ranking across CV splits.20,28

Chance level was assessed by a dummy regressor predicting

the mean outcome of the training data for each sample. For

model construction, we focused on patients with low ASA

scores under propofol anaesthesia (ASA 1 or 2; n¼170; see DS1

in Fig. 1). The brain ages of these healthy reference subjects

should match their chronological ages. This allows us to esti-

mate a reference model of normally expected ageing-related

EEG patterns by calibrating and validating it using CV on the

same set of patients with ASA score of 1 or 2. To investigate the

clinical utility of the reference model for anomaly detection,

we then studied the potential drift and deviation in model

predictions from the reference population by applying the

model to patient populations with higher ASA scores (second

analysis). As an exploratory endpoint, we compared brain age

with burst suppression (a common predictor of postoperative

complications). We computed cross-validated brain-age pre-

dictions20 on the data used for model building (ASA 1 or 2; DS3

in Fig. 1) and then predicted brain age in a dataset from a

population with higher ASA scores that was not used for

model building (ASA 3; DS4 in Fig. 1). The brain-age variable

was then obtained by concatenating the predictions across the
two datasets (DS5 in Fig. 1). For additional details on model-

ling, definition of burst suppression, and details on statistical

analyses and software, see the supplementary material. We

hypothesised that ourmodel calibrated on patients with lower

ASA scores would make informative prediction errors on the

population with higher ASA scores, and that these errors

would be associated with an increase in burst suppression.
Results

We considered 323 patients (see Table 1 for details) with both a

properly concatenated EEG recording and metadata informa-

tion. Analysis-defining subsets of patients are listed in Figure

1. We first explored the relationship between EEG activity

and ageing across the frequency spectrum under propofol

anaesthesia (Fig. 3), which was the more common mainte-

nance anaesthetic administered in this study (Table 1; Fig. 1,

DS1). Binning the power spectra by age groups revealed age-

related patterns (Fig. 3a). Across frequencies, younger pa-

tients tended to show higher EEG power. We formally quan-

tified this tendency using a linear mixed effects model

regressing the log power (dB) on age, log frequency, and their

interaction (intercepts varying by patient). The analysis un-

covered that regardless of frequency, EEG power declined on

average by e0.10 dB; 95% confidence interval (CI) [e0.13 to

e0.08] with every year of age. The full model is summarised in

Supplementary Table S1.

Figure 3b presents model comparisons for combinations of

different EEG signatures. Chance level was estimated around

16 yr of MAE (P25¼14.8; P75¼17.5). The ‘total power’ model led

to an improvement of the CV score by about e2.9 yr MAE on

average (P25¼e4.12; P75¼e1.9), performing better than chance

in 95/100 CV splits. As average alpha power was included, the

CV scores improved by another e1.2 yr MAE (P25¼e1.9;

P75¼e0.34), improving on the previous model on 86/100 CV

splits. Adding fine-grained spectral information across all

frequencies from 1 to 30 Hz led to further improvements by

e2.7 yr MAE (P25¼e3.7; P75¼e1.86), outperforming the previous

model on 95/100 CV splits. Finally, including information

about the spatial patterns of covariance between the elec-

trodes lowered the CV score by another e1.22 yr MAE

(P25¼e1.93; P75¼e0.47 superiority: 85/100 CV splits). In absolute

terms, the final performance was about 8.2 yr MAE (P25¼7.09;

P75¼9.19) and corresponded to an R2 score equivalent to 65% of

explained variance (P25¼0.58; P75¼0.75; Supplementary Fig. S1).

For clinical exploration, we focused on the age-prediction

signal under propofol anaesthesia in a subset of patients for

whom burst suppression was annotated (DS5). We investi-

gated the link between brain age, ASA score, and undesirable

intraoperative burst suppression. Figure 4a plots model-based
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age predictions against chronological age and burst-

suppression proportion for the previously analysed cohort of

patients with good general health (DS3) and extrapolations to

a distinct cohort of patients (DS4). Our results suggest more

complex relationships between EEG-predicted age and burst

suppression across patients of different ASA scores and

chronological ages. One can observe that in younger ASA 1 or 2

patients, burst suppression was more frequent amongst those

with higher brain age. This trend seems inverted in older ASA

3 patients, where bigger dots concentrate under the diagonal

identity line. To formalise these relationships, we modelled

the logit of the proportion of burst suppression as a weighted

sum of scaled age, scaled brain age and ASA score, and their

respective interaction terms (Fig. 4b). The analyses revealed a

significant effect of brain age (b¼0.85; standard error [SE]¼0.20;

t[196]¼4.4; P<0.0001). Given a standard deviation of brain age

of about 16 yr, this suggests that across age and ASA score,

burst suppression increased by 134% (exp[0.85]¼2.34) for every

16 yr of brain age. Furthermore, a significant effect of brain age

and ASA score emerged (b¼e0.99; SE¼0.44; t[196]¼e3.7;

P¼0.03), suggesting that the proportion of burst suppression

was reduced by 63% (exp[e0.99]¼37%) for every 16 yr of brain

age in ASA 3 patients as compared with the other patients

across all chronological ages. Of note, the term for brain age

captures what is not explained by age (i.e. the error ofmachine

learning model).20 The full model is reported in

Supplementary Table S2.

Visual inspection of EEG activity under sevoflurane anaes-

thesia (Fig. 5a; DS2) suggested higher EEG power levels and

weaker correlation between EEG power and age. We formally
PS
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performance of the ‘spatial patterns’ model by drug type (100 Monte Ca

and evaluated separately by drug type (blue). Between-drug models w
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was performed by drug type (rows 2e3). Results suggest that performa
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contrasted these trends with the previous results through a

linear mixed effects model regressing the log power (dB) on

age, log frequency, drug type, and their interactions; intercepts

varied by patient. Independently of frequency or drug type,

EEG power declined by e0.10 dB; 95% CI [e0.13 to e0.08] for

every year of age. Compared with propofol, sevoflurane led to

3.6 dB higher EEG power; 95% CI [1.21e6.10]. Notable interac-

tion terms pointed at more complex EEG patterns. First, a two-

way interaction suggested that differences between propofol

and sevoflurane depended on frequency, implying that under

sevoflurane anaesthesia, the power declined, on average, by

about e1.00 dB more than under propofol anaesthesia per

hertz; 95% CI [e1.27 to e0.76]. Second, a three-way interaction

suggested that under sevoflurane anaesthesia, the effect of

age may non-linearly increase log power by 0.01 dB Hz�1; 95%

CI [<0.01e0.01]. The full model is reported in Supplementary

Table S3.

Figure 5b presents comparisons between age-prediction

models that were either separately fitted and evaluated

within each drug type, fitted within one drug type and evalu-

ated on the other drug type, or fitted and evaluated by pooling

both drug types. When fitted separately, the prediction model

from sevoflurane EEG performed about 4.9 yr of MAE (P25¼2.7;

P75¼7.0) worse than propofol, inferior on 95/100 CV splits.

Similarly, cross-drug generalisation of prediction models led

to low prediction performance between 14 and 15 yr ofMAE. By

comparison, generalisation from propofol to sevoflurane EEG

was by e1 yr of MAE more successful (P25¼e1.8; P75¼e0.25;

superiority: 86/100 CV splits). Prediction models trained on the

pooled EEG data from both drug types led to worse
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performance than the model trained under propofol EEG with

about 1.3 yr higher MAE (P25¼e0.31; P75¼2.8; inferiority: 68/100

CV splits). However, results improved over the sevoflurane-

based model by e3.7 yr of MAE (P25¼e6.4; P75¼e1.3; superior-

ity: 85/100 CV splits). Considering the sub-scores of the pooled

model for the observations under sevoflurane EEG suggested

that combining both drugs led to an improvement of e1.6 yr of

MAE (P25¼e1.01; P75¼4.0) compared with the model trained on

sevoflurane EEG (superiority: 67/100 CV splits).
Discussion

This study explored the feasibility of repurposing EEG moni-

toring data from general anaesthesia for building measures of

brain ageing by importing machine learning approaches for

brain-age prediction originally developed in the laboratory

setting. Under propofol anaesthesia, using four electrodes

only, we reached prediction performance comparable with

reference studies using research-grade EEG28 32 with 20e62

electrodes. Model comparisons revealed that age-related in-

formation was present in spatial activity patterns distributed

across the entire power spectrum. Clinical exploration of the

propofol model highlighted important associations between

brain-predicted age and the probability of burst suppression,

which, however, depended on ASA score. Additional results

suggested that the brain-age signature was specific to propofol

and may not generalise to sevoflurane.

Clinical studies have identified a link between EEG power

spectra in the alpha band (8e13 Hz), preoperative cognitive

decline,10 intraoperative burst suppression,33,34 and post-

operative cognitive disorders.35 This body of work pointed to

the possibility that the EEG response to anaesthetic drugs may

reveal the presence of neurodegenerative risk. Here, we

extended this prior art by directly applying brain-age predic-

tion models for EEG28 on a larger dataset of EEG obtained

during anaesthesia. Under propofol anaesthesia, this

approach has led to performance matching recent work with

high-density MEG and EEG.20,32 Previous studies during

anaesthesia have instead focused on EEG signatures closely

related to anaesthesia monitoring, with particular emphasis

on total power and alpha power.6,36 Our results have shown

that the entire power spectrum and fine-grained correlations

between signals collected at different electrodes may contain

information relevant to developing biomarkers beyond

anaesthesia monitoring.

However, prediction models constructed from EEG under

sevoflurane anaesthesia were far less convincing and did not

combine well with EEG collected under propofol anaesthesia.

This may be intrinsically related to differences between the

drugs regarding the mechanism of action. Propofol selectively

activates gamma-aminobutyric acid Type A (GABAA) re-

ceptors,37 whereas sevoflurane acts on several synaptic path-

ways, potentially increasing the complexity of the signal

across age.38 An alternative explanationmight be that the dose

of sevoflurane was more consistent between patients, as it

relied on standard minimum alveolar concentration target

values, and its elimination is less dependent on liver meta-

bolism compared with propofol. Propofol dose was deter-

mined by a personalised TCI target value, chosen to stabilise

general anaesthesia (i.e. to keep SEF95 in 8e13 Hz), potentially

leading to higher inter-patient variability. This could, in prin-

ciple, introduce confounding effects if, for example, the pro-

pofol requirement for stable anaesthesia depends on age and

health. Higher propofol dose and brain age both dampen EEG
power, whilst patients at risk of developing burst suppression

might receive lower doses of propofol. In turn, this should lead

to reduced propofol-induced dampening, obscuring the effect

of brain age on EEG power. A similar effect may be present in

the level of analgesia induced by the opioid. Patients under-

going themore painful orthopaedic surgery are generally older

and more frail than those undergoing neuroradiology in-

terventions, so have a higher chance of higher brain age. These

patients received a higher dose of opioid (sufentanil in the case

of our study) generally resulting in notable increase in EEG

power in the delta and theta bands.39 Thus, patients at risk of

developing burst suppression might receive higher doses of

opioid, which boosts EEG power, which could make their

brains ‘look younger’. That would be in line with observed

changes of direction of association between brain age and

burst suppression when comparing patients with lower (1or 2)

vs higher (3) ASA scores, for whom higher brain age was

associated with less burst suppression. Unfortunately, this

hypothesis cannot be readily disambiguated using the present

study. The critical pieces of information for moment-by-

moment deconfounding were not captured: neither the dose

of opioids, the TCI parameters controlling propofol dose, nor

the changes in haemodynamic variables and noxious stim-

uli.40 Tackling these potential confounders calls for more

complete data collection, ideally implemented with rando-

mised controlled designs.

The present study has successfully applied concepts and

methods from laboratory research in cognitive neurosci-

ence19,22 on EEG monitoring data collected during general

anaesthesia. Therein, our systematic model comparisons of

EEG signatures, drug types, and patient populations have

extended the scope of brain-age research to clinical real-

world EEG collected in the absence of consciousness. Our

findings motivate future research in neuroscience and

anaesthesiology beyond monitoring of anaesthesia depth.

These strengths of our work must be put in perspective with

several limitations.

First, this proof-of-concept study does not validate brain

age as a preoperative or postoperative biomarker of brain

function, such as attention, memory, or dysfunction (e.g.

delirium). Future work will have to close this gap through

dedicated studies. The second limitation concerns the

inconsistent findings regarding the variability of brain-age

effects across drug types. Despite successful age-prediction

results, the current work therefore does not yet present a

ready-to-use brain-age measure as, for example, the MRI-

based brain-age delta.19 To push this exploratory effort to

the next level, future studies with ideally larger samples must

focus on precise control andmeasurement of drug dose at any

moment during anaesthesia. Preferably, propofol should be

administered at a consistent dose to rule out confounding by

clinical factors. Validation against pre-surgical brain-age es-

timates derived from gold-standard anatomical MRI23 or

research-grade high-density EEG28 will be essential. Finally,

future work should strive towards generalising the approach

to patient populations beyond orthopaedic and neuroradio-

logical surgery.

In conclusion, the present study points out the general

feasibility of repurposing EEG from anaesthesia for learning

biomarkers of brain ageing and health beyond the imminent

perimeter of patient monitoring, complementing medical

images and other biomarker modalities. To unleash this

dormant potential of EEG monitoring data for clinical and

public health research, collecting larger datasets with
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precisely documented drug dose, haemodynamic changes,

and noxious stimuli will be key enabling factors.
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