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Abstract — With the growing processing power of computing 
systems and the increasing availability of massive datasets, 
machine learning algorithms have led to major breakthroughs 
in many different areas. This applies also to resource-
constrained IoT and edge devices, which can benefit of relatively 
small - but smart - local anomaly detection tasks to detect 
failures and attacks. This paper overviews the process we are 
following to equip small devices with anomaly detection 
capabilities to make them self-aware of their health state and 
take appropriate countermeasures. Our process is applied to a 
Linux-based devices named ARANCINO, which has already 
been successfully used in several smart cities applications. 
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I. BRINGING ANOMALY DETECTION TO THE EDGE 
Edge learning refers to the deployment of Machine 

Learning (ML) algorithms at the network edge [8]. The key 
motivation of pushing learning toward the edge is to perform 
on-site preprocessing and filtering of data, and also to provide 
edge devices with sophisticated yet lightweight means to 
optimize their performance. However, bringing ML on the 
edge is far from trivial and comes with many potential issues 
and limitations [5], [6], [7]. Whereas the vast majority of 
studies on ML rely on lab setups for which we assume the 
availability of huge server farms, and accelerators as GPUs, 
deploying ML algorithms in the wild comes with obvious 
concerns. It is required a dedicated methodology to collect 
data, choose appropriate ML algorithms, train and deploy 
them on devices. 

This study explores how to bring ML algorithms to edge 
devices and make them work as anomaly detectors to suspect 
failures. Noteworthy, while many attack datasets are 
available and can be used as reference, failure datasets for 
anomaly detection on edge devises are few or none.  

Ultimately, the goal is to deploy a self-aware, or self-
checking device that is able to seek for potential anomalies 
that are symptom of failures, and react accordingly.  

II. DESIGNING SELF-AWARE EDGE DEVICES 
Our methodology for deploying anomaly detectors that 

suits the specific characteristics of edge devices relies on the 
following 4 main steps.  
S1. Create a fault model that covers most of the common 

software faults in Linux-based IoT devices. 
S2. Create a monitoring system that fits our case study but 

also applies to similar devices. 
S3. Perform fault injection campaigns in which we monitor 

the behavior of the target device under normal operating 
conditions and when faults are injected. 

S4. Use the collected data to train anomaly detectors that can 
then be deployed in the target device to monitor their 
detection and timing performance. 

 

We provide the main ideas that guided our methodology. The 
device we are using for implementation is the ARANCINO 
[13] devices. 

A. Anomaly Model 
We aim at understanding how the device reacts to failures, 

and detect the performance anomalies that these events 
generate. Therefore, we contacted the stakeholder to discuss 
about the way the target ARANCINO device was made, 
potential vulnerabilities, existence of bottlenecks and 
relevant software or communication channels. Then, we 
scanned the literature to seek for fault models that apply to a 
Linux-based embedded system / IoT device [11], [12], [13]. 
There is an overall agreement about the likelihood of one of 
the following events happening in a Linux-based OS. 
• Resource consumption: either CPU, primary and 

secondary memory may be filled / exhausted by 
malicious or malfunctioning software 

• Deadlock: critical sections are heavily used in any multi-
threading context. A shallow management of locks or 
semaphores may end up generating deadlocks and make 
the regular execution flow deviate from expectations. 

• Unexpected usage of network, in both directions. 
 
On top of that, we consider that ARANCINO devices 

heavily rely on the Redis [4] database: therefore we also 
consider erroneous usages of the Redis database, which we 
simulate as subsequent reads / write operations. Lastly, we 
disturb the regular usage of key processes that manage the 
overall device, namely the arancino and node-red Raspbian 
processes, and make them stuck for some time to simulate 
their potential malfunction. 

This leads to a total of 8 different groups of faults (CPU 
usage, RAM usage, Disk Usage, Deadlock, Redis read, Redis 
write, Stuck arancino, Stuck node-red) that we will inject into 
our device, monitoring its behaviour in the process. 

B. A Lightweight Monitor for Linux-based Devices 
The successive step is to equip the device with a monitor 

that has the following requirements: i) lightweight, ii) 
customizable regarding sampling interval and the system 
indicators to observe, iii) able to instrument different layers 
and components of the target system, iv) compatible with the 
Raspbian 9 Stretch system, the OS running on the 
ARANCINO devices. This means that the tool has to be 
either written in C/C++ (gcc 7.x), Python <= 3.5.3, or Java 
(v. 8 openJDK). 

Unfortunately, we did not find anything reusable: as such, 
we coded our monitor ourselves, and made it publicly 
available through a public GitHub repository [3]. The 
monitor is written in Python 3.5.3 and equipped with a total 
of 7 probes, that can be activated at will: 
• Network (32 features): reads data from the system file 

/proc/net/dev 



• Chip temperature (1 feature): reads data from the system 
file /sys/class/thermal/thermal_zone0/temp 

• Virtual Memory (116 features): reads data from the 
system file /proc/vmstat 

• Memory Info (38 features): : reads data from the system 
file /proc/meminfo 

• IO Stats (6 features): uses the iostat Linux package and 
parses its textual output 

• Python Indicators (55 features): uses the psutil functions 
cpu_times, cpu_stats, getloadavg, swap_memory, 
virtual_memory, disk_usage, disk_io_counters, 
net_io_counters. 

• Redis DB (25 features): accesses to Redis performance 
indicators through the redis-py Python wrapper 

 
This monitor has only minimal dependencies and thus can 

be installed without requiring to download additional 
libraries. For further information, please refer to the 
documentation available at [3]. 

C. Experimental Campaigns 
We installed the monitor above into our target device and 

set the monitor to run, logging performance indicators once a 
second, while the ARANCINO was performing its usual 
tasks. Additionally, we prepared a script that injects the 8 
faults from Section II.A. This injection is performed as 
follows: i) it activates with a given probability, and randomly 
chooses one of the 8 faults, ii) it lasts for a given amount of 
time (5 seconds in our setup), then the device is left alone for 
a cooldown period that makes it recover from the previous 
injection (5 seconds in our setup), iii) the timestamps of 
activation and de-activation of the error are then logged into 
a dedicated file. 

This provides us with an experimental testbed that we can 
activate at will and use to retrieve a virtually infinite amount 
of data, which is either corresponding to normal data or to the 
behaviour of the ARANCINO, while a specific error was 
injected. In other words, we collect a labelled dataset 
composed of: 
• the timestamp; 
• a total of 276 system indicators, some of them remaining 

constant throughout the duration of the experiments and 
thus to be discarded at a later stage; 

• the label, a categorical field with 9 possible values i.e., 
normal or any of the 8 faults. 

D. Anomaly Detection 
A labelled dataset enables the usage of any supervised 

ML algorithm for detecting performance anomalies. This 
opens the ground for a plethora of different experiments and 
comparisons between detection performance of a multitude 
of algorithms. However, literature tells that the de-facto 
standard for processing tabular datasets is to use tree-based 
ML algorithms such as Decision Trees, Random Forests, 
(eXtreme) Gradient Boosting, Extra Trees, and others. Those 
algorithms typically outperform neural networks, even those 
that are being re-shaped to explicitly classify tabular data 
[15].  

III. WHAT’S NOW AND WHAT’S NEXT 
We are currently training different ML algorithms to learn 

how to detect performance anomalies in the ARANCINO 

device. This process is being carried out carefully to avoid 
common pitfalls [1] and using appropriate metrics for 
evaluation [2]. After the learning phase, we will deploy the 
learned models to the ARANCINO device, and quantify: 
• The false alarms they raise, and the fraction (coverage) 

of the errors that are correctly detected 
• Their response time, space and memory occupation, 

which are a typical concern when dealing with resource-
constrained devices. 

 
This will allow to choose the preferred ML algorithm for 

anomaly detection, complete the deploy and starting to plan 
how to take advantage of the alerts delivered by the anomaly 
detector to take automatic countermeasures and mitigate the 
occurrence of potential threats to the device. All software and 
dataset will be released publicly. 
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