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Jérémy Espinas2

1 INSA Lyon, LIRIS, Lyon, France
firstname.lastname@insa-lyon.fr

2 Esker, Lyon, France
firstname.lastname@esker.com

Abstract. Since their release, Transformers have revolutionized many
fields from Natural Language Understanding to Computer Vision. Doc-
ument Understanding (DU) was not left behind with first Transformer
based models for DU dating from late 2019. However, the computa-
tional complexity of the self-attention operation limits their capabilities
to small sequences. In this paper we explore multiple strategies to apply
Transformer based models to long multi-page documents. We introduce
2 new multi-modal (text + layout) long-range models for DU. They are
based on efficient implementations of Transformers for long sequences.
Long-range models can process whole documents at once effectively and
are less impaired by the document’s length. We compare them to Lay-
outLM, a classical Transformer adapted for DU and pre-trained on mil-
lions of documents. We further propose 2D relative attention bias to
guide self-attention towards relevant tokens without harming model effi-
ciency. We observe improvements on multi-page business documents on
Information Retrieval for a small performance cost on smaller sequences.
Relative 2D attention revealed to be effective on dense text for both
normal and long-range models.

Keywords: Document Understanding · Long-range Transformers · Rel-
ative Attention.

1 Introduction

Digital documents are everywhere around us, in the form of born digital PDF or
scanned paper, they carry much information and can be easily exchanged. They
can be used to exchange information from an issuer to its recipient or to archive
its content. Information is generally structured in some way depending on the
document type. Invoices and scientific articles, for example, do not follow the
same structure because their objective is different. Both are codified to carry
information very efficiently such that most invoices and most articles look the
same but differ in content. Document Understanding is a field gaining increas-
ing attention in the past years, as automating document-related processes can
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drastically improve efficiency of information processing in a wide range of fields
and industries. Recent advances in Neural Network architectures allowed better
document understanding and enabled tackling more complex tasks: Question
Answering [20], Layout Segmentation [18] and Information Extraction [11].

In particular, models based on Transformer architectures have led to a break-
through in these domains since their first release in 2017 [28]. They have been
widely used on Natural Language Processing tasks and their performance is un-
equaled [29]. The implementation of Transformer models in DU [32] was swift,
revealing the potential of attention-based models in this domain. More recently,
the trend is towards multi-modal models that combine multiple different infor-
mation representations such as text, image, sound, layout. Those models have
shown great results on short, single page documents, but are difficult to apply to
long, multi-page or dense documents. This is because the self-attention time and
space computational complexity is O(N2) where N is the length of the sequence.
It effectively limits the usage of Transformer models on long sequences due to
either long training or lack of GPU memory.

In this work, we explore several approaches and architectures in order to use
Transformer models on long documents. For simplicity, we limit our study to
text and layout (i.e., text position in the page) modalities, and chose to focus on
document length to evaluate the model efficiency. We compare various encoder-
only models on Sequence Tagging tasks with business and academic documents.
We also study the impact of relative attention based on document layout instead
of a linear token position, and its implementation for long-range Transformers.

2 Related Work

2.1 From NLP to Document Understanding

This work derives from both long-range Transformers proposed in NLP tasks,
trying to process longer sequences at once and Transformer architectures adapted
to DU. Before the proposal of Transformers, the de facto architecture for NLP
has been Recurrent Neural Networks. Multiple improvements have been pro-
posed, for example to tackle vanishing gradients like Long-Short Term Memory
cells [9]. Coupled with Conditional Random Fields, bidirectional LSTM encoders
were then capable at most text understanding task [16]. For more complex In-
formation Retrieval, where target information can span multiple tokens, BIESO
tags allow better decoding by precisely locating the beginning and end of the
information. Although long sequences can be processed with Recurrent Neural
Networks, longer input negatively affects the performance of encoder-decoder
architectures [2]. Hence, the attention mechanism was quickly adopted for those
architectures as an “information highway” between the encoder and the decoder.

In addition to these new architecture developments, large progress has been
made in the past years on how to learn usable word representations. Before,
word embeddings were trained at the same time as the other model’s param-
eters. Then, approaches like Word2Vec and GloVe [21, 22] showed that self-
supervised learning improves finetuning on all tasks. Major improvements came
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from contextual embeddings, first introduced by Elmo [23]. Contrary to static
embeddings, contextual embeddings can better represent words with multiple
meanings in adequation with their surroundings.

This is where Transformer models rose, heavily relying on (self-)attention and
pre-training giving unprecedented performance at the time. Most NLP challenges
leaderboards were monopolized by BERT like models, growing bigger and deeper
by the day [4, 5, 19].

In parallel to those quick improvements, the DU community developped al-
ternatives to bi-LSTM, using multiple modalities to provide more useful infor-
mation to the model. Some used convolutions over a grid mixing image and
text [6, 12], others proposed graph-based models [33] to represent a document.

The revolution in DU came from Transformer architectures. Pre-trained mod-
els able to leverage large document collections outperformed all previous ap-
proaches. LayoutLM [32], for example, only introduced 2D positional embeddings
over BERT and was pre-trained on the RVL-CDIP [17] collection. It opened the
way to many other models applying Transformers to previous design [6], lever-
aging end-to-end capacities of encoder-decoder models [24], or providing image
and text to the models like a visual Transformer [15]. Because the Transformer
output is independent of the sequence order, positional embeddings are clas-
sically added to the input. It is also possible to introduce relative bias to the
self-attention mechanism to promote local interactions inside the self-attention.

Most recent models for DU propose to leverage as much information as pos-
sible by using multiple modalities: text, layout and image. Either by combining
Convolutional Neural Networks with Transformers [24, 31] or mixing visual with
classical Transformers [10, 13]. Even though those approches provide superior
results, we chose to not include image information to our architectures.

2.2 Long Range Transformers

Since the introduction of BERT [7] and GPT [26], Transformers have demon-
strated their capacity to understand and model language [29]. Their ability to
manipulate words can be visualised through the amount of attention each token
allows to other tokens. However, dot-product attention computation involves a
O(N2) time and memory complexity where N is the sequence length. It limits
the capacity of Transformer-based models in dealing with long sequences as they
need too much GPU memory and/or take too long to process.

Many modifications have been proposed to replace the attention layer with
some efficient approximation that can be computed in O(N) or O(N log(N)).
They have been developped and tested with NLP tasks where long sequences
are most likely to be found like long text summarization and translation. Some
models use attention patterns [1, 3, 34] to limit token attention to a fixed number
of other tokens. Some combination of sliding window, global and random patterns
provide a simple but efficient attention. A balance needs to be found between
more attention context and attention complexity. It is also possible to learn
the attention pattern by limiting attention to tokens that share some locality
sensitive hash [14]. Others proposed to replace the N × N attention matrix
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with a low-rank approximation. Empirical observations on multiple NLP tasks
show that the attention matrix can be replaced with a lower rank approximation
without harming the attention process too much [30].

However, long range Transformer architectures have not yet been used on
DU tasks, mostly due to datasets not containing lengthy documents.

3 Datasets

We used 2 document datasets, where our choice was mainly made based on doc-
ument length and the task itself. We wanted a NLP task that can be represented
as Sequence Tagging in order to test the whole encoder with long inputs. Both
datasets consist of English-only documents with close to perfect OCR extraction.
They provide word-level axis aligned bounding boxes in the form that can be
fed to the model as layout information. We use the OCR provided order for the
input sequence and do not further analyze documents to extract their structure.

3.1 Business Documents

The first dataset consists of Customer Orders submitted to a commercial plat-
form between 2018 and 2021. Due to privacy concerns, these documents cannot
be shared. It contains 80k documents that can be divided in 9000 different is-
suers with no more than 50 documents from the same issuer. Usually, an issuer
only emits documents with the same template for convenience. About 55% of
documents can be tokenized into a sequence of 512 tokens which fit into clas-
sical Transformer default maximum length. Only 5% of documents are longer
than 2048 tokens, following a long tail of distribution. In order to evaluate the
models’ generalization abilities, we split into train, validation and test sets such
that templates in the test set have not been seen by the model during training.

The task consists of Information Extraction on multiple known classes: doc-
ument number, date, total amount, item ID numbers and item quantities. Some
information only appears once in the document (e.g., document number, date
and total amount) while others are repeated for each line item in the business
order. We call header fields those only occurring once and table fields others as
they are most of the time structured in a table layout. There could be between
1 and 50 items present in any document, their number is not known in advance.
Fig. 1 shows the labeling of a multi-page document. Even though header field
are sometimes repeated on each page, it is only labeled once in order to stay con-
sistent acrosstemplates. Labels are provided at the word level based on manual
customer document extraction. We also controlled labeling quality and rejected
from the dataset documents with missing mandatory fields or wrong number of
line items.

A superset of this dataset was used for pre-training models on business doc-
uments. It consists of 300k Customer Orders and 100k Invoices from the same
commercial platform. All documents were submitted and processed by the plat-
form but later rejected due to labeling errors or bad habits. Fortunately, this
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SALES ORDER

ORDER # 953487
DATE: JANUARY 13, 2013

JMART
1600 Boston Road
Springfield, MA 01129
(413) 543-0601

TO IDES US Inc.
1230 Lincoln Avenue
New York, NY 10019
Customer ID 300717

SHIP 
TO

JMART
1600 Boston Road
Springfield, MA 01129
Customer ID 300717

SALES PERSON JOB SHIPPING METHOD DELIVERY DATE PAYMENT TERMS DUE DATE

Terry Schmidt 953487 OVERNIGHT SHIPPING 1/15/13 Due on receipt

QTY ITEM # DESCRIPTION UNIT PRICE LINE TOTAL

3 L-40C Light Bulb 40 Watt clear 220/235V 438.00/carton 1314.00

4 L-40F Light Bulb 40 Watt frosted 220/235V 432.00/carton 1728.00

4 L-60C Light Bulb 60 Watt frosted 220/235V 430.15/carton 1720.60

3 L-60F Light Bulb 60 Watt frosted 220/235V 435.08/carton 1305.24

2 L-80C Light Bulb 80 Watt clear 220/235V 440.35/carton 880.70

4 L-80F Light Bulb 80 Watt frosted 220/235V 453.21/carton 1812.84

12 PK-100 PK-100 Special carton high tech 14.40/PC 172.80

12 PK-102 PK-102 Pallet 120 x 80 x 12,5 Type B 13.15/PC 157.80

4 R-1141 PAQ Monitor, 20”, Color 300.00/PC 1200.00

2 R-1002 Maxitec R 3133 Personal Computer 1392.40/PC 2784.80

4 R-5002 Processor Pentium 530.00/PC 2120.00

3 M-15 SEC Multisync XV15 1187.70/PC 3563.10

4 R-1141 PAQ Monitor, 20”, Color 300.00/PC 1200.00

2 M-12 MAG DX 12F/FE 855.14/PC 1710.28

2 M-13 MAG DX 13F/FE 855.14/PC 1710.28

This is an offer to purchase. Written acceptance of the order or shipment signifies acceptance of the Terms and Conditions of 
Purchases printed on the back or otherwise available at www.jmart.com. Any additional or different terms proposed by Seller 
are rejected unless expressly agreed to in writing by the Buyer.

SALES ORDER

ORDER # 953487
DATE: JANUARY 13, 2013

SALES PERSON JOB SHIPPING METHOD DELIVERY DATE PAYMENT TERMS DUE DATE

Terry Schmidt 953487 OVERNIGHT SHIPPING 1/15/13 Due on receipt

QTY ITEM # DESCRIPTION UNIT PRICE LINE TOTAL

3 L-40C Light Bulb 40 Watt clear 220/235V 438.00/carton 1314.00

4 L-40F Light Bulb 40 Watt frosted 220/235V 432.00/carton 1728.00

4 L-60C Light Bulb 60 Watt frosted 220/235V 430.15/carton 1720.60

3 L-60F Light Bulb 60 Watt frosted 220/235V 435.08/carton 1305.24

2 L-80C Light Bulb 80 Watt clear 220/235V 440.35/carton 880.70

4 L-80F Light Bulb 80 Watt frosted 220/235V 453.21/carton 1812.84

2 M-12 MAG DX 15F/FE 855.14/PC 1710.28

2 M-13 MAG DX 15F/FE 855.14/PC 1710.28

2 M-14 MAG DX 15F/FE 855.14/PC 1710.28

TOTAL DISCOUNT _ _

SUBTOTAL 37272.66

SALES TAX 1863.63

TOTAL 39136.29

This is an offer to purchase. Written acceptance of the order or shipment signifies acceptance of the Terms and Conditions of 
Purchases printed on the back or otherwise available at www.jmart.com. Any additional or different terms proposed by Seller 
are rejected unless expressly agreed to in writing by the Buyer.

Fig. 1: Sample pages with colored labels similar to those in the Business Docu-
ments dataset. Both pages come from the same document, the first page in on
the left and the last page on the right. Some information are repeated across
pages of a document.

does not impact the OCR quality and allows us to pre-train our models on a
large collection of recent documents. We chose to use it for pre-training instead
of RVL-CDIP [8] for the OCR quality difference.

3.2 DocBank

DocBank [18] is a dataset containing 500k public research article pages. It con-
tains English documents spanning various research fields. Documents were ob-
tained on arXiv and were annotated with PDFPlumber, a PDF parser that
accurately extracts item bounding boxes. The task consists in document layout
analysis. Li et al. [18] provide both pixel and word-level annotations for CV
and NLP models. The order of words is defined from top-to-bottom and left-
to-right, except for multicolumn documents where whole columns are ordered
left-to-right. In this work we will only use textual information along the word
2D positions.

Docbank segmentation task contains 12 categories (e.g. title, paragraph, figure
etc.) representing semantic parts of a research article. Because articles contain
dense paragraphs, most pages are longer than 512 tokens once tokenized. In fact
only 11% of the test documents contains less than 512 tokens and 84% contains
between 512 and 2048 tokens.
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Fig. 2: DocBank sample image on the left and its corresponding segmentation
on the right. Each color represents one class (black for paragraph, purple for
equation, ...).

4 Models

We compared LayoutLM, a Transformer for DU which is our baseline, with
our long range contributions LayoutLinformer and LayoutCosformer3. They
only differ by their implementation of self-attention: LayoutLM uses full self-
attention like BERT, LayoutLinformer uses a low-rank approximation first pro-
posed by [30] and LayoutCosformer uses a kernel-based method introduced
in [25] as a replacement. We further detail how they work in the subsequent
subsections.

We chose those models over other efficient Transformers based on the con-
venience to adapt them from linear text to 2-dimensional documents. Efficient
attention based on sliding windows [3, 34] does not transpose nicely to 2D docu-
ments because the sliding window mechanism is deeply linked to the linear order
of words. Even though our approach tries to provide words in a natural order, in
some documents it does not reflect the human reading order – for example for
table content. To mitigate this issue, we preferred to rely on global attention or
2D local attention.

Similarly to how LayoutLM was adapted from BERT, we adapt Linformer
and cosFormer models to process documents by adding a 2D positional embed-
ding and a page embedding to the input. We chose to use learned embeddings
to simplify weight transfer from LayoutLM to our long-range models.

3 Models implementation and weights available at https://github.com/

thibaultdouzon/long-range-document-transformer

https://github.com/thibaultdouzon/long-range-document-transformer
https://github.com/thibaultdouzon/long-range-document-transformer
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4.1 LayoutLM

LayoutLM [32] has proven its capacities on most tasks related to documents
since its release. It reuses BERT [7] encoder and tokenizer, and only modifies
the positional encoding by introducing a 2D encoding for word boxes boundary
and size. This modification allows the model to leverage layout information pro-
vided by the OCR. LayoutLM’s computational bottleneck is the self-attention
layer. In Transformers, self-attention [28] takes queries Q, keys K and values
V and computes a weighted average of values for each input. The weights are
given by the dot product between each pair of queries and keys. It can be formu-
lated softmax(QK⊤)V , where Q,K, V ∈ RN×d and N represents the sequence
length and d the model hidden size. Fig. 3 describes the self-attention operation.
The matrix softmax(QK⊤) is the attention matrix containing the intensity of
attention between each pair of tokens. Xu et al. [32] pre-trained the model on
RVL-CDIP [8] which contains 7 millions scanned documents released in the 90’
from the tobacco industry. Two versions of LayoutLM was have been released:
base and large, and it outperforms all preceding text-only language models on
classification and information retrieval tasks.

Fig. 3: Illustration of the attention mechanism used in LayoutLM, normalization
and multiple heads aside. In this example, N = 5 and d = 2. Due to the softmax
operator, the product QK⊤ must be computed, resulting in O(N2) complexity.

In our experiments, we only use the base model with maximum sequence
length N = 512 and hidden size d = 768. For longer documents, we split the
tokenized sequence into chunks of maximum length and process them separately.

4.2 LayoutLinformer

Our first contribution, LayoutLinformer is based on the Linformer architec-
ture [30] and adapted to document processing by adding 2D positional encodings
and using LayoutLM pre-trained weights. Although true self-attention can only
be computed in O(N2), it can be approximated very efficiently by leveraging the
low rank of the attention matrix QK⊤. In Fig. 4, we illustrate LayoutLinformer’s
attention mechanism. Keys and values sequence length dimension is projected
on a smaller space of size k through a linear transformation: K ′ = PKK where
Pk ∈ Rk×N is the learned projection matrix (respectively V ′ = PV V where
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PV ∈ Rk×N ). This means the size of the new attention matrix Q(PKK)⊤ is
N × k, reducing the complexity of self-attention to O(Nk).

Fig. 4: LayoutLinformer attention mechanism. In this example, N = 5, d = 2
and k = 3. Efficient matrix multiplication ordering reduces the complexity to
O(Nk).

An immediate drawback of this projection is the loss of ability to visualize
the attention matrix in order to explain the model. It is also no longer possible
to implement causal attention or any specific attention pattern. On the other
hand, Linformer provides a simple modification to the Transformer in order to
make it manage longer sequences with global attention. Most model weights
are identical between the two architectures, allowing us to transfer LayoutLM
pre-trained weights into DocumentLinformer before further pre-training.

Wang et al. [30] showed that it can obtain a performance comparable to
Roberta [19] on multiple NLP benchmarks. He brang evidence that its perfor-
mance is mostly determined by the projection dimension k, and that increasing
sequence length N did not degrade results. Therefore, we chose to apply Lay-
outLinformer with N = 2048 and k = 512 in order to compare its performances
with LayoutLM.

4.3 LayoutCosformer

Our second contribution, called LayoutCosformer, is based on the cosFormer [25]
model which is another efficient alternative to the original Transformer. Similarly
to LayoutLinformer, we transferred pre-trained weights from LayoutLM to Doc-
umentCosFormer thanks to the similarities between architectures. It achieves
linear complexity by replacing the non-linear similarity computation between
Q and K with a linear operation. More specifically, Qin et al. [25] proposed to
replace exp(QK⊤) with Φ(Q)Φ(K⊤) where Φ is a nonlinear function. Fig. 5 il-
lustrates in more detail how LayoutCosformer attention works. In order to keep
values of the similarity matrix positive, a good choice is Φ = ReLU. Computations
can then be reordered to decrease the complexity to O(N).

In addition to its linear self-attention complexity, Qin et al. [25] include a
relative self-attention bias towards nearby tokens. They cannot simply add the
bias to the N × N similarity matrix before multiplying with values because it
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Fig. 5: LayoutCosformer efficient attention mechanism with N = 5 and d = 2.
The linear similarity enable computing first Φ(K⊤)V and factorize Φ(Q) out of
the summation.

would mean a quadratic complexity. Their solution is to use functions that can
be decomposed into a sum of products: f(x, y) =

∑
n gn(x)×hn(y). If we call B

the bias matrix where Bi,j = f(i, j), their biased similarity matrix can be written
Φ(Q)Φ(K⊤) ⊙ B where ⊙ is the element-wise product. Then when looking at
the attention from token i to token j we obtain:

si,j = Φ(Qi)Φ(K⊤
j )Bi,j

= Φ(Qi)Φ(K⊤
j )
∑
n

gn(i) × hn(j)

=
∑
n

Φ(Qi)Φ(K⊤
j )gn(i)hn(j)

=
∑
n

(Φ(Qi)gn(i)) × (Φ(K⊤
j )hn(j))

Using this trick, they proposed to use a cosine bias Bi,j = cos( π
2M (i − j))

which can be decomposed into Bi,j = cos( π
2M i) cos( π

2M j) + sin( π
2M i) sin( π

2M j).
With the normalization constant M set to the maximum sequence length, they
ensure 0 < Bi,j < 1 with a maximum when i = j. In the next subsection, we
demonstrate how it can also be applied to 2D relative attention.

4.4 2D Relative attention

Global self-attention is a powerful tool for capturing long-range dependencies.
However, although distant dependencies can be relevant, most attention should
be toward close neighbors. Relative attention [24, 27] selectively focuses on spe-
cific parts of the input by biasing the base self-attention. This was proven useful
on text which that can be represented as a linear sequence, but due to complex
layouts, the sequence order is suboptimal to determine locality. In order to better
capture local context in documents, we introduced 2D relative attention based
on the token positions inside the document.

In LayoutLM, we pre-compute for each document an attention bias matrix
B and modify the self-attention formula to take it into account. More precisely,
we replace the self-attention with:
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RelativeAttention(Q,K, V,B) =
(
softmax(QK⊤) ⊙B

)
V

Where ⊙ denotes element-wise multiplication. Directly multiplying the at-
tention matrix by some bias is very flexible and allows for any bias matrix to
be chosen. It also matches the way LayoutCosformer applies relative bias to its
self-attention, thus allowing to compare them.

On the other hand, it is nontrivial to implement relative attention for global
long-range Transformers. Because LayoutLinformer compresses the sequence di-
mension of the Key matrix, it is not possible to apply custom 2D attention bias
to LayoutLinformer. For LayoutCosformer it is possible to reuse the same trick
as in the 1D version with another bias function.

Because the function must remain separable into a sum of products, a good
choice is to use exponentials and trigonometric functions. We first prove that the
product of two separable functions is also itself separable. Let f1 =

∑
n g

1
n(x)×

h1
n(y) and f2 =

∑
m g2m(x) × h2

m(y) be two functions separable into sum of
products, then:

f1(x, y) × f2(x, y) =

(∑
n

g1n(x) × h1
n(y)

)
×

(∑
m

g2m(x) × h2
m(y)

)
=
∑
n

∑
m

(
g1n(x) × h1

n(y) × g2m(x) × h2
m(y)

)
=
∑
n,m

(g1n(x)g2m(x)) × (h1
n(y)h2

m(y))

Which can also be separated into a sum of products.
We chose to compare 2 different attention biases. The first one is simply the

product cosine bias along both X and Y axis. It captures local context in every
direction with variations close to euclidean distance. We define Bsquircle 4 the
following:

Bsquircle
i,j = cos(

π

2M
(xi − xj)) × cos(

π

2M
(yi − yj))

Where xi and yi (resp. xj and yj) are positions of token i (resp. j) along
X and Y axis. In practice we used the coordinates of the center of each token
bounding box.

Although this bias correctly captures 2D locality, documents complex layout
sometimes implicitly calls for other definition of proximity in order to understand
it. For instance, Fig. 6 shows a table from a purchase order.

In this configuration, in order to grasp correctly the meaning of a cell in
the table, the model needs to make the connection with the table header po-
sitioned at the beginning of the page. When multiple line items are spanning

4 Squircle are intermediate shape between square and circle, see https://en.

wikipedia.org/wiki/Squircle. Contours of the surface described by Bsquircle is
not actually a squircle but also range from square to circle.

https://en.wikipedia.org/wiki/Squircle
https://en.wikipedia.org/wiki/Squircle
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(a) Squircle relative attention bias. (b) Cross relative attention bias.

Fig. 6: Contour plots for squircle and cross relative attention bias applied to
token “210,80” (bottom-right corner). Because token positions are normalized
between 0 and 1000, tokens along the same line cannot fully attend to each other
on the left while they are unaffected on the right.

the whole page, we hypothesize that this relative attention might hurt the per-
formance due to the long-distance separating tokens. To deal with this issue,
we propose another bias pattern. Its objective is to allow attention to tokens
that are aligned with each other along the X or Y axis. To this end, we define
Bcross

i,j = max{cos( π
2M (xi − xj)), cos( π

2M (yi − yj))}. We illustrate the differences
with an example shown in Fig. 6. With cross relative attention bias, the high-
lighted token (the price of an item) can better attend to the column header
“Unit Price” and to its related line. In general, tokens inside a table can fully
attend to their corresponding column header and line. This should prove helpful
for understanding tables by guiding the model attention towards semantically
related tokens.

5 Experiments

Our models are pre-trained on our Business Documents collection for 200k steps
using Masked Visual-Language Modeling [32]. They are then finetuned on each
dataset. For both tasks, we use BIESO tags to help the model decode predictions
spanning multiple tokens. We performed our experiments on two RTX A6000
for pre-trainings and single RTX A6000 for fine tunings. LayoutLM models runs
with a batch size of 48 and sequence length of 512 while long-range models
(LayoutLinformer and LayoutCosFormer) can only get to a batch size of 16
with sequence length of 2048 on a single device. We accumulate gradient for 96
data samples before updating model’s weights. We use Adam with learning rate
lr = 2 · 10−5 and linear warmup for 5% of the training steps followed by linear
decrease.

5.1 Long-Range

Theoretical results on models architectures hints towards LayoutLinformer and
LayoutCosformer being much more efficient the longer the sequence. We use
a dummy inference task with increasing sequence lengths and compare our 2
models with LayoutLM base architecture. The results are available in table 1.
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Time in seconds / Memory in GiB
Sequence length

Model name 512 1024 2048 4096 8192 16384

LayoutLM 1.41 1.25 2.83 2.50 7.39 5.01 23.43 13.69 - -
LayoutLinformer 1.18 1.35 1.92 2.26 3.54 3.28 6.90 5.19 13.08 8.96 25.65 16.78
LayoutCosformer 2.03 1.36 2.50 2.37 4.68 3.38 9.00 5.38 17.23 9.59 33.96 17.59

Table 1: Duration and memory consumption of the 3 models for various sequence
lengths on an inference task.

They reveal how the computational complexity of full self-attention disables Lay-
outLM when dealing with sequence longer than 1024. Its memory consumption
limits our tests with LayoutLM up to sequence length of 4096, longer sequences
couldn’t fit into a single GPU. On the other hand, LayoutLinformer and Layout-
Cosformer performed as predicted, with LayoutCosformer being slightly slower
and more memory hungry than LayoutLinformer.

It turns out document’s length also greatly impacts models metrics perfor-
mance on the Customer Order dataset. For better visualization, we group doc-
uments into 3 length categories: short (document fits into 512 tokens), medium
(between 513 and 2048) and long (2049 or more tokens). LayoutLM models can
process short documents in a single sequence but need to split other documents
into multiple independent sequences. Short and medium documents fit into Lay-
outLinformer and LayoutCosformer sequence length but not long documents.
When a model cannot process a document in a single sequence, we split the
document into multiple sequences and process them separately.
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Fig. 7: F1-score stacked bar plot of multiple models on the Business Orders
dataset. In each document length categories, models are in the same order.
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In Fig. 7, we compare our pre-trained LayoutLM models with LayoutLin-
former and LayoutCosformer. First, we discovered LayoutLM is very sensitive
to the split position for medium and long documents. Introducing a sequence
split when a new page is started greatly improves performance, we call this
model LayoutLM SplitPage. It performs better on total amount (from 53.7%
to 70%), item ID number (from 62.7% to 75.6%) and quantity (from 77.0% to
90.1%) recognition for medium and long documents. The repetitive structure of
multipage documents combined with the fact that most pages fit in a 512 tokens
sequence allow the model to not get lost. Document number and date are mostly
not affected because they almost always occur at the beginning of the document,
which is not affected by the splitting strategy.

Although LayoutLinformer and LayoutCosformer perform slightly worse than
LayoutLM for short documents on all classes (around 74% F1 score on item ID
number versus 81% for LayoutLMs), their performance decreases less than Lay-
outLM’s on medium documents. On those medium documents, even LayoutLM
SplitPage drops from 88.2% to 70.1% F1 score on the total amount while both
long-range models only reduce performance from roughly 87% to 80%. We also
noticed date recognition performance degrades across all models with longer
documents which is not expected because dates are usually at the top of the
first page. The same can be noted for the order number at a smaller scale. It
might be due to a correlation between document’s length and layout: short and
medium / long documents do not share layouts. And because there are twice
more short documents than longer ones, it is harder to generalize to new lay-
outs. Overall, the performance of long-range models is more consistent acrossa
wide variety of document lengths.

F1 weighted macro average
Model name Short Medium Long

LayoutLM 95.36 95.84 91.42
LayoutLinformer 95.20 96.49 91.41
LayoutCosformer 94.03 95.91 91.40

Table 2: F1 weighted average for each model and document length categories.
All models were first pre-trained on the Business Documents collection.

We performed the same experiments on Docbank dataset, except for the
page-splitting part as all documents are single page. At first we compared models
performance for each document length categories in Table 2. It contains average
F1 score across all labels weighted by the support of each label. It turns out
length categories introduce bias in the composition of pages, with labels being
very sparsely represented in some categories. This bias implicitly selects more
first page in short pages (with lower text density), and medium sized pages
contain a lot of paragraphs.

We observe the same drop in performance for long-range models on short
documents, with LayoutLinformer providing better results across the board than
LayoutCosformer. But we notice LayoutLM perform slightly better on medium
documents than on short. Long-range models follow the same pattern with a
greater difference between short and medium pages, LayoutCosformer almost



14 T. Douzon et al.

gaining 2 average F1 percentage points. There is almost 20 times fewer long
documents than medium, which could explain part of the global performance
loss. Unfortunately, due to those biases, it is difficult to draw conclusions on
model’s performance.

2D Relative F1 score Macro
Model name attention Abst. Author Caption Equa. Figure Footer List Para. Refe. Section Table Title average

LayoutLM (Li et al. [18]) - 98.1 85.9 95.9 89.4 100.0 89.5 89.4 97.8 93.3 95.9 86.3 95.7 93.1
LayoutLM (Xu et al. [32]) - 98.3 89.6 96.0 89.0 99.7 91.6 88.2 97.5 93.5 94.3 87.4 90.4 93.0

LayoutLM (*) - 97.8 87.5 94.9 87.2 99.7 90.5 84.0 97.1 93.2 92.8 85.7 88.6 91.6
LayoutLM (*) Squircle 98.4 90.2 96.1 89.7 99.8 92.0 88.9 97.6 93.4 94.6 87.7 90.3 93.2
LayoutLM (*) Cross 98.4 90.3 96.0 89.6 99.8 92.1 88.7 97.6 93.4 94.6 87.5 90.7 93.2

LayoutLinformer (*) - 97.9 88.9 93.7 90.0 99.5 91.1 87.9 97.5 93.2 91.3 87.6 88.7 92.3
LayoutCosformer (*) - 97.2 87.2 91.0 88.1 99.3 90.6 87.4 97.1 93.2 81.4 87.0 88.3 90.7
LayoutCosformer (*) Squircle 97.0 85.4 92.4 89.2 98.8 90.7 84.2 97.2 93.2 85.6 87.9 86.8 90.7
LayoutCosformer (*) Cross 97.4 86.9 93.8 91.2 98.9 91.7 87.5 97.5 93.1 87.4 89.0 88.1 91.9

Table 3: Results on Docbank dataset for LayoutLMs and long-range models.
Models with a asterisk (*) are ours. They were pre-trained on the Business
Documents collection before finetuning on Docbank.

Table 3 compiles results for LayoutLM and long-range models for all la-
bels. First, we can make sure our training pipeline performs on par with what
Docbank authors reported for LayoutLM base model by comparing their results
and the ones we obtained by using public LayoutLM weights. Except for author
and title labels, both results are very close, and the macro average is almost
identical. Secondly, pre-training on business documents negatively impacts Lay-
outLM performances on all labels, losing 1.4 F1 percentage points on average.
This advocates for pre-training data crucial role in later model finetuning results
and its composition. Finally, long-range models performed on the same level as
LayoutLM. LayoutLinformer even being more performant than our pre-trained
LayoutLM. Overall, even though LayoutCosformer seems less performant on this
task, both long-range models performed better than our pre-trained LayoutLM
on table and equation. Those two labels might beneficiate from long-range refer-
ences, giving the model hints of their presence in the current sequence.

5.2 Relative Attention

We conduct the same experiments on models with 2D relative attention and
compare their performance with their flat attention counterpart. On the busi-
ness order dataset, Table 4 shows slight gains when using squircle attention with
LayoutLM. For all document lengths, information retrieval is improved a few
percentage points of F1 score over our previous LayoutLM Split Page imple-
mentation. Though, we do not observe the same improvement with the cross
shaped attention pattern. This might indicate focusing on very local neighbors
helps LayoutLM making the right decision. Overall, relative attention improves
results in some circumstances but not as much as splitting every page did. How-
ever, when combined with LayoutCosformer, we observe a significant degradation
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in performance for all labels with the squircle attention while the cross pattern
provides similar results as the raw LayoutCosformer.

Macro average F1 score
Model name 2D Relative attention Short Medium Long

LayoutLM Split Page - 90.0 82.2 77.2
LayoutLM Split Page Squircle 90.4 83.0 77.8
LayoutLM Split Page Cross 90.0 82.0 77.6

LayoutCosformer - 87.6 85.0 79.0
LayoutCosformer Squircle 85.8 82.2 73.4
LayoutCosformer Cross 87.6 85.2 77.2

Table 4: Macro average F1 score on the Business Orders dataset with 2D relative
attention.

On Docbank task, relative attention provides noticeable performance gains
for both LayoutLM and LayoutCosformer. We provide all results in Table 3.
LayoutLM with relative attention is standing out, going from 91.6% F1 score
to 93.2% for both squircle and cross patterns. Most improvements are made on
author, equation and list, each gaining at least 2 F1 score points. Both resulting
models even beat Docbank’s authors version by a thin margin. This is impressive
knowing those models were pre-trained on the same business order dataset as our
base LayoutLM which suffered a 1.5 F1 score performance drop as a consequence.
It turns out author, equation and list were also the fields where our LayoutLM
performance dropped the most compare to stock LayoutLM. Applying cross
shaped relative attention to LayoutCosformer also improves performance across
most labels. It even outperforms all other models on equation and table fields
which benefit most from very long attention.

6 Conclusion

In this work, we showed the impact of document length on Transformer-based
models applied to Document Understanding. Depending on the document’s type
and the task, model’s performance on longer documents can be negatively im-
pacted with F1 score dropping 20% for the most impacted. We explored several
alternatives including another sequence split strategy and long-range layout-
aware models based on Linformer and cosFormer architectures. They all proved
to successfully reduce the performance gap between short and long documents
(down to only 10% performance drop), sometimes at a small cost on short docu-
ment’s metrics. We also introduce relative attention based on 2D textual layout
instead of the classical sequence order. It produces better results on dense text,
significantly improving both LayoutLM and LayoutCosformer on the Docbank
layout segmentation task.

In addition to other efficient Transformer architectures, we plan to investigate
other ways to use longer sequences for DU. For example, in multi-modal models,
this may allow fitting the whole text and visual patches of a document in a single
sequence without needing more compute capabilities.
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