N
N

N

HAL

open science

Supporting Assurance Case Development Using
Generative Al

Torin Viger, Logan Murphy, Simon Diemert, Claudio Menghi, Alessio Di,
Marsha Chechik

» To cite this version:

Torin Viger, Logan Murphy, Simon Diemert, Claudio Menghi, Alessio Di, et al.. Supporting Assurance
Case Development Using Generative Al. SAFECOMP 2023, Position Paper, Sep 2023, Toulouse,

France. hal-04191791

HAL Id: hal-04191791
https://hal.science/hal-04191791v1
Submitted on 30 Aug 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-04191791v1
https://hal.archives-ouvertes.fr

Supporting Assurance Case Development Using
Generative Al

Torin Viger!, Logan Murphy!, Simon Diemert?, Claudio Menghi®, Alessio Di Sandro', and Marsha Chechik!

!'University of Toronto, Canada
2Critical Systems Labs Inc., Canada
3University of Bergamo, Italy

Abstract—As the use of cyber-physical systems in safety-critical
domains continues to rise, assurance cases have become a widely
adopted approach for justifying the safety of these systems.
During assurance case development, errors can occur such as
logical fallacies and argument incompleteness which can lead to
the deployment of unsafe systems. Methods such as Eliminative
Argumentation have been proposed to improve confidence in
assurance cases by identifying potential doubts in the argument
(called defeaters) and arguing that they have been appropriately
mitigated; however, using these methods does not guarantee that
engineers will identify all relevant defeaters. In this paper, we
propose our vision for using generative artificial intelligence to
aid in the identification of defeaters in assurance cases to improve
their reliability.

I. INTRODUCTION AND MOTIVATION

As cyber-physical systems become increasingly used in
safety-critical domains, ensuring that these systems function
correctly and safely has become essential. To mitigate the risks
these systems pose, many critical domains have adopted Assur-
ance Cases (ACs) as a method to justify why critical systems
are sufficiently safe and reliable. ACs are structured arguments,
often represented graphically as a tree using notations such as
Goal Structuring Notation [5]], where a high-level claim about
a system is decomposed by decomposition strategies into more
refined subclaims supported by evidence.

ACs play an essential role in ensuring that complex systems
are dependable and trustworthy; however, they are also prone
to many errors during their development [4]. Incomplete
arguments, logical errors, and incorrect claims/evidence can
cause false confidence and may result in the deployment of
unsafe systems, such as the RAF Nimrod MR2 [6]. Elimi-
native Argumentation (EA) [3] is a methodology that helps
mitigate these errors by explicitly identifying and reasoning
about defeaters (i.e., reasons to doubt the argument); however,
relevant defeaters may still be overlooked even if EA is used.
Consequently, there is a need for further support to ensure that
ACs are trustworthy.

Recent advances in generative artificial intelligence (GAI)
are revolutionizing software engineering. Software engineers
are already leveraging GAI to aid in software implementation,
and efforts are currently underway to evaluate whether GAI
can aid in other software engineering processes, such as
modeling, testing, and verification [2]]. Naturally, engineers
may wonder whether GAI can support the creation of ACs.

= .
CC H;]\ '] (1) Design 4 Vﬂ LT;
TP L AL PR

OO0~] ole)
[// N
e @ %
(4) Investigate . q (2) Generate

- N
N ° N4 .;
”| @ Filter ‘ % — #‘:!— >

1

Fig. 1. Our vision for Al-enabled Eliminative Argumentation.

From an assurance perspective, GAI presents a significant
challenge; most GAI models are black boxes, making it diffi-
cult to understand why their output artifacts were generated.
This is particularly concerning in AC development, as a GAI
hallucination (i.e., generation of an incorrect artifact) could
create false confidence in unsafe system safety.

Using GAI to generate AC claims and strategies may be
problematic for the above reasons. Instead, we believe that
GAI can be used in conjunction with existing techniques to
increase confidence in ACs by helping to identify defeaters
in the argument. The risks posed by using GAI to identify
defeaters are significantly lower than in generating AC claims
and strategies. This is because incorrect defeaters identified by
GAI (i.e., generated defeaters not corresponding to legitimate
weaknesses of the argument) may create false doubts in the
system, but will not create false confidence. Furthermore, GAI
has already been shown as an effective tool for supporting the
hazard analysis process [/1].

II. VISION

Our vision for Al-enabled Eliminative Argumentation
(AEA) is summarized in Fig. [I| The workflow consists of four
stages: Design, Generate, Filter, and Investigate. In the Design
stage, the AC is developed using established processes. In the
Generate stage, the AC and relevant background information
about the system are provided to the GAI model, and the
model is prompted to generate a set of potential defeaters to the

Co009
The Floor Cleaning System (FCS) does not
damage its environment.

| soo12 |
[Decompasition over Subsystems /

C0016
The FCS's cleaning subsystem does not
damage any floor tiles it cleans.

Co031
The FCS's object detection subsystem
accurately detects objects.

(&)

@

Co032
The FCS's movement subsystem never

causes the floor cleaning system to collide
with detected objects.

O

Fig. 2. A fragment of an AC for a floor cleaning system.

AC. In the Filter stage, the engineer attempts to identify and
filter out defeaters which are inapplicable to the system/AC
(i.e., defeaters that cannot correspond to legitimate weaknesses
in the system because they are logically inconsistent or contain
incorrect information). In the Investigate stage, the engineer
investigates the remaining defeaters, and refines their original
AC to incorporate them and show how they have been miti-
gated where possible.

To illustrate this workflow, consider a simple Floor Clean-
ing System (FCS) [9] designed to clean floor tiles without
damaging its environment. The FCS consists of subsystems
for cleaning, object detection and movement.

(1) Design: The engineer creates the AC fragment presented
in Fig. 2] which decomposes a claim that the FCS will not
damage its environment into a set of subclaims over each
subsystem of the FCS.

(2) Generate: The engineer provides background informa-
tion describing the FCS, its components and its operating en-
vironment to the GAI model. They then provide the argument
fragment in Fig.] to the model, and prompt the model to
identify any potential defeaters in the argument. The model
generates the following defeaters:

o Defeater 1: Unless there are system integration failures
that could result in unexpected interactions or behaviors
that may cause damage to the environment.

o Defeater 2: Unless there are software or firmware bugs
that could lead to unintended behaviors causing damage,
even if individual subsystems perform as intended.

o Defeater 3: Unless there are unforeseen environmental
factors that could override the system’s capabilities and
result in damage.

o Defeater 4: Unless there is a lack of maintenance or
wear and tear that could lead to a degradation in system
performance, causing damage to the environment.

(3) Filter: The engineer identifies defeater 1 as an inappli-
cable to the FCS, and filters out this defeater.

(4) Investigate: The engineer adds defeaters 2, 3, and 4 to
their AC, having identified that they represent credible threats
to the system. The engineer constructs an argument to show
how defeaters 2 and 4 have been mitigated, and leaves defeater
3 in the AC as a residual unmitigated risk.

III. EVALUATION PLAN

We intend to assess the feasibility of AEA by empirically
evaluating the effectiveness of GPT-4 [8] in proposing de-
featers for ACs.

To conduct our experiment, we plan to use a baseline of
two publicly available industrial ACs developed using EA. We
will compare the defeaters generated by GPT-4 against our
baseline set with support from domain experts for each case
study. In conducting our experiment, it is possible we will find
that GPT-4 provides only superficial, repetitive or predictable
defeaters, or that the time required to filter irrelevant defeaters
is too significant to be practically useful; however, prior work
on using GAI to support hazard analysis [1]] gives reason
to believe that GAI may be an effective tool in creatively
identifying reasonable defeaters. We may observe that AEA is
able to provide meaningful and novel defeaters, demonstrating
the effectiveness of GAI as a tool to support AC development
and opening the door for further applications of GAI in
assurance engineering. This work is a part of our broader
vision to use assurance cases as data [7]].

REFERENCES

[1] Diemert, S., Weber, J.H.: Can large language models assist in hazard
analysis? arXiv preprint arXiv:2303.15473 (2023)

[2] Fraiwan, M., Khasawneh, N.: A review of chatgpt applications in
education, marketing, software engineering, and healthcare: Benefits,
drawbacks, and research directions. arXiv preprint arXiv:2305.00237
(2023)

[3] Goodenough, J.B., Weinstock, C.B., Klein, A.Z.: Eliminative argumenta-
tion: A basis for arguing confidence in system properties. Software En-
gineering Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania
(2015)

[4] Greenwell, W.S., Knight, J.C., Holloway, C.M., Pease, J.J.: A taxonomy
of fallacies in system safety arguments. In: 24th International System
Safety Conference (2006)

[5] GSN Working Group: GSN Community Standard Version 2, http://www.
goalstructuringnotation.info/. York, UK (2011), [Accessed Jan. 28th,
2020]

[6] Haddon-Cave, C.: The Nimrod Review: An Independent Review into the
Broader Issues Surrounding the Loss of the RAF Nimrod MR2 Aircraft
XV230 (2009)

[7] Menghi, C., Viger, T., Di Sandro, A., Chechik, M.: Assurance case
development as data: A manifesto. International Conference on Software
Engineering: New Ideas and Emerging Results (ICSE-NIER) (2023)

[8] OpenAl: Gpt-4 technical report. arXiv:2303.08774 (2023)

[9] Viger, T., Murphy, L., Di Sandro, A., Menghi, C., Shahin, R., Chechik,
M.: The foremost approach to building valid model-based safety argu-
ments. Software and Systems Modeling pp. 1-22 (2022)

http://www.goalstructuringnotation.info/
http://www.goalstructuringnotation.info/

	Introduction and Motivation
	Vision
	Evaluation Plan
	References

