
HAL Id: hal-04191783
https://hal.science/hal-04191783v1

Submitted on 30 Aug 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Anomaly Detection in Edge Devices
Tommaso Zoppi, Andrea Ceccarelli, Andrea Bondavalli, Nicola Peditto,

Maurizio Giacobbe, Antonio Puliafito

To cite this version:
Tommaso Zoppi, Andrea Ceccarelli, Andrea Bondavalli, Nicola Peditto, Maurizio Giacobbe, et al..
Anomaly Detection in Edge Devices. SAFECOMP 2023, Position Paper, Sep 2023, Toulouse, France.
�hal-04191783�

https://hal.science/hal-04191783v1
https://hal.archives-ouvertes.fr

Anomaly Detection in Edge Devices
Tommaso Zoppi, Andrea Ceccarelli, Andrea Bondavalli
University of Florence, Department of Mathematics and

Informatics, Viale Morgagni 65 – Florence (IT)
{tommaso.zoppi, andrea.ceccarelli, andrea.bondavalli}@unifi.it

Nicola Peditto1, Maurizio Giacobbe1, Antonio Puliafito1,2

1SmartMe.io, via Salita Larderia, 98129 Messina (IT)
2Univ. of Messina, Dept. of Engineering, 98166 Messina (IT)

{nicola, maurizio, antonio}@smartme.io

Abstract — With the growing processing power of computing
systems and the increasing availability of massive datasets,
machine learning algorithms have led to major breakthroughs
in many different areas. This applies also to resource-
constrained IoT and edge devices, which can benefit of relatively
small - but smart - local anomaly detection tasks to detect
failures and attacks. This paper overviews the process we are
following to equip small devices with anomaly detection
capabilities to make them self-aware of their health state and
take appropriate countermeasures. Our process is applied to a
Linux-based devices named ARANCINO, which has already
been successfully used in several smart cities applications.

Keywords - anomaly detection, failures, IoT, arancino,
monitoring, edge computing.

I. BRINGING ANOMALY DETECTION TO THE EDGE
Edge learning refers to the deployment of Machine

Learning (ML) algorithms at the network edge [8]. The key
motivation of pushing learning toward the edge is to perform
on-site preprocessing and filtering of data, and also to provide
edge devices with sophisticated yet lightweight means to
optimize their performance. However, bringing ML on the
edge is far from trivial and comes with many potential issues
and limitations [5], [6], [7]. Whereas the vast majority of
studies on ML rely on lab setups for which we assume the
availability of huge server farms, and accelerators as GPUs,
deploying ML algorithms in the wild comes with obvious
concerns. It is required a dedicated methodology to collect
data, choose appropriate ML algorithms, train and deploy
them on devices.

This study explores how to bring ML algorithms to edge
devices and make them work as anomaly detectors to suspect
failures. Noteworthy, while many attack datasets are
available and can be used as reference, failure datasets for
anomaly detection on edge devises are few or none.

Ultimately, the goal is to deploy a self-aware, or self-
checking device that is able to seek for potential anomalies
that are symptom of failures, and react accordingly.

II. DESIGNING SELF-AWARE EDGE DEVICES
Our methodology for deploying anomaly detectors that

suits the specific characteristics of edge devices relies on the
following 4 main steps.
S1. Create a fault model that covers most of the common

software faults in Linux-based IoT devices.
S2. Create a monitoring system that fits our case study but

also applies to similar devices.
S3. Perform fault injection campaigns in which we monitor

the behavior of the target device under normal operating
conditions and when faults are injected.

S4. Use the collected data to train anomaly detectors that can
then be deployed in the target device to monitor their
detection and timing performance.

We provide the main ideas that guided our methodology. The
device we are using for implementation is the ARANCINO
[13] devices.

A. Anomaly Model
We aim at understanding how the device reacts to failures,

and detect the performance anomalies that these events
generate. Therefore, we contacted the stakeholder to discuss
about the way the target ARANCINO device was made,
potential vulnerabilities, existence of bottlenecks and
relevant software or communication channels. Then, we
scanned the literature to seek for fault models that apply to a
Linux-based embedded system / IoT device [11], [12], [13].
There is an overall agreement about the likelihood of one of
the following events happening in a Linux-based OS.
• Resource consumption: either CPU, primary and

secondary memory may be filled / exhausted by
malicious or malfunctioning software

• Deadlock: critical sections are heavily used in any multi-
threading context. A shallow management of locks or
semaphores may end up generating deadlocks and make
the regular execution flow deviate from expectations.

• Unexpected usage of network, in both directions.

On top of that, we consider that ARANCINO devices

heavily rely on the Redis [4] database: therefore we also
consider erroneous usages of the Redis database, which we
simulate as subsequent reads / write operations. Lastly, we
disturb the regular usage of key processes that manage the
overall device, namely the arancino and node-red Raspbian
processes, and make them stuck for some time to simulate
their potential malfunction.

This leads to a total of 8 different groups of faults (CPU
usage, RAM usage, Disk Usage, Deadlock, Redis read, Redis
write, Stuck arancino, Stuck node-red) that we will inject into
our device, monitoring its behaviour in the process.

B. A Lightweight Monitor for Linux-based Devices
The successive step is to equip the device with a monitor

that has the following requirements: i) lightweight, ii)
customizable regarding sampling interval and the system
indicators to observe, iii) able to instrument different layers
and components of the target system, iv) compatible with the
Raspbian 9 Stretch system, the OS running on the
ARANCINO devices. This means that the tool has to be
either written in C/C++ (gcc 7.x), Python <= 3.5.3, or Java
(v. 8 openJDK).

Unfortunately, we did not find anything reusable: as such,
we coded our monitor ourselves, and made it publicly
available through a public GitHub repository [3]. The
monitor is written in Python 3.5.3 and equipped with a total
of 7 probes, that can be activated at will:
• Network (32 features): reads data from the system file

/proc/net/dev

• Chip temperature (1 feature): reads data from the system
file /sys/class/thermal/thermal_zone0/temp

• Virtual Memory (116 features): reads data from the
system file /proc/vmstat

• Memory Info (38 features): : reads data from the system
file /proc/meminfo

• IO Stats (6 features): uses the iostat Linux package and
parses its textual output

• Python Indicators (55 features): uses the psutil functions
cpu_times, cpu_stats, getloadavg, swap_memory,
virtual_memory, disk_usage, disk_io_counters,
net_io_counters.

• Redis DB (25 features): accesses to Redis performance
indicators through the redis-py Python wrapper

This monitor has only minimal dependencies and thus can

be installed without requiring to download additional
libraries. For further information, please refer to the
documentation available at [3].

C. Experimental Campaigns
We installed the monitor above into our target device and

set the monitor to run, logging performance indicators once a
second, while the ARANCINO was performing its usual
tasks. Additionally, we prepared a script that injects the 8
faults from Section II.A. This injection is performed as
follows: i) it activates with a given probability, and randomly
chooses one of the 8 faults, ii) it lasts for a given amount of
time (5 seconds in our setup), then the device is left alone for
a cooldown period that makes it recover from the previous
injection (5 seconds in our setup), iii) the timestamps of
activation and de-activation of the error are then logged into
a dedicated file.

This provides us with an experimental testbed that we can
activate at will and use to retrieve a virtually infinite amount
of data, which is either corresponding to normal data or to the
behaviour of the ARANCINO, while a specific error was
injected. In other words, we collect a labelled dataset
composed of:
• the timestamp;
• a total of 276 system indicators, some of them remaining

constant throughout the duration of the experiments and
thus to be discarded at a later stage;

• the label, a categorical field with 9 possible values i.e.,
normal or any of the 8 faults.

D. Anomaly Detection
A labelled dataset enables the usage of any supervised

ML algorithm for detecting performance anomalies. This
opens the ground for a plethora of different experiments and
comparisons between detection performance of a multitude
of algorithms. However, literature tells that the de-facto
standard for processing tabular datasets is to use tree-based
ML algorithms such as Decision Trees, Random Forests,
(eXtreme) Gradient Boosting, Extra Trees, and others. Those
algorithms typically outperform neural networks, even those
that are being re-shaped to explicitly classify tabular data
[15].

III. WHAT’S NOW AND WHAT’S NEXT
We are currently training different ML algorithms to learn

how to detect performance anomalies in the ARANCINO

device. This process is being carried out carefully to avoid
common pitfalls [1] and using appropriate metrics for
evaluation [2]. After the learning phase, we will deploy the
learned models to the ARANCINO device, and quantify:
• The false alarms they raise, and the fraction (coverage)

of the errors that are correctly detected
• Their response time, space and memory occupation,

which are a typical concern when dealing with resource-
constrained devices.

This will allow to choose the preferred ML algorithm for

anomaly detection, complete the deploy and starting to plan
how to take advantage of the alerts delivered by the anomaly
detector to take automatic countermeasures and mitigate the
occurrence of potential threats to the device. All software and
dataset will be released publicly.

ACKNOWLEDGEMENTS
This work was partially supported by project SERICS

(PE00000014) under the MUR National Recovery and
Resilience Plan funded by the European Union –
NextGenerationEU. We thank eng. Francesco Alessi from
SmartMe.io for his support in preparing this paper.

REFERENCES
[1] Arp, D., et al. (2022). Dos and don'ts of machine learning in

computer security. In 31st USENIX Security Symposium
(USENIX Security 22) (pp. 3971-3988).

[2] Chicco, D., & Jurman, G. (2020). The advantages of the
Matthews correlation coefficient over F1 score and accuracy in
binary classification evaluation. BMC genomics, 21, 1-13.

[3] Lightweight Linux Monitor GitHub (online),
https://github.com/tommyippoz/arancino-monitor

[4] Carlson, J. (2013). Redis in action. Simon and Schuster.
[5] Murshed, M. S., et al. (2021). Machine learning at the network

edge: A survey. ACM Computing Surveys (CSUR), 54(8), 1-
37

[6] Zhu, G., et. al. (2020). Toward an intelligent edge: Wireless
communication meets machine learning. IEEE
communications magazine, 58(1), 19-25.

[7] Merenda M, Porcaro C, Iero D. (2020). Edge machine learning
for ai-enabled iot devices: A review. Sensors, 20(9), 2533

[8] Koopman, P., Sung, J., Dingman, C., Siewiorek, D., & Marz,
T. (1997). Comparing operating systems using robustness
benchmarks. In Proceedings of SRDS'97, pp. 72-79. IEEE.

[9] Zoppi, T., Ceccarelli, A., Bondavalli, A. (2019). MADneSs: A
multi-layer anomaly detection framework for complex
dynamic systems. IEEE Transactions on Dependable and
Secure computing, 18(2), 796-809.

[10] Chou, A., et al D. (2001, October). An empirical study of
operating systems errors. Proc of the 18th ACM Symp. on OS
principles (pp. 73-88).

[11] Shwartz-Ziv, R., & Armon, A. (2022). Tabular data: Deep
learning is not all you need. Information Fusion, 81, 84-90.

[12] Gorishniy, Y., et al. (2021). Revisiting deep learning models
for tabular data. Advances in Neural Information Processing
Systems, 34, 18932-18943.

[13] Giacobbe, M., Alessi, F., Zaia, A., & Puliafito, A. (2020).
Arancino.cc™: an open hardware platform for urban
regeneration. International Journal of Simulation and Process
Modelling, 15(4), 343-357.

https://github.com/tommyippoz/arancino-monitor

	I. Bringing Anomaly Detection to the Edge
	II. Designing Self-Aware Edge Devices
	A. Anomaly Model
	B. A Lightweight Monitor for Linux-based Devices
	C. Experimental Campaigns
	D. Anomaly Detection

	III. What’s Now and What’s Next
	Acknowledgements
	References

