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Abstract—This paper introduces a novel type of sequences
called C4-sequences. C4-sequences share similar optimal au-
tocorrelation properties with Zadoff-Chu sequences. However,
C4-sequences offer the additional advantage of having also
optimal (in the sense of minimal Euclidean distance between
sequences) for several truncation lengths, providing flexibility in
adapting to different channel conditions without compromising
performance. Moreover, unlike Zadoff-Chu sequences, the points
of a constellation associated with a C4-sequence are not limited to
the unit circle. This opens up possibilities for achieving shaping
gain, leading to enhanced spectral efficiency. By combining a
truncated C4-sequence modulation as an inner code with a fixed-
rate non-binary outer code, flexible and performant rate-adaptive
communication systems can be achieved.

Index Terms—Low SNR, Rate-adaptive, CCSK, truncated,
sequence, very short message.

I. INTRODUCTION

THe Cyclic Code Shift Keying (CCSK) modulation is
a well-known spreading technique [2]. It is used to

increase the spectral efficiency of a length-q spreading se-
quence by utilizing its q circularly rotated versions to encode
m = log2(q) bits per sequence transmission. Additionally, [2]
suggested truncating the CCSK sequence to its first l elements
to further enhance the spectral efficiency. Recently, Marchand
et al. introduced a coded-modulation scheme that combines
a fixed-rate non-binary outer code with a variable-rate inner
code based on variable-length truncated CCSK modulation.
They employ a binary CCSK sequence in [4] and a q-ary
CCSK sequence in [5] to construct efficient rate-adaptive
communication schemes.

This paper presents a systematic mathematical construction
method for generating optimal q-ary CCSK sequences of
length q, which are referred to as C4-sequences. The term
”C4” stands for the first “C” letter of the four words: “Constel-
lation”, “Cross”, “Circular”, and “Correlation”. It also refers
to the four truncation lengths that yield an inner code with
an optimal distance property, namely q/4, q/2, 3q/4, and q.
Additionally, the paper demonstrates that when the sequence
is not truncated (i.e., a sequence of length q), C4-sequences
exhibit the same autocorrelation property as the well-known
Zadoff-Chu sequences [1], [3].

This work has been funded by the French ANR under grants
ANR-19-CE25-0013-01 (https://qcsp.univ-ubs.fr/) and ANR-21-CE25-0006
(https://ai4code.projects.labsticc.fr/). The author would like to thank Cédric
Marchand and Alexandru Olteanu for their indirect, but fundamental, contri-
bution: their machine learning development to optimize T-CCSK sequences
gives the mathematical clues to construct the C4-sequences.

Notations: The complex vector x =
(x(0), x(1), . . . , x(n), . . .) is a q-periodic infinite vector
of complex numbers. The vector xa represents the vector x
left-shifted by a positions, i.e., for all n, xa(n) = x(n+a). The
vector xa+l−1

a denotes the truncated vector obtained by taking
the first l values of xa, i.e., xa+l−1

a = (x(n+ a))n=0,1,...,l−1.
The notation ⟨x,y⟩ represents the complex scalar product
over a period between the vectors x and y. It is defined as
⟨x,y⟩ =

∑q−1
n=0 x(n)y(n)

′, where y(n)′ denotes the complex
conjugate of y(n).

II. DEFINITION AND PROPERTIES OF THE C4-SEQUENCES

This section provides the definition of the C4-sequences
along with some properties. In this paper, C4-sequences of
length q = 2m are considered, where m is an integer with
typical values ranging from 3 to 10. From a given length-q
C4-sequence, it is possible to generate q distinct sequences
xa, a = 0, 1, . . . , q − 1, and thus, to encode log2(q) = m
bits of information. The variable p is defined as p = q/4,
i.e., p = 2m−2, as this value holds a particular significance.
It is important to note that there are multiple equivalent ways
to define a C4-sequence, such as through its auto-correlation
function, its Discrete Fourier Transform (DFT) function, or
directly in the time domain by its distance property. In this
paper, a C4-sequence is defined based on its circular auto-
correlation property.

Let x be a sequence of length q, its circular auto-correlation
Rx is the length q vector defined as

Rx(τ) = ⟨x,xτ ⟩, (1)

for τ = 0, 1, . . . , q − 1.
Definition 2.1: A complex sequence of constellation points

x = (x(n))n=0,1,...,q−1, q ⩾ 4, is said to be a C4-sequence if
and only if its circular auto-correlation Rx sequence verifies{

Rx(τ = lq/4) = qj−cl, l = 0, 1, 2, 3

Rx(τ) = 0 otherwise,
(2)

with c a sign value, i.e., c ∈ {−1, 1} and j the imaginary
number verifying j2 = −1. By convention, when c = 1, the
C4-sequence is referred to as clockwise C4-sequence since the
non-null values of Rx(τ) take sequentially the values 1, −j,
-1 and j (i.e., a clockwise rotation direction). Symmetrically,
when c = −1, the non-null value of a C4-sequence will take
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the value 1, j, -1, −j. This type of sequences is thus referred
to as a counter-clockwise C4-sequences.

Theorem 2.2: Let x be a C4-sequence of length q, and let X
be the Discrete Fourier Transform (DFT) of x denoted as X =
F(x). Then, the squared ℓ2-norm ∥X(k)∥2 = X(k)X(k)′ of
the k-th element of X satisfies the following property{

∥X(k)∥2 = 4q if k + c mod 4 = 0,

∥X(k)∥2 = 0 otherwise.
(3)

Proof: Consider a C4-sequence x of length q. By computing
the circular auto-correlation Rx defined in (2) in the frequency
domain, the following expression is obtained

Rx = F−1(F(x)⊙F(x)′), (4)

where ⊙ represents the term-by-term component multiplica-
tion of the two vectors. Considering the DFT of both terms in
(4) yields F(Rx) = (F ◦ F−1)(F(x)⊙F(x)′), and thus

F(Rx) = F(x)⊙F(x)′ = X⊙X′. (5)

Using the formal expression of the kth terms F(Rx)(k) of
F(Rx) and by permuting the left and the right terms, (5) gives

X(k)X(k)′ = ∥X(k)∥2 =

q−1∑
τ=0

Rx(τ)e
−2jπτk

q . (6)

According to (2), Rx(τ) contains only 4 non-null terms for
τ = 0, q/4, q/2 and 3q/4, thus, (6) gives

∥X(k)∥2 =

3∑
l=0

qj−cle
−2jπl

q
4
k

q (7)

= q

3∑
l=0

j−(k+c)l (8)

According to (8), ∥X(k)∥2 is equal to the product of q
with the sum of the first 4 terms of a geometric series with a
common ratio ρ = j−(k+c). This sum equals 4 if the common
ratio ρ is equal to 1, which occurs when k + c mod 4 = 0,
and the sum equals 0 otherwise □

Theorem 2.2 provides a simple constructive rule for gen-
erating a C4-sequence of length q, which is summarized in
Algorithm 1.

Algorithm 1 Generation of a C4-sequence of length q by the
function x = G(s)

Input A seed vector s of size p = q/4 composed of q/4 reals
on the interval [0, q[, a value of c in the set {−1, 1}.
Output A clockwise (c = 1) or anti-clokwise (c = −1) C4-
sequence x of length q

for k ← 0 to q/4− 1 do
Es(k)← 4

√
p× exp(2jπ s(k)q )

end for
X← kron(Es, [0, 1−c2 , 0, 1+c2 ])
x← F−1(X)
Return x
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Fig. 1. Example of randomly generated C4-sequence

In Algorithm 1, the operator kron(a,b) represents the
Kronecker product between vectors a and b. The value of
c determines whether the Kronecker product is performed
with the vector [0, 0, 0, 1] (c = 1, clockwise C4-sequence)
or with [0, 1, 0, 0] (c = −1, counter-clockwise C4-sequence).
The scaling factor 4

√
p is applied to ensure that ∥X(k)∥2 = 4q

when k + c ≡ 0 mod 4.
Figure 1 illustrates the construction of a C4-sequence

of length q = 32 using x = G(s) with s =
(7, 5, 3, 5, 6, 15, 31, 24) a length p = 8 vector taken randomly.
The plot labels the first five elements x(0), x(1), . . . , x(5) and
the last element x(31) of the C4-sequence. Each consecutive
pair of points in x is connected by a line, and the last point
x(31) is also connected to the first point x(0).

Before providing a theorem that explicitly states the opti-
mality of the C4-sequences, a few lemmas are established.

Lemma 2.3: The square of the ℓ2-norm of a C4-sequence x
of length q is given by ∥x∥2 = q. This means that the average
energy of the components of x is equal to 1.
Proof: This is a direct application of Parseval’s theorem, which
states that

∑q−1
n=0 ∥x(n)∥

2
= 1

q

∑q−1
k=0 ∥X(k)∥2. According to

Theorem 2.2, ∥X∥2 contains exactly q
4 non-zero values, each

equal to 4q. Thus, ∥X∥2 = q
4 · 4q = q2, and consequently,

∥x∥2 = q. Therefore, the square of the ℓ2-norm of a C4-
sequence x of length q is equal to q □

Lemma 2.4: Let x be a C4-sequence of length q, Then, for
all n, x(n+ q/4) = j−cx(n).

Note: The proof of this lemma is omitted here due to space
limitations.

This lemma implies that x possesses a 4-fold rotational
symmetry, i.e., x remains unchanged under a rotation of π/2,
as can be observed in Fig. 1.

Definition 2.5: Let us consider a vector (or sequence)
x of length q. The notation xa+l−1

a indicates the length l
subsequence of x that spans from index a to index a+ l− 1.

From the definition of a length l truncated sequence, the
following theorem is derived:

Theorem 2.6: Let x be a C4-sequence of length q and let p =
q/4. For any l ∈ {p, 2p, 3p, 4p} and any pair (a, b) of integers
between 0 and q − 1, a ̸= b⇒

∥∥xa+l−1
a − xb+l−1

b

∥∥2 ⩾ 2l.
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Fig. 2. Normalize square minimum distance D2
l (x) as a function of l for

the C4-sequence given in Fig. 1.

Note: Due to space constraints, the proof of this theorem
is not provided. Let the normalize square minimum distance
D2
l (x) between two sequences of the set {xa+l−1

a }a=0,1,...,q−1

[5] be defined as

D2
l (x) =

1

l
mina,b,a̸=b{

∥∥xa+l−1
a − xb+l−1

b

∥∥2}. (9)

According to Theorem 2.6, D2
l (x) = 2 for l ∈

{p, 2p, 3p, 4p = q}. Fig. 2 shows the function D2
l (x) asso-

ciated with the sequence shown in Fig. 1.
To summarize, C4-sequences are simple to build and are

also optimal for the truncation lengths p, 2p, 3p and 4p. In
the next sections, the construction of unitary C4-sequence is
described, i.e., C4 sequences with points on the unit circle.

III. UNITARY C4-SEQUENCES

In this section, an explicit construction method is provided
for building C4-sequences on the unit circle. The principle
is to impose constraints on the seed sequence s such that
the resulting C4-sequence x = G(s) (refer to Algorithm 1)
becomes a unitary C4-sequence. At first, the case of unitary
C4-sequences of size q = 22t is discussed before addressing
the case of size q = 22t+1.

A. Unitary C4-sequence of size q = 22t, t > 1

Let a unitary seed vector su be defined as a real vector of
size p constructed from a real vector du of size 2t−1 taking
its values in the interval [0, q[ and a permutation γ over the
set (0, 1, . . . , 2t−1 − 1) as

su(2
t−1a+ r) = du(r) + aγ(r)2t+1, (10)

with 0 ≤ r < 2t−1 and 0 ≤ a < 2t−1 so that k = 2t−1a + r
spans all the integer values between 0 and 22t−2− 1 = p− 1.

Note that there is no constraint on the choice of the vector
du. For example, for q = 64 (i.e. t = 3), taking du =
(1, 11, 17, 27) and γ = (0, 1, 2, 3) gives the unitary seed vector
su = (1, 7, 21, 39, 1, 23, 53, 23, 1, 39, 21, 7, 1, 55, 53, 55), with
the components given modulo q = 64. The plot of xu = G(su)
is given in Fig. 3. As it can be noticed, all the points of xu
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Fig. 3. C4-unitary sequence of size q = 64 generated with sequence su
defined with du = (1, 11, 17, 27) and ρ = (0, 1, 2, 3)

are located on the unit circle. This result is predicted by the
following theorem.

Theorem 3.1: If su is a unitary sequence, then xu = G(su)
is a unitary C4-sequence. Moreover, the nth term of x is given
as

x(n) = exp

(
2πj(n+ d(γ−1(−n)) + 4γ−1(−n))

q

)
, (11)

with γ−1(−n) the unique solution of the equation
γ(γ−1(−n)) = −n mod 2t−1

The proof of this theorem is not provided here due to space
limitations.

Finally, it is worth highlighting that (11) presents an alter-
native approach for constructing unitary C4 sequences directly
in the time domain.

B. Link with Epicycloid sequence

In paper [5], the authors utilize specific sequences known
as “Epicycloid” or “four-cups sequences”, which are particular
instances of unitary C4 sequences. For instance, the recursion
defined as ψ(1) = 0, x(1) = 1, ψ(i) = ψ(i − 1)5 + 1,
x(i) = exp

(
2πjψ(i)

64

)
for i = 1, 2, . . . , 64 represents the

length-64 Epicycloid four-cups sequence. This sequence corre-
sponds to the unitary length-64 C4 sequence with parameters
du = (62, 0, 62, 40) and ρ = (3, 0, 1, 2).

C. Unitary C4-sequence of size q = 32

In this section, an explicit method is provided for construct-
ing unitary C4 sequences of length q = 32. The construction
method for length q = 128 is not given due to space limitation.
However, the construction method is not yet generalized for
size q = 512 and higher in the frequency domain. It is
nevertheless possible to build them directly in the time domain
using a similar approach than the one given in (11).

If q = 32, then t = 2 to satisfy q = 22t+1 = 32. Let
us define du = (du(0), du(1)) a vector of size 2t−1 = 2, ρ a
permutation of the set of the first 2t−1 = 2 naturals (ρ = (0, 1)
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or (1, 0)) and (ϵ0, ϵ1) ∈ {−1, 1}2 two extra parameters. Let
us define the length-8 unitary seed vector su as

{
su(i&6 + ρ(0)) = du(0) + 8i1ϵ0

su(i&6 + ρ(1)) = du(1) + 16i2 + 8i1 + 8i1ϵ1
, (12)

where i = 0, 1, . . . , 7 and (i&6) represents the binary masking
of i = (i2i1i0)2 with the binary vector 6 = (110)2 (i.e.
(i&6) = i − (i mod 2)). The C4-sequence xu = G(su) is
a unitary C4-sequence. For example, by considering du =
(12, 27), ρ = (0, 1), ϵ0 = −1, and ϵ1 = 1, the obtained
unitary seed vector is su = (12, 27, 4, 27, 12, 11, 4, 11). It can
be verified that x = G(su) is a unitary C4-sequence.

D. Comparison with Zadoff-Chu sequences

The interest of Unitary C4-sequences becomes apparent
when compared with the well-known Zadoff-Chu sequences
[1], [3], which are widely used in various communication
standards. Consider a Zadoff-Chu sequence of length p, de-
noted as z = (z(l))l=0,1,...,p−1. Similar to Definition 2.5, za
represents the sequence z with a circular shift of a positions.
The Zadoff-Chu sequence satisfies the property that for all
a ̸= b, ⟨za, zb⟩ = 0. Since the p elements of za have
a magnitude of 1, ∥za∥2 = p. Consequently, for a ̸= b,
∥za − zb∥2 = ∥za∥2 + ∥zb∥2 − 2R(< za, zb >) = 2p. In
summary, a Zadoff-Chu sequence of length p = q

4 generates
a set of p vectors, each at a distance equal to 2p from one
another.

Now, consider a C4-sequence x of length q = 4p. When
this C4-sequence is truncated to a length of p, a set of q =
4p vectors xa+p−1

a is obtained, where a = 0, 1, . . . , q − 1,
each of length p. According to Theorem 2.6, the minimum
distance between these vectors is greater than or equal to 2p.
Comparing it to the Zadoff-Chu sequences of length p, the
minimum distance of the generated set is the same (i.e., 2p),
but the cardinality is four times higher. This demonstrates the
potential advantage of C4-sequences in terms of cardinality
when compared to Zadoff-Chu sequences.

IV. GEOMETRICAL SHAPING OF C4-SEQUENCES

Using operational research techniques, it is possible to
optimize a C4-sequence according to a given objective, such
as maximizing the Mutual Information (MI) for a specific
Signal-to-Noise Ratio (SNR). For example, Figure 4.a shows
the optimized constellations for MI at an SNR of 5 dB using
a greedy optimization algorithm. For this constellation, the
achieved mutual information is 2.0536 bit/s/Hz, very close to
the channel capacity of 2.057 bit/s/Hz. Note that 12 points
are regularly spread over an external circle. Similarly, Fig.
4.b presents the optimized constellations for an SNR of 0 dB.
For this SNR, the channel capacity is 1 bit/s/Hz, while the
achieved mutual information is 0.9998 bit/s/Hz. The shape of
the constellation is different compared to the 0 dB case, since
the outer circle contains only 8 points.
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Fig. 4. Optimized C4-Constellations: a) Optimized for 5 dB of SNR, MI of
2.0536 bit/s/Hz (99.81 % of the channel capacity), b) Optimized for 0 dB,
MI of 0.9998 bit/s/Hz (99.98 % of the channel capacity).

l = 1 l = 2 l = 3 l = 6
D2

l (c) 0.0952 0.2929 0.6667 0.6667
D2

l (x) 0.0023 0.2577 0.4701 1.0420
MI(c) @ 0 dB 0.9918 1.9617 2.9158 4.3286
MI(x) @ 0 dB 0.9974 1.9753 2.9082 4.9290
MI(c) @ 5 dB 1.9926 3.7243 5.1551 5.8571
MI(x) @ 5 dB 2.0292 3.8548 5.1433 5.9843
MI(c) @ 10 dB 3.2686 5.3549 5.9805 ≈ 6
MI(x) @ 10 dB 3.3108 5.5044 5.9745 ≈ 6

TABLE I
COMPARISON OF CLASSICAL MODULATIONS WITH A TRUNCATED

C4-SEQUENCE FOR TRANSMITTING A LENGTH-6 MESSAGE. THE MUTUAL
INFORMATION (MI) IS EXPRESSED IN BIT/S/HZ.

.

V. C4-SEQUENCES FOR TRANSMISSION OF SHORT
PACKETS

A C4-sequence can be used alone to encode a 3 to 10 bits
message. However, it is also possible to concatenate a non-
binary error correcting code over GF(q) as an outer code and a
Truncated-C4 sequence as an inner code [4], [5]. This scheme
allows constructing a flexible rate-adaptive coding scheme for
short packets.

A. Performance of C4-sequence alone

A C4-sequence alone can be effectively used to send very
short-length messages (between 3 and 10 bits, typically) in
the Additive White Gaussian Noise (AWGN) channel. Table I
characterizes a GF(64) C4-sequence x built to jointly optimize
the normalize square minimum distance for lengths l = 1, 2, 3,
and 61. Table I presents the normalize square minimum
distance D2

l (x) for those truncation lengths, as well as the
resulting mutual information (MI, in bit/s/Hz) in the AWGN
channel. These characteristics are compared with the use of
classical modulations, denoted by the generic term c, for
transmitting 6 bits of information. For instance, c refers to
64-QAM for l = 1, a couple of 8-PSK symbols for l = 2, a
triplet of QPSK symbols for l = 3, and 6 BPSK symbols for
l = 6.

According to Table I, for truncation lengths l = 1, 2,
and 3, the minimum distances of classical constellations are
better. However, the Mutual Information (MI) is better for
the C4-sequence for l = 1 and l = 2. The advantage of

1achieved using the optimization process with the cost function Ψ(x) =
6D2

1(x) + 3D2
2(x) + 2D2

2(x) +D2
6(x)
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Fig. 5. Concatenation of an NB outer code and a Truncated-C4 sequence.

the C4-sequence becomes predominant for l = 6, as both
the normalize square minimum distance and the MI become
significantly higher compared to the classical constellation.

B. Principle of concatenated scheme
As proposed in [4], [5], it is possible to concatenate an outer

Non-Binary Error Correcting Code (NB-ECC) over GF(q)
with an inner code composed of a Truncated-C4 sequence,
as shown in Fig. 5. In this scheme, the outer code takes k
GF(q) symbols (i.e., m-tuple binary vector, with m = log2(q))
to generate n GF(q) symbols (coding rate R = k/n). Each
of the GF(q) symbols is then used to modulate a Truncated-
C4 sequence of length l, where l is a parameter that allows
flexibility to precisely match the spectral efficiency to the
channel condition. The total spectral efficiency of this coding
scheme is thus

S(l) =
Rm

l
bit/s/Hz. (13)

The decoding of the T-CCSK sequence consists of com-
puting the Log Likelihood Ratio (LLR) of all the q possible
codewords of the Truncated-C4 sequence based on the length-l
noisy received sequence. The LLRs are then used by the outer
code to retrieve the transmitted message.

C. Simulation results
In this section, an outer code constituted by a single parity

check of degree 4 over GF(64) is considered. It allows coding
a 3 GF(64) symbol message (thus 18 bits of information) into a
codeword of 4 GF(64) symbols. For a given truncation length
l, the spectral efficiency S(l) of this coding scheme is thus
given by S(l) = 9

2l , as mentioned in (13).
Fig. 6 shows the performance of the C4-sequence used

in Table I for truncation lengths varying from l = 1 up to
l = 60, resulting in spectral efficiencies ranging from 4.5
bit/s/Hz (l = 1) to 0.075 bit/s/Hz (l = 60) as indicated
by (13). This concatenated coding scheme can be effectively
used to finely adapt the spectral efficiency to the channel
condition. Moreover, it is well-suited for use in a Hybrid
Automatic Request communication scheme. In the event of
decoding failure, the receiver can request the emitter to send
the following symbols of the truncated sequences to increase
the effective truncation length.

More complex outer error codes can be utilized. For exam-
ple, [5] gives performance for rate 1/3 GF(64) Non-Binary
Low Density Parity Check (NB-LDPC) outer code of size
(k, n) = (20, 60). It also uses a unitary Truncated C4-sequence
of length 256 with a rate 2/3 GF(256) NB-LDPC outer code
of size (k, n) = (16, 24).
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Fig. 6. Performance of an outer code composed of a degree 4 parity check
over GF(64) and a Truncated-C4 sequence as the inner code.

VI. CONCLUSION

In this paper, the notion of C4-sequences has been defined.
C4-sequences share similar optimal autocorrelation properties
with Zadoff-Chu sequences. However, C4-sequences offer the
additional advantage of having optimal properties (in the sense
of minimal Euclidean distance between sequences) for several
truncation lengths. Moreover, unlike Zadoff-Chu sequences,
they are not limited to having their points on the unitary circle.

C4 sequences can have several applications in a com-
munication system. Firstly, they can be used on their own
as an alternative to Zadoff-Chu sequences. Secondly, the
constellation associated with a C4-sequence can be shaped
to maximize the mutual information through the AWGN
channel, thereby providing geometric shaping gain. Finally,
the concatenation of an outer non-binary code with a truncated
C4-sequence as an inner code presents a very efficient and
flexible communication scheme. While having a fixed outer
code, the choice of truncation length provides a versatile tool
for closely adapting the overall coding rate to the channel
condition. Finally, it’s worth mentioning that this flexibility
can be effectively exploited in a hybrid-automatic request (H-
ARQ) communication system.
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