Valentin Wasquel

Baptiste Pollien

Christophe Garion

Xavier Thirioux

Improving a Verified Flight Plan Generator: New Properties and Code Modifications

Keywords: Mechanized proof, Operational semantics, Verified Compiler, drone mission

) is an open-source autopilot for unmanned aerial vehicles. The Paparazzi suite allows users to create missions expressed in a high-level FPL language and generate executable C code corresponding to that mission, while providing hardware and software solutions to implement those missions. As the generator plays a critical role in that process, a Verified Flight Plan Generator (PGH + 23) is being developed at ISAE-Supaero. This generator embedded formal proof of its correctness and other properties of the generated code. In this paper, we will present some demonstrations that were added to the generator and highlight some modifications that had to be implemented.

Introduction

Context

Unmanned Aerial Vehicles (UAVs), commonly known as drones, have revolutionized various industries by tackling tasks that were once challenging or impossible for traditional machinery or humans. With their exceptional versatility, drones can access hard-to-reach areas, navigate complex environments, and execute precise operations. Furthermore, the emergence of programmable drones has enabled autonomous missions, where these systems can be programmed to perform tasks without continuous human intervention. In order to facilitate unmanned drone missions, autopilot systems and resources have been developed and shared online, providing users with control algorithms and collaborative platforms for sharing mission plans and data.

Paparazzi UAV (HBG14) is an open-source drone autopilot developed at ENAC 1 . It consists of hardware and software elements to allow easy creation of autonomous drone missions. The software part features a code generator that takes configuration files as input, including a description of the mission, and generates C code that can then be embedded into the drone. The mission is stored as an XML file for easy manipulation and transfer between tools and programs.

A mission is composed of a sequence of blocks, each of which consists of a sequence of stages. The autopilot will read periodically the next stage of the current block to determine the next action to be performed. Such a stage can be for instance 1 The French National School of Civil Aviation, located in Toulouse, France "go to point B", "do a circle", or "if there is no GPS connection, stop". The user can also specify exceptions that change the current block if a certain condition is met. The periodical execution of the autopilot is done through the auto nav function which is responsible for initializing and modifying the parameters to pilot the drone. A benefit of the Paparazzi framework is that the same mission can be reused for different drones, for example a fixed-wing drone and a rotor drone, and the generator will adapt the code accordingly

The generator is a critical part of Paparazzi as it produces executable code that represents what the user wants the drone to do. For the safety of the drone, the generated code must respect some constraints: it must be correct C code and the execution of the auto nav function must terminate. The generated code must also behave as the user expected it to.

To represent how a general program in a language should behave, we can define the semantics of that language. This is represented by a set of rules dictating what a language can and will do. A semantic rule can be: "In an if-then-else statement, there is a condition that must evaluate to a boolean and two statements. Depending on the evaluation of the condition, one of the two statements is executed". Semantic rules can be translated to inference rules to be used in a demonstration, an inference rule states under which condition we will get a certain result. For example: "If you read an if-then-else statement and the condition evaluates to true, then the result will be the result of executing the first statement of the if-then-else".

The goal of a code generator is to preserve the semantics between the input language and the generated one. Proving that a compiler respect all these constraints is known as the Compiler Verification Problem (Dav03; MJ67) In that regard, a Verified Flight Plan Generator (VFPG) (PGH + 23) is being developed at ISAE-SUPAERO2 . This generator is intended to be used in lieu of the Paparazzi generator, producing the same C code from the same input, with the addition of a proof of its correctness. Among other verification, proof of the preservation of the semantics of a mission between the XML representation and the generated C code is provided.

To write these proofs, the formal proof environment Coq was used. Coq allows us to write programs in Gallina, that can be exported to other languages like Ocaml, and formal proofs about the properties of those programs (Let04; SBF + 20).

Coq allows us to easily verify if any change of the code invalidates previously proved properties. We can therefore write in Coq, a verified proof of the correctness of the generator and prove that the expected properties will always hold true whatever the input might be.

Flight plan manipulation and representation

The VFPG can be devised into three components :

A pre-processor : parses the XML flight plan, separates the header and the body of the mission and normalizes the information.

The generator : generates the autopilot functions, including the auto nav function, based on a flight-plan representation and provides proof for this generated code.

A post-processor : prints out the C code representing the mission and performs some cleanups.

Inside the VFPG, the flight plan isn't directly converted from an XML format to C code but goes through different representations in the generator. Each representation corresponds to a step of the generation and all of them are coded in Gallina.

parsed flight plan (FPP) : The VFPG start by reading the XML file and encapsulating the data as a parsed flight plan structure. This structure was made to be used during the parsing and can store incomplete or invalid missions. During the pre-processing, errors are raised if the FPP contains an invalid mission at the end of the parsing. It also contains more information than the other representations as, for example, it stores the header of the mission.

flight plan (FP) : At the end of the preprocessing, the FPP is converted to a flight plan. This representation is the input of the generator and only contains well-defined missions.

extended flight plan (FPE) : the first action performed by the generator is to extend the flight plan. New stages are added to ease code generation. This includes for example ends of while loops and default stages to guide the autopilot from the end of a block to the start of the next one. Each stage is also given an id unique in their block.

sized flight plan (FPS) : Once the flight plan is extended, the VFPG runs a series of tests and generates a fourth flight plan representation. This representation is called sized flight plan and stores the information the same way the extended flight plan does but has some extra properties that can be used in Coq. The primary verification aims at guaranteeing that the size of the mission is in the range of the type of the C variables used in the autopilot code (blocks and stages id needs to be stored into uint 8 variable, hence on 1 byte). A sized flight plan is thus a flight plan that, among other things, is guaranteed to have less than 256 blocks and 256 stages per block.

Clight flight plan (FPC) : Finally, the sized flight plan is converted into a Clight program. Clight is a representation of C code in Coq and can easily be exported as executable code with the CompCert compiler (LBK + 16). The FPC contains the auto nav function and other definitions that will be printed into an executable C file during the postprocessing phase. This is the output of the generator.

Contributions

In this paper, we explain some proofs we added to the VFPG and the possible changes in the code we had to make in order to guarantee these properties. After describing the main reasoning used for proving properties for a flight plan in Section 2, we will go over the new proofs we did for the VFPG:

• First, we removed in Section 3 an axiom about Clight semantics used to prove the conservation of the semantics between FPS and FPC.

• Then, we added two properties about the semantics of the generated code, namely the stability of the autopilot regarding invalid states it could end up in (cf. Section 4), and verification of the execution of user-defined on enter and on exit code (cf. Section 5).

We also extended the verification of the generator by defining a new parser in Coq in Section 6. Finally, Section 7 concludes and presents some future works.

The prooves and modifications presented in this paper were implemented in the VFPG project and the code can be found on the project's Gitlab repository3 . for some definitions, a link to the relevant code will be provided and the path to the file in the project is specified as a footnote. The parser and the generator are coded in Gallina and exported to Ocaml during compilation, the pre-and post-processor are coded in Ocaml, and the printer is provided by CompCert.

Main proof principle

The step function

In order to prove properties on the generator and the produced code, semantics for each of the four representations of a mission used by the generator (FP, FPE, FPS, and FPC) have been defined.

The semantics explains how the drone should behave according to a mission and is done by consecutive execution of a step function. A call to the step function corresponds to a call to the auto nav function on the real autopilot. The step function takes a state that represents the drone at a point in time and gives the state of the drone after execution of the auto nav function.

During a call to the auto nav function, the autopilot first checks if an exception is raised, in which case and after verifying that no forbidden deroute4 prevents this, it changes the block accordingly to the exception and exits this execution. If no exception is raised, one or more stages are executed and the state is updated accordingly. After the execution of a stage, depending on its type, the next stage will be automatically executed or the execution of the auto nav function will stop and the next stage will be evaluated during the next auto nav call. For code clarity, the step function is subdivided into a number of functions.

Induction principle on step function

Proving that the drone does something in a certain condition is done by showing that if we execute a step from a state that fulfilled this condition, the resulting state will show the intended behavior.

Proof that a drone would always respect a property is done by induction on the step function: if the property is true for the initial state and if doing one step from a state that respects the property results in a state that also respects the property, then we can say that after any number of step, the state we end up with respects the property.

For code clarity and simplicity, these proofs are subdivided in the same way the step function is, either proving that the global property we want to prove is verified during these subfunctions or that a given sub-function does not modify a property we are looking at. This is useful as some functions are used multiple times during one step execution.

An example of a proof of a property using induction on the step function is the simulation relation: in the VFPG paper (PGH + 23), B is a simulation of A if the semantic of A is preserved in B, (i.e. everything A can do, B can do).

The proof goes as follows: first, we show that if we take two equivalent states A 1 and B 1 and a step from A 1 gives us a state A 2 , then there is a state B 2 that is equivalent to A 2 and can be obtained by executing a step from B 1 . Then, if for each possible initial state in the A semantic, there is an equivalent initial state in the B semantic, we can say that for any state A i accessible with the A semantic, there is a state B i following the semantic of B that is equivalent to A i .

A simulation shows that anything that can happen in one semantics can happen in the other. The main use of simulation in VFPG is to prove that the different transformations between representations of flight plans (FP, FPE, FPS, and FPC) preserve the semantics, with no information gained or lost.

Removing the deterministic external code axiom

To prove such equivalence, we needed to show that the execution of the step function, and consequently the semantics, is deterministic (i.e. if you have two computers running the same code and get a result, these results are identical). For most of the flight plan representations, this property is easily shown.

The last representation of a flight plan (FPC) is a Clight program whose semantics is provided by CompCert (BL09). The CompCert library for Coq provided the inference rules for the execution of any Clight programs and is used to represent the execution of the auto nav function. The execution of Clight code is mostly deterministic. However, Clight allows for calls to external code and does not guarantee that this code is deterministic.

The first proof of the correctness of the generator was carried out with an axiom stating that external code is deterministic.

However, the code generated by VFPG and the other Paparazzi autopilot files does not contain any call to external code. As such, this axiom is not mandatory, and we can establish a correction proof that does not use it.

To remove the axiom from the demonstration, we had to guarantee that we could never find ourselves in a situation where we would need it.

Definition of a state with no external call

In the Clight semantic, the state is composed of the local environment with the definition of local variables, a memory state, a trace of every evaluation5 , the current Clight statement it is executing, and a Continuation object representing what remains to be executed. The Clight step function6 also takes a global environment as a parameter, the global environment containing definitions of global variables and functions, Clight offers two ways of calling an external function: either with a specialized instruction called Sbuiltin which takes as input the external function that will be called (we will call this method a direct external call), or by doing a regular call with the Scall instruction to an id that represents an external function (indirect external call).

We first created a property stating that a given Clight function does not have any direct external call (no Sbuiltin instruction) No external call statement 78 . Only direct external calls are filtered by this property. Scall only stores the id of the function and depending on the global environment the program is executed in, that id can point to an internal or an external function. This property follows the format of the Clight statement structure. It is automatically verified for simple statements (like Sskip, Sbreak or Sassigne) except for Sbuiltin, for inductively constructed statements (statements that include other statements like Sif or Sloop) it is verified if and only if the sub-statements all respect the property (the body of the loop, the then and else case of the conditional, etc.).

To represent the call stack of a computer (memorize what is left to be executed), Clight also introduces a Continuation (Cont) structure. For example, when a Ssequence is read, the first statement of the sequence will be executed and the second statement is placed in the Continuation to be executed later.

We define No external call cont9 , a property for Continuation that has only statements respecting the No external call statement property.

From that, we defined a subcategory of state, No external call state10 , that is not running a program with direct external calls. A state with no external call (or a NEC state) is a state with a current statement with no external call and a Continuation with no external call.

We then defined that a global environment with no external call (No external call environement11) is an environment :

• with no id pointing to external functions (to prevent indirect external calls),

• and no internal function with direct external calls.

If we combine the two parts of that definition and try to execute a function with no direct external call, then it is impossible to call external functions.

With these definitions, we can define a context where Clight is deterministic without relying on the previous axiom.

Proof of step determinism

Even though our goal here is to show that the execution of a mission is deterministic, it is easier to show that instructions read in an environment with no external call are deterministic and then show that the environment of the execution of a mission has no external call.

The modified version of the proof that Clight is deterministic is similar to the old one in most parts: each instruction is either a deterministic instruction or a call to an external function, which is a contradiction with the hypotheses that the current state is a state with no external call. This shows that the evaluation of one instruction is deterministic (clight step deterministic12 .

To show that executing a sequence of instructions is deterministic, we will also need the information that after reading an instruction from a state with no external call, we end up with a state with no external call. This is the point of the NEC state to NEC state13 lemma: if we have a state with no external calls and a global environment with no external calls, the resulting state of a step2 call is a state with no external calls. 14 With the NEC state to NEC state lemma, we can repeat the previous lemma to establish the property that for any number of instructions Clight execution is deterministic, including a full execution of the auto nav function.

To fully remove the axiom from the proof, we only had to prove that we were indeed in this kind of environment.

We first showed that every function from the autopilot was a function with no direct external call, including the auto nav function, regardless of the mission used to generate them. At this point, we were able to show that the global environment was a correct environment.

With these points, the new proof of deterministic execution was usable in the context of the simulation relation between FPS and FPC.

Stability of flight plan evolution

During the execution of the mission, the autopilot stores the id of the block being currently executed as well as the id of the last executed block. This allows users to go back to the previous block. It is done through the return instruction and has a special behaviour.

Under normal circumstances, these two variables should always store ids of existing blocks. However, A bug or some action done by the user could change the value of these variables in unintended ways, leading us to a possible invalid state where the stored ids do not correspond to existing blocks.

As a failsafe, if the drone tries to read the next instruction from a non-existing block, a default HOME block generated by the VFPG is read and leads the drone back to its base. But, as a safeguard, we wanted to prove that even in an invalid state, the drone could not carry out an unwanted maneuver. At first, three properties were discussed :

A shows that the drone cannot by itself falls into an invalid state. B shows that a drone in an invalid state will eventually go to a valid one (fixing itself). C shows that a drone in an invalid state would behave in a similar way to a similar drone in a corresponding state that has been fixed.

We first created a rigorous definition of what being in a valid state means :

A valid state [or correct env 1516]: is a state where both the current block id and the last block id are correct.

In practice, The blocks are numbered starting from zero, in ascending order with no gaps in the numbering, so a valid block id is an id that is between 0 and the number of blocks minus 1.

A semi-valid state [or semi correct env17]: is a state where the current block id is valid but the last block id can be valid or invalid. A valid state is semivalid.

An invalid state : is a state that is not semi-valid18 . This is not exactly the definition that was given prior but is more efficient because the execution of the flight plan is mainly driven by the current block id. 19 Because of the preservation of semantics between all flight plan representations, these demonstrations could be done on any one of them and the behavior would have been proven for the resulting code with the preservation of semantics.

We choose to do the demonstration on the semantics of FPS for two reasons:

• in FPE and FPS semantics, each stage has an id and before the evaluation of the stage, the stage id and the block id are used to look in the mission what stage needs to be executed, which allows for easier demonstration for invalid states.

• FPS has some extra properties generated during the verification phases that can be used.

The first point [A] was shown fairly easily:

The function responsible for accessing a new block will only save in the current block id variable an id that is valid (resorting to a default block's id if the program tries to go to a non-existent block). The current definition of a valid state also guarantees that if a return instruction is executed, then the system will be in a valid state. The function processing returns does not check if the block id is valid, it merely copies the last block id to the current block id. The valid state definition makes sure that this id is correct.

As stated in Section 2.2, this proof was decomposed in several lemmas showing that a given subfunction gives a valid state if the initial state is also valid20 , and result in a lemma stating that doing one step from a valid state result in a valid state

The initial state is a state that executes the first block with id 0 (and considers that the previous block is also id 0) and is a correct state. With that, we can recursively show that the drone will not find its way to an invalid state by consecutive calls to the auto nav function. This first point is important but the format of a mission allows for the user to add custom code to be executed by the drone 21 . The Paparazzi suite also allows the user to change the current block mid-flight. These functionalities could change the current block id to an invalid one (even if the user should not try to do that).

We then wanted to show that an invalid state will eventually become valid (point [B]). The idea was that because the function responsible for changing the current block goes to the default block if it tries to access an invalid block, we are bound to go back to a valid state. However, this is not the case because of the return instruction: as mentioned before, the return instruction does not behave like the other instruction to change blocks and does not prevent going back to an invalid block. This could lead to the following unwanted situation :

1. from an invalid state, an exception is raised and sends the autopilot to a block. 2. the changing block function forces us to go to a valid block, we are now in a semi-valid state (because the last block id is an invalid id) 3. if we now find a return instruction (before any other instruction that changes the block), we will go back to an invalid state. 4. if the condition of the exception still evaluates as true, we start again from step 1.

This configuration could loop indefinitely and the system will never attain a valid state at some point. This argument contradicts the second property.

The compromise that was chosen was proposition [C]: showing that an invalid state will behave in the same way as a corresponding valid one. The idea is that even though the drone will not fix its state, it is still bound to the program and we can still predict its execution. In fact, a semi-valid state will read the stage from a correct block and an invalid state will read the stage from the default block.

We defined a function to normalize a state, it takes a state as input and gives the same state, but if the current or the last block id is incorrect, they are replaced with the id of the default block. The output of the normalize function is always a valid state by definition22 .

A sketch of the proof goes as follows: for any state, the normalized version of that state is valid and the evolution of a valid state is known and correct. If we can show that doing one step as any kind of state yields the same result as doing one step as the normalized version, then an invalid state is not directly unstable. Moreover, if when normalizing the resulting state, we get the result of the step from the normalized version, we can safely say that an invalid state behaves in the same way as a valid state and will not diverge.

It is important to note in the flight plan semantics, the state stores reference to the blocks and stage to be executed but also a trace of everything that happens. Stating that the same thing happens for two series of step calls is equivalent to saying that the resulting states have the same trace. This is equivalent to proving that the normalized function and the step function commute with each other, as the normalized function does not modify the trace of the state.

We can note that because normalizing a valid state gives us the same state, this property is trivially proven for any valid state. For the simplicity of the properties, we did not restrict this property to only invalid states but we generalized it for any state : ∀e, normalize(step(e)) = step(normalise(e))

To simplify the proof, the normalized function was shown to commute with the majority of the functions that describe how a step is performed [START_REF][END_REF] . During these demonstrations, two roadblocks were met which led us to changes in the code of VFPG.

• The first one concerns the verification done on the FPS.

Initially, the FPS verification checked that every id was less than 256. This allows for a specific case where an exception could have an id for the destination that was less than 256 (so a valid exception) but with no block of that id. This leads to an issue as the verification of an exception's condition is skipped if the exception should lead to the current block. In practice, the user cannot create exceptions that would point to either the default block or a non-existing block. The user can only interact with blocks they created; we will call these blocks user blocks and their ids user id [is user id24].

The default block is placed after all other blocks by the VFPG, so where a valid id is less or equal to the number of blocks minus 1, and a user id is strictly less than that number.

To include this fact in the proof, the FPS verification now asserts that exceptions, deroutes (instruction to change the current block), and forbidden deroutes (special rules to prevent changing block in certain cases) have block ids that are user ids, i.e. strictly smaller than the id of the default block. The restriction of an id smaller than 256 is now being derived by the other verification that the id of the default block is itself smaller than 256.

With that property, if the current state is valid its behavior is the same as its normalized version; if it is not, then it behaves the same as the default block and no exception will be skipped as none of them can point to the default block or an invalid id.

• The second change is for the function that is called at the end of a block to go to the next one.

The initial implementation was that if the next block id (the current block id plus one) was bigger than 255, then the next block was instead block 255. This leads to an issue if the invalid state we are studying has 255 as its current block id: the function in charge of changing the current block has different behavior if the goal has the same id as the current block. The solution was to branch depending on whether or not the current id is a user id: if this is the case, then the next block is the current id plus one, if not, the next block id is the same as the current one. 25 These two modifications led to numerous modifications of the demonstration of other properties but did not change the behavior of the generated codes in a significant way.

Verification of on enter and on exit code execution

One of the new features of the VFPG is the introduction of on enter and on exit code snippets for each block. These codes are executed when the autopilot respectively enters or exits the given block. 26 We wanted to formally prove that these code snippets are executed when needed: whenever the autopilot changes the current block, it executes the on exit code of the block it is leaving and the on enter code of the block it is entering. For simplicity, this property was proven on the FPS semantic. In this representation, every execution of user-defined code is represented by adding the code at the end of the trace. We defined two properties: has run on enter27 and has run on exit28 , respectively stating that between two states, the on enter code or the on exit code of a given block was executed (i.e., the trace of the second state is the trace of the first plus some trace that included the expected code). 29 The comparison between two states (or more precisely, the trace of the two states) ensures that the call of the code results from the specific block change we are studying and are not residual artifacts of previous executions.

Because of the similarity between the on enter and the on exit codes and the fact that we want to prove that both have been executed, we created a single property to regroup the two expected properties: has run on enter and exit 30 The property is formulated as follows: if a step from state e1 leads us to e2 and the current block of e1 (B1) is not the current block of e2 (B2), then has run on enter and exit e1 e2 B1 B2 should be true : the trace of e2 is the trace of e1 plus some other elements including the on exit code of block B1 and the on enter code of block B2. This property actually excludes the case where we find a deroute to the current block (restarting the current block). In practice, the on exit code and the on enter code of the current block are executed, but characterizing this type of transition is harder and we consider it unnecessary.

To establish the proof, we proved two sets of properties: the first one states that after a certain function is called that changes a state to another, the only modification on the trace that occurs is that some elements are appended to the existing trace (the old trace is never modified) 31 .

The second set of properties is similar, but if during the call, the current block has changed, then the has executed X properties are verified. The first property is used multiple times in the second for auxiliary functions that do not change the block even though the function does (e.g., during a step, exceptions are first checked, if the current block is not changed, we want to show that the old trace is still here and we just added some elements to the trace before the rest of the step function change the current block) 32 . This proof allowed us to realize that the on enter and on exit code was not called when changing blocks because of a return instruction. The code was therefore changed to include calls to these codes when a return instruction is met. 29 these properties are read as follows: has run X e1 e2 B means between states e1 and e2, the X code of the block B has been executed 30 /src/verification/FPSProp.v:1183 31 The naming convention for these properties is X add trace [src/verification/FPSProp.v:910-1171]. 32 The naming convention for these properties is X run on enter and exit [src/verification/FPSProp.v:1186-1663].

Incorporation of a new parser in Coq

The last modification we worked on was the development of a verified parser module using the Menhir parser generator to replace the XML-light parser 33 used by the paparazzi. Menhir is an LR(1) parser generator for the OCaml programming language (PRG16). It takes as input a grammar specification and creates an LR(1) parser. Using the --coq option, Menhir can create a Coq file with the parser and a formal soundness and completeness proof of the parser. This module can be divided into three parts:

The Flight Plan Parsed structure definition The definition of the structure that will store the result from the parsing.

The verified parser Generated with menhir from the description of the grammar, generating an FPP from a list of tokens.

The lexer Generating a list of tokens from a string.

The FPP definitions [FlightPlanParsed 34 and FPPUtils 35] and the lexer [CoqLexer 36] have been coded in Coq. The parser [Parser.vy 37] is expressed in Menhir grammar specification, and the Coq file with the parser is generated from the grammar specification with Menhir. This module is subject to several constraints: 1. It should accept Paparazzi flight plan files in XML format. 2. Menhir with the Coq back-end requires the grammar to have no conflicts and is limited for some functionality in order to generate the proof.

One difficulty faced during the development of the parser is to handle optional attributes or attributes presented in arbitrary order. In order to deal with these possibilities, we designed a dedicated data structure for the parsing phase: Flight Plan Parsed. As stated in Section 1.2, FPP is a structure with most of its attributes (even required one) defined as string options. With that structure, an empty object with all attributes set to None can be created and functions to change one attribute of an object can be defined.

The logic is the following: at the start of an element, we create an empty object. We then proceed to read the attributes of the element: when a name-value pair is read, we update the corresponding attribute of the current object with the value. once we reach the end of the element, we have our object. This reasoning has two effects: 33 github.com/ncannasse/xml-light 34 src/parser/FlightPlanParsed.v: 35 src/parser/FPPUtils.v: 36 src/parser/CoqLexer.v: 37 src/parser/Parser.vy:

• First, if two name-value pair have the same name, no error is raised but depending on how the grammar rule is registered, either the first or the last value will be kept 38 . This could be an issue as the user might unknowingly overwrite previous attributes or have their attribute masked by another one.

• Second, during the parsing process, we can't verify if an object is valid (with all its required attributes filled in). during the preprocessing, we have to include error handling for incorrect data.

With these modifications, the pre-processor also had to be modified to accommodate to the new data structure.

Conclusion

This paper presents the modification of a proof by the removal of an axiom as well as the introduction of two new properties for the generated code of the new Verified Flight Plan Generator developed at ISAE-Supaero. It also introduces a new parser that was implemented in the pre-processor of the VFPG. The exhaustive list of all functions and properties that were created or modified is not presented here, the main objective was to highlight the reasoning behind the proof and some difficulties that were faced during verification.

On top of the modifications that were discussed in this paper, some minor functionalities and improvements were implemented to the generator. These changes include new error messages for when an exception and a forbidden deroute can enter in conflicts (whereas this issue would go unnoticed previously), a function to generate some common C code from Clight, and the removal of some unused code and unnecessary imports in order to improve the code readability and create a cleaner dependency tree for the project.

While this article implements some functionalities that were cited as future work in the former VFPG article (PGH + 23), some functionalities are left to be implemented while new possibilities were discussed. The project still functions separately from the rest of the Paparazzi suit while requiring some of its source code to work. The main future objective for this project is to incorporate the verified flight plan generator in Paparazzi and give the user the possibility to generate the autopilot code with the new generator directly from the Paparazzi user interface. As for new projects, an idea of generalizing the project for other autopilots or in other contexts not involving drones were discussed.

Figure 1 :

 1 Figure 1: The architecture of the VFPG generator.

The National Higher French Institute of Aeronautics and Space, located in Toulouse, France

https://gitlab.isae-supaero.fr/b.pollien/vfpg/-/tree/internship

a forbidden deroute is a new functionality introduced by the VFPG, it allows the user to add a rule preventing the drone from going from one block to another (for example: going from a block where the drone is over a critical area to a block where the engines are shut down).

An evaluation gathers conditions for a statement like if case or while loop, but also arbitrary C code that the user can specify to be executed in the XML flight plan.

This function is called step2 in the code, it must not be confused with a flight plan step. step2 is part of the Clight semantic

src/semantics/FPBigStepClight.v:337-390

in Clight, the body of a function is a single statement.

src/semantics/FPBigStepClight.v:524-554

src/semantics/FPBigStepClight.v:619-640

src/semantics/FPBigStepClight.v:642-652

src/semantics/FPBigStepClight.v:740-746

src/semantics/FPBigStepClight.v:654-660

During this proof, a roadblock was met when goto instruction and Scase statement interfere, and a new induction principle had to be implemented: statement ind nec [src/semantics/FPBigStepClight.v:471-499]

src/semantics/FPBigStepSized.v:1146-1149

A state is also called a fp env in the flight plan semantics.

src/semantics/FPBigStepSized.v:1151-1154

As we have no properties that are only true for invalid states, we did not write a definition of invalid state in the code, but this definition is the one we will use for the rest of the article.

It is to be noted that an invalid state can have a correct last block id but a valid state cannot have an invalid last block id.

The naming convention for these functions are correct through X where X is the name of a function [src/verification/FPSProp.v:

These codes are written in C which is always deterministic, so it was not an issue for proving that the semantics is deterministic.

A normalize function was already defined in the VFPG but it only fixes the current block id.In this paper, when we talk about the normalize function, we refer to the full normalize function [src/semantics/FPEnvironmentExtended.v:120] that fixes both block ids.

The naming convention for these functions is normalize through X [src/verification/FPSProp.v:453-899]

src/syntax/FlightPlanSized.v:32-33

The only valid block id that is not a user id is the default block id and it is the last block of the mission.

Paparazzi provide pre call and post call parameters. pre call and post call are executed for each auto nav calls, on enter and on exit are only executed when a change of block occurs

src/verification/FPSProp.v:1175

src/verification/FPSProp.v:1179

In the implementation of the parser, the first value (left-most value) is kept.