N

N

ASsurance as Code (ASaC)
Shuji Kinoshita

» To cite this version:

Shuji Kinoshita. ASsurance as Code (ASaC). SAFECOMP 2023, Position Paper, Sep 2023, Toulouse,
France. hal-04191767

HAL Id: hal-04191767
https://hal.science/hal-04191767
Submitted on 30 Aug 2023

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-04191767
https://hal.archives-ouvertes.fr

ASsurance as Code (ASaC)

Shuji Kinoshita
Advanced Institute of Industrial Technology
Tokyo, Japan
kinoshita-shuji @aiit.ac.jp

Abstract—This position paper proposes a new concept of
""Assurance as Code''. Society has become increasingly complex,
and many systems are interconnected (system of systems), so
that a small bug can cause a major system failure. The need
to describe assurance cases to improve system reliability is
increasing, but the cost of describing assurance cases is very
high. The solution to this problem is to develop an environment
in which programmers can freely write assurance cases like
program code. Just as the idea of ''Infrastructure as Code
(IaC)" enabled easy infrastructure construction with the help
of gamification, this has the potential to make it easy for non-
specialists to write assurance cases. The author is working on
prototyping such an environment and outlines its current status
and challenges.

Index Terms—assurance case, IaC, ISO/IEC/IEEE 15026-2

I. INTRODUCTION

This position paper proposes a new concept of "Assurance
as Code". Society has become increasingly complex, and many
systems are interconnected (system of systems), so that a small
bug can cause a major system failure. The need to describe
assurance cases to improve system reliability is increasing, but
the cost of describing assurance cases is very high.

The solution to this problem is to develop an environment
in which programmers can freely write assurance cases like
program code. Just as the idea of "Infrastructure as Code
(IaC)" enabled easy infrastructure construction with the help
of gamification, this has the potential to make it easy for non-
specialists to write assurance cases. The author is working on
prototyping such an environment and outlines its current status
and challenges.

II. BACKGROUND
A. Assurance 2.0 — Needs for the new assurance —

The paper [1] presents the need for a new assurance
approach to address, for example, autonomous systems where
key functions are driven by machine learning and Al It allows
for a more rigorous assurance case construction by framing
inductive reasoning and argument rebuttal, while keeping the
reasoning steps as deductive as possible.

B. Standardization

A new international standard for assurance cases,
ISO/IEC/IEEE 15026-2, was published in 2022[2]. This is a
revision of the first edition published in 2011 and reflects the
latest developments in assurance cases in recent years. Specif-
ically, it standardizes the basis for mathematical definitions
that allow for automatic consistency checking of assurance

cases based on the idea of the formal assurance case [3], while
organizing terms in notations such as GSN[4] and CAE[5] and
in meta-models such as SACM[6].

C. “XaC” paradigm

Although not necessarily so explicitly stated, the history of
software development can be organized as “writing something
in code” (X as Code). For example, the automation of testing,
which used to be done manually by humans, is "Test as Code,”
and the coding of modeling, represented by PlantUML[7]
and mermaid.js[8], can be called "Modeling as Code” or
“Design as Code. The coding of infrastructure definitions using
Docker[9] or terraform[10], which has become popular since
the late 2010s, is called "Infrastructure as Code (IaC)” and
has become widespread.

These “XaC” paradigms have not only increased the con-
venience of management through code, but have also demon-
strated the possibility of making testing, design, and infras-
tructure construction, which were previously the work of
specialists, the “work of programmers”. The application of
this to assurance is the attempt presented in this paper.

III. PROBLEM STATEMENT

Writing assurance cases involves significant human costs.
There are two problems.

A. Lack of human knowledge about assurance

The first is the lack of personnel who can write assurance
cases in the first place. Assurance cases are still reserved for
a few mission-critical systems, and the majority of system
engineers (as far as the author knows, at least in Japan) do
not even know they exist.

B. Lack of automated tool support about assurance evolution

Second, there is a lack of tools to support the evolution
of assurance cases. Assurance case creation tools include
ASCEJ[11] and astah* System Safety[12]. Although these
tools support diagrammatic drawing, they are not capable of
automatically checking the consistency of vocabulary and ar-
guments used in assurance cases. In addition, formal assurance
case descriptions using the theorem prover Agda[3], [13] can
check the consistency of vocabulary and arguments, but Agda
is not always easy to learn, and the integrated development
environment is not well-developed. The PVS[14] is also a
similar situation. In addition, it is difficult to detect and
automatically respond to changes in models and codes that

serve as evidence in either case. There is research on this by
Matsuno et al.[15] but no practical tool yet exists.

IV. PROPOSED SOLUTIONS — NEW TOOLSET FOR ASAC
PARADIGM —

To solve these problems, the author plans to prototype and
evaluate a new assurance case description environment. This
is to realize a new concept of "Assurance as Code". This is
an attempt to code things that have not traditionally been
described in code, such as "Infrastructure as Code (IaC)".
The description environment includes a new programming
language for assurance case descriptions and its integrated
development environment (IDE). These will be built using the
Language Server Protocol (LSP) as a plug-in on Visual Studio
Code[16]. The following functions are planned:

1) Programmatic assurance case description (by new pro-
gramming language or DSL in host language)

2) Automatic generation of GSN and other representations
from assurance case description language (SACM-based
XML code generation)

3) Detection of changes by linking to evidence models and
codes

All of these functions can be written as code, enabling change
management using Git[17], etc., and assurance of the DevOps
lifecycle, such as CI/CD. In addition, by enabling assurance
cases to be written in an integrated development environment
well known to programmers, the number of potential "writers"
can be expected to increase.

Assurance case IDE

‘ In VS Code

[oneW GitHub Copilot and
Other NLP Techs

Fig. 1. Assurance as Code (ASaC) overview

E=—u

Models

In addition, by coding, it is also possible to support auto-
matic code generation by Al In other words, it will be possi-
ble to support assurance case writing through code creation
support such as GitHub Copilot[18], and natural language
processing can be applied to large-scale system development
documents as input and a part of assurance case as output.

An overall view of these is shown in Fig. 1.

V. CONCLUSION — TOWARDS ASSURANCE DEVELOPMENT
GAME —

This paper presents a new concept called “Assurance as
Code” (ASaC) and demonstrates its feasibility. Currently, the
author is working on the architectural design of an assurance
case description environment, with a comparative survey of
existing results such as [1], [2].

Although there is no clear argument for this, many program-
mers must have found it “fun” to have various tests automated
and to be able to build infrastructure with code. To begin with,
programming is fun (even if sometimes painful). The various
activities of system assurance will also become fun when they
are coded, rather than simply being tedious tasks that require
many man-hours.

The paper “The New New Product Development Game”[19]
compared product development to a rugby “scrum,” which
became the basis for later Agile development. The author
believes that assurance development can also become like a
kind of “game” of programming.

REFERENCES

[1] Bloomfield, R., Rushby, J.: Assurance 2.0: A Manifesto. aiXiv (2020).
doi:10.48550/arXiv.2004.10474

[2] ISO/IEC JTC 1/SC 7.: ISO/IEC/IEEE 15026-2:2022 Systems and soft-
ware engineering — Systems and software assurance — Part 2: Assurance
case. ISO (2022). https://www.iso.org/standard/80625.html

[3] Kinoshita, Y. and Takeyama, M.: Assurance Case as a Proof in a Theory
— towards Formulation of Rebuttals. In: Dale, C., Anderson, T (eds.)
Assuring the Safety of Systems, Proceedings of the Twenty-first Safety-
Critical Systems Symposium, Bristol, UK., pp. 205-230, SCSC (2013)

[4] SCSC The Assurance Case Working Gruop.: Goal Structuring Notation
Community Standard Version 3. SCSC (2021). https://scsc.uk/scsc-141c

[5] Claims Arguments Evidence.: CAE FRAMEWORK. Claims Arguments
Evidence (2023). https://claimsargumentsevidence.org/

[6] Object Management Group.: Structured Assurance Case Metamodel Ver-
sion 2.2. OMG (2021). https://www.omg.org/spec/SACM/2.2

[7]1 Roques, A.: Plant UML (2023). https://plantuml.com/

[8] Sveidqvist, K.: Mermaid — Diagramming and charting tool — (2023).
https://mermaid.js.org/

[9] Docker Inc.. Docker. Docker Inc. (2023). https://www.docker.com/

[10] HashiCorp.: Terraform. HashiCorp (2023). https://www.terraform.io/

[11] Adelard.: ASCE Software Overview. NCC Group (2023).
https://www.adelard.com/asce/

[12] ChangeVision, Inc..: astah* System Safety. ChangeVision, Inc. (2023).
https://astah.net/products/astah- system- safety/

[13] The Agda Team.: The Agda Wiki. The Agda Team (2023).
https://wiki.portal.chalmers.se/agda/pmwiki.php

[14] SRI.: PVS (Prototype Verification System). SRI International (2023).
https://pvs.csl.sri.com/

[15] Matsuno, Y., Ishikawa, F., Tokumoto, S.: Tackling Uncertainty in Safety
Assurance for Machine Learning: Continuous Argument Engineering
with Attributed Tests. In: Romanovsky, A., Troubitsyna, E., Gashi, L.,
Schoitsch, E., Bitsch, F. (eds) Computer Safety, Reliability, and Security.
SAFECOMP 2019. Lecture Notes in Computer Science, vol 11699.
Springer, Cham (2019). doi:10.1007/978-3-030-26250-1_33

[16] Microsoft.: Language Server Protocol. Microsoft (2022).
https://microsoft.github.io/language- server- protocol/
[17] The Git community.: Git. The Git community (2023).

https://git-scm.com/

[18] GitHub, Inc..: GitHub Copilot - Your Al pair programmer. GitHub, Inc.
(2023). https://github.com/features/copilot

[19] Takeuchi, H., Nonaka, L: The New New
Development ~ Game. Harvard Business Review
https://hbr.org/1986/01/the-new-new-product-development- game

Product
(1986).

